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Evolutionary route of nasopharyngeal
carcinoma metastasis and its clinical
significance
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It is critical to understand factors associated with nasopharyngeal carcinoma
(NPC) metastasis. To track the evolutionary route of metastasis, here we per-
form an integrative genomic analysis of 163 matched blood and primary,
regional lymph node metastasis and distant metastasis tumour samples,
combined with single-cell RNA-seq on 11 samples from two patients. The
mutation burden, gene mutation frequency, mutation signature, and copy
number frequency are similar between metastatic tumours and primary and
regional lymph node tumours. There are two distinct evolutionary routes of
metastasis, including metastases evolved from regional lymph nodes (lym-
phatic route, 61.5%, 8/13) and from primary tumours (hematogenous route,
38.5%, 5/13). The hematogenous route is characterised by higher IFN-γ
response gene expression and a higher fraction of exhausted CD8+ T cells.
Based on a radiomics model, we find that the hematogenous group has sig-
nificantly better progression-free survival and PD-1 immunotherapy response,
while the lymphatic group has a better response to locoregional radiotherapy.

Nasopharyngeal carcinoma (NPC) originates from the nasopharyngeal
epithelium and ismost prevalent in southeastern Asia,with the highest
incidence reported among the Cantonese population from Guang-
dong, China1. The incidence of synchronous distant metastasis in
endemic NPC ranges from 6% to 8% at the time of presentation2. Local
therapy has been used for metastatic disease with the intent of redu-
cing the primary tumour burden, propagating metastases, or relieving
symptoms3. Our previous clinical trial demonstrated that chemother-
apy plus high-dose locoregional radiotherapy could improve overall
survival (OS) in de novo metastatic NPC patients4. As soon as the
promising results of the clinical trial were published, the well-known

National Comprehensive Cancer Network (NCCN) guidelines recom-
mended systemic therapy followed by radiotherapy for de novo
metastatic NPC patients (category 2 A)5. Furthermore, addition to the
expected reduction in the locoregional relapses rate, locoregional
radiotherapy also resulted in fewer distant metastatic recurrences
(54.0% vs. 68.3%). This raises the question about the mechanisms
linking the treatment of the primary tumour to effects on the meta-
static disease trajectory. However, 17 of 63 (27.0%) patients did not
achieve an objective response (complete or partial response) after the
completion of locoregional radiotherapy. Therefore, it is critical to
unveil the mechanisms contributing to this synergy observed in the
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clinic and to screen appropriate patients who could benefit from
intense combined locoregional radiotherapy.

Large-scale genomic and transcriptomic sequencing studies have
revealed a comprehensive mutation landscape and diverse disease
subtypes in NPC samples6–11. However, the genomic architectures of
metastases have not been defined to discern temporal or spatial pat-
terns of metastatic evolution. In addition, single-cell RNA sequencing
(scRNA-seq), a high-resolution technology, could provide new insights
into tumour evolution and has been successfully used to reconstruct
clonal evolutionary trajectories during chemotherapy in breast
cancer12. scRNA-seq could also be used to dissect the intratumour
heterogeneity (ITH) of primary and metastatic tumour ecosystems in
NPC13 and draw a map of the immune phenotype in NPC14–22. Studies
that focuses on the evolutionary route of metastasis in NPC are still
lacking.

In this work, we collected paired primary and metastatic tumour
samples from a previous trial (NCT02111460) in de novo metastatic
NPC and conducted integrative genomic and transcriptomic sequen-
cing, including scRNA-seq, to trace the evolutionary history of distant
metastases in NPC. We reasoned that through integrative analysis of
the large-scale bulk and single-cell sequencing data of paired primary
andmetastatic NPC tumours, afiner understanding of the evolutionary
history of NPCmetastases and themechanismunderpinning the effect
of locoregional treatment on metastatic NPC could be obtained. Sub-
sequently, we attempted to identify biomarkers to predict patient
outcomes and aid in therapeutic decision-making and validate them in
clinical trial cohorts.

Results
Genomic comparison of matched NPC primary, regional lymph
node and metastatic tumours
First, to investigate the evolutionary routes of NPC metastases, we
obtained 167 tumour samples (83 primary lesions, 44 regional lymph
node lesions, and 40 metastatic lesions) and 35 matched blood sam-
ples from 44 NPC patients (Fig. 1a; Supplementary Table 1). Whole-
exome/whole-genome sequencing (WES/WGS) was performed on
163 samples from 35 patients (400.97× on WES, and 89.11× on WGS)
(Fig. 1b; Supplementary Data 1), amongwhich 14 tumour samples were
obtained after standard treatment (five samples were from residual
primary lesions that were sampled when locoregional radiotherapy
was completed, and nine samples were from progressed distant
metastases tumours). To further investigate ITH, WES was performed
on two to fivemultiregion samples from the primary tumour lesions of
ten patients and the regional lymph node lesions of nine patients.
Transcriptome sequencing (RNA-seq) was also performed on 28
patients with available primary tumour tissues (Fig. 1b; Supplementary
Data 2). Moreover, high-resolution 10× genomics 3’ v2 scRNA-seq was
performed on 11 samples from two patients (including two primary
tumours, four regional lymph node tumours and five distant meta-
static tumours) to explore the evolutionary routes of NPC metastases
at the cellular resolution level (Fig. 1b; Supplementary Table 2).

