Table 4.
Summary of developed ML regression models.
Regressor | Model | Train |
CV |
Test |
NVAR | |||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | ||||
KNN | M1 | 94 | 0.316 | 91 | 0.394 | 97 | 8 | |
M2 | 93 | 0.345 | 93 | 0.352 | 96 | 2 | ||
LGBM | M3 | 92 | 0.353 | 90 | 0.403 | 97 | 8 | |
M4 | 94 | 0.302 | 93 | 0.352 | 97 | 3 | ||
XGBOOST | M5 | 93 | 0.332 | 90 | 0.397 | 97 | 11 | |
M6 | 92 | 0.353 | 90 | 0.403 | 97 | 159 | ||
CATBOOST | M7 | 95 | 0.277 | 91 | 0.376 | 96 | 4 | |
M8 | 95 | 0.283 | 93 | 0.346 | 96 | 1 | ||
DT | M9 | 92 | 0.353 | 90 | 0.403 | 97 | 20 | |
M10 | 100 | 0.076 | 91 | 0.387 | 92 | 9 | ||
BPNN | 1 hidden layer | M11 | 94 | 0.305 | 91 | 0.384 | 95 | 62 |
M12 | 93 | 0.342 | 88 | 0.437 | 91 | 20 | ||
2 hidden layers | M13 | 92 | 0.354 | 91 | 0.392 | 96 | 159 | |
M14 | 95 | 0.28 | 92 | 0.374 | 97 | 20 | ||
3 hidden layers | M15 | 98 | 0.168 | 94 | 0.324 | 97 | 24 | |
M16 | 100 | 0.006 | 93 | 0.337 | 70 | 186 |