On average, 70 (range from 6 to 326) non-silent somatic muta-
tions were identified (Supplementary Data 3). Validation of candidate
mutations with Sanger sequencing and TA vector clones showed that
the true positive rate was 93.9% (Supplementary Data 4). The meta-
static tumour samples had a non-silentmutation burden similar to that
of primary and regional lymph node tumours (Supplementary Fig. 1a).
The predominant type of substitution in primary, regional lymph node
and metastatic tumours was C >T transition which was also the pre-
dominant signature reported in different NPC pathologic subtypes11,23

(Supplementary Fig. 1b). Using combined nonnegative matrix factor-
ization clustering, we identified five robust mutational signatures
across all samples (Supplementary Fig. 1c–e). The five mutation sig-
natures were annotated to curatedmutational signatures 2, 4, 5, 6 and
13 in linewith the Catalogue of SomaticMutations in Cancer (COSMIC)

database. We then deconvoluted the mutation signatures for each
sample according to the five mutation signatures plus signature 1, as it
is universally found in almost all cancer types and in most tumour
samples24,25. Overall, different samples had different dominant muta-
tional signatures, but we also found that the AID/APOBEC-related sig-
natures, including Signature 13 and Signature 2, were the top two
contributing signatures across all samples, and the overall pattern of
the mutation spectrum in metastatic tumour samples was similar to
that of primary and regional lymph node tumour samples (Supple-
mentary Fig. 1f; Supplementary Fig. 2a).Moreover,when longitudinally
comparing the number of mutations, proportion of mutational sig-
natures and proportion of subclone mutations across different
patients, we found that these characteristics showed significant posi-
tive correlations in primary vs. regional lymph node tumours, primary
vs. distant metastatic tumours, and regional lymph node vs. distant
metastatic tumours (Supplementary Fig. 2b–d). Interestingly, the
defective DNAmismatch repair signature (signature 6), which plays an
essential role inmaintaining genomic stability26 was predominant at all
three sites. Consistently, previous studies have found that the DNA
mismatch repair signature was dominant and associated with inferior
survival27. Collectively, the dominance of signature 6 in metastatic
tumours further indicated that defective DNA mismatch repair might
exert a broad and important influence on the progression of NPC
(Supplementary Fig. 1d, e).

To evaluate the ITH in NPC tumours, we reconstructed phyloge-
netic trees based on multiregion primary tumour samples from ten
NPC patients and multiregion regional lymph node tumour samples
fromnine patients (Supplementary Fig. 3a, b).On average, only 20.79%
(range from4.80% to 38.28%) and 22.29% (range from2.45% to 38.28%)
ofmutationswerepresented as trunkmutations thatwere sharedby all
regions in primary and regional lymph node tumours, respectively,
suggesting that substantial high ITH exists in primary and regional
lymph node tumours. Moreover, by classifying somatic variants into
clonal and subclonal mutations according to the cancer cell fraction
(CCF), we found that the proportion of subclonal mutations in meta-
static tumours was comparable to that in primary and regional lymph
nodes (Supplementary Fig. 3c). Furthermore, the proportion of sub-
clonal mutations in primary tumours was positively correlated with
that in regional lymph node/distant metastasis tumours (R =0.5,
P <0.001; Supplementary Fig. 3d). Concordantly, the MATH score28

was also adopted to evaluate the ITH of tumours, which showed that
ITH was similar in primary, regional lymph node and metastatic
tumours (Supplementary Fig. 3e, f). All these results suggested that
NPC possessed high ITH, and regional lymph node and metastatic
tumours might inherit this characteristic.

We then applied MutSigCV29 to separately identify significantly
mutated genes (SMGs) in primary, regional lymph node and distant
metastatic tumours. For tissues with multiregion samples, we com-
bined their mutation results for the above analysis to avoid the influ-
enceof the number of samples. In addition to genes thatwere reported
to be frequently mutated in previous genomic studies of NPC, such as
TP53, BAP1, CYLD and NFKBIA, we also identified other SMGs, such as
SIX2 and RPLP1 (Fig. 1c). A combined list of 31 “driver genes” was
generated, which consisted of the SMGs we identified, the genes
identified as key genes in previous NPC studies6–8 and the frequently
mutated genes (>3%) in our samples (Fig. 1c). While most driver genes
had highly similar mutational frequencies across the three sites, the
mutational frequencies of SIX2 and NOTCH2 were significantly higher
in metastatic tumour samples than in primary tumour samples
(Fig. 1c), suggesting that SIX2 and NOTCH2 might play an important
role in NPC metastasis. Recent studies have reported that SIX2, a
developmental transcription factor, promotes breast cancer metas-
tasis via the epithelial-mesenchymal transition (EMT) pathway
or the induction of the cancer stem cell program30,31. NOTCH2, a
newly identified oncogene that is commonly overexpressed in a range
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Fig. 1 | Genomic landscape of NPC primary and metastatic tumours. a Site
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frequently altered genes are highlighted. Source data are provided as a
Source Data file.
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of cancers32, can promote cancer growth and metastasis in bladder
cancer33.

We derived somatic copy number alterations (SCNAs) using WES
segmentation data via the GISTIC algorithm34 (Supplementary Data 5).
We obtained “amplification (AMP)” and “deletion (DEL)” alterations at
the gene level based on the “high-level amplification (or deletion)
thresholds of segment mean” provided by GISTIC2 (Fig. 1d). No sig-
nificantly differential SCNAs were detected in regional lymph node
or distant metastasis tumours when compared to primary tumours.
Previously reported well-known copy number deletions at 9p21.3
(CDKN2A), 3p21.31 (RASSF1), 3p22.2 (MLH1), and 14q32.32 (TRAF3) and
amplifications at 11q13.3 (CCND1), 3q26.1 (PIK3CA), 1p12 (NOTCH2), and
19q13.2 (AKT2) were prevalent at all three sites. Although high ITHwas
found in NPC regardless of the site, the basic genomic characteristics
were similar among primary, regional lymph node and distant meta-
static tumours.

Identification and characterization of metastatic driver events
Tumour metastasis is recognised as a clonal evolution process, during
which a clone equipped with metastatic capability is selected for dis-
semination to metastatic sites35. To investigate the driver events
selected during NPC metastases, we systematically characterised the
clonality of each variant and the tumour subclonal architectures of
metastatic NPC based on the CCFs of variants (Supplementary Fig. 11;
Methods). In total, 11,148 variants were categorised into four groups
during metastasis according to the dynamic change in clonality
between primary and metastatic tumours: 1) selected variants
(“selected”, n = 1193 variants, defined as those that were clonal in
metastatic tumours but subclonal or absent in primary tumours); 2)
novel variants (“novel”, n = 3603 variants, defined as those that were
subclonal in metastatic tumours but absent in primary tumours; 3)
founding variants (“founding”, n = 718 variants, defined as those that
were clonal in bothmetastatic and primary tumours; and4) unselected
variants (“unselected”, n = 5634 variants, defined as those that were
not found in metastatic tumours but were present in primary tumours
regardless of clonality) (Fig. 2a).

We found that clones harbouring somatic mutations in driver
genes such as NFKBIA, TET2, BAP1, TP53 and FAT1 were evidently
selected in metastasis (Fig. 2a). Furthermore, we found that the
somatic mutations in the selected group were significantly enriched in
the EMT, mitotic spindle, apical junction, inflammatory response and
E2F target pathways (Fig. 2b). These pathways have been widely
reported as potential drivers of cancer metastasis36–39. Similarly, we
found that clones harbouring CNV events, such as KMT2C amplifica-
tion, ARID1A deletion, and TP53 deletion, were evidently selected in
metastasis (Fig. 2c).

It hasbeen reported that approximately 20%–30%ofNPCpatients
experience distant metastasis after standard chemoradiotherapy40,41.
Benefiting from the precious paired tumour samples collected after
treatment, we sought to further investigate the influence of treatment
on the mutation selection and tumour evolution of NPC metastasis.
Obviously, intense treatments impose selective pressure on variants;
thus, clonal variants persistent in post-treatment metastatic tumours
might be relevant to not only treatment resistance but also tumour
metastasis. First, we found that some events, such as KRAS amplifica-
tion, JAK2 amplification, CADM1 deletion, and NFKBIA deletion, were
clonal in residual primary tumours but subclonal or undetectable
in pretreatment primary tumours, suggesting that these events might
be associated with treatment resistance and further metastatic pro-
gression (Fig. 2d). In line with our findings, KRAS is known to confer
chemoresistance in various cancer types42–44. NFKBIA, a well-known
negative regulator of the NF-κB pathway, was reported to enhance
chemoresistance in NPC45–47. Second, by comparing the mutation CCF
between the paired pretreatment primary and posttreatment pro-
gressedmetastasis samples, we found that SNVs in genes such as TP53,

ARID1A and TRAF3 and CNVs such as ATG13 deletion, KMT2D amplifi-
cation and ARID1A deletion were evidently selected in posttreatment
progressed metastatic tumours (Fig. 2e). Most selected CNVs in post-
treatment metastatic tumours were also found to be selected in pre-
treatment metastatic samples, except EP300 amplification, FBXW7
deletion andPTENdeletion (Fig. 2c ande). EP300, an oncogene found in
oesophageal squamous carcinoma48, could promote tumour progres-
sion in diffuse large B-cell lymphoma by altering tumour-associated
macrophage polarization via downregulation of FBXW749, a critical
tumour suppressor deleted in more than 30% of all human cancers50.
EP300 amplification and FBXW7 deletion might exert a synergistic
effect on the progression ofmetastasis in NPC. In addition, all selected
variants found in residual primary tumours were also observed to be
selected in both pretreatment and posttreatment metastatic samples,
which proved that such variants were not brought about by treatment
and probably played a vital role in initiating distant metastasis.

Since the collection of posttreatment primary residual samples
was scarce but valuable in our study, we further inspected the
topology of phylogenetic trees of patients with posttreatment pri-
mary residual samples (P27, P31 and P32). According to the phylo-
genetic trees of P27 and P31 (Supplementary Fig. 11), we found
that the progressed metastasis sample and the primary sample
before treatment were clustered into the same clade, suggesting that
the posttreatment progressed metastatic lesions were related to the
primary lesions before treatment andmight have originated from the
clone of the primary lesions before treatment. In contrast, the pro-
gressed metastasis sample and the posttreatment primary residual
sample were clustered into the same clade in P32, indicating that the
progressed metastasis might have originated from the clone of
the posttreatment primary residual lesions (Fig. 2f). According to the
phylogenetic tree of P32, we found that clonal NFKBIA deletion was
present in both the progressed metastasis sample and the post-
treatment residual primary sample but absent in the pretreatment
primary tumour (Fig. 2g), suggesting thatNKFBIA deletionmight have
conferred treatment resistance and further triggered distant metas-
tasis in P32. Moreover, we found that clonal ARID1A deletion was
detected in only the progressed metastasis (Fig. 2g), suggesting that
ARID1A deletionwas important for themetastatic progression of P32.
All these inferences need further validation and exploration in large
cohorts in the future.

Two distinct routes of metastasis evolution revealed by the
genomic data of matched NPC primary, regional lymph node
and metastatic tumours
To elucidate the evolutionary routes of NPC metastases, we examined
all the phylogenetic trees of the 15 patients with complete matched
WES data of primary, regional lymph node and metastatic tumours
(Supplementary Fig. 11; Methods). According to the topology of the
phylogenetic tree, we differentiated two evolutionary routes of
metastases: (1) lymphatic route: distant metastases were seeded from
regional lymph node lesions, where regional lymph node tumour and
distant metastatic tumour were clustered into the same clade without
a primary tumour; and (2) hematogenous route: distant metastases
were directly seeded from primary tumours, where primary tumour
and distant metastatic tumour were clustered into the same clade
bypassing regional lymph node tumours (Fig. 3a). We employed a
bootstrapping strategy to assess the probability of lymphatic and
hematogenous origination of eachmetastasis (Methods). Filtering two
metastatic tumours from two patients (P05 and P06) that did notmeet
the cut-off (0.75) of probability, we observed that 11 metastatic
tumours from eight patients (P01, P02, P07, P08, P10, P12, P13 and P14;
8/13, 61.5%) were seeded via the lymphatic route, and eight metastatic
tumours from five patients (P03, P04, P09, P11 and P15; 5/13, 38.5%)
were most likely seeded via the hematogenous route (Fig. 3b; Sup-
plementary Fig. 11).
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Mutation CCF-based subclonal evolution analysis further con-
firmed our findings (Methods). Metastatic tumours taking the lym-
phatic route would share at least one private subclone with regional
lymph node tumours, while metastatic tumours taking the hemato-
genous route would not share any private subclone with regional
lymph node tumours (Supplementary Fig. 11). For instance, the parotid
metastatic tumour of P12 originated from the regional lymph node
tumour according to the mutation-based phylogenetic tree. This was
confirmed by the subclonal architecture derived from the CCF of

mutations, showing that the parotidmetastasis and the regional lymph
node of P12 shared the private subclones “6” and “7” that were not
found in the primary tumour (Fig. 3c). In contrast, the evolutionary
model of P04’s metastatic tumour (thyroid) hematogenously origi-
nated from the primary tumour. The distant metastatic and regional
lymph node tumours of P04 were not clustered into the same clade
of the phylogenetic tree and did not share any private subclones
(Fig. 3d). Overall, the evolutionary routes of 89.47% of distant meta-
static lesions were confirmed by subclone-based evolutionary analysis,
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Fig. 2 | Driver events during NPC metastasis. a Scatter plot indicating different
variant groups during metastasis. Each variant is measured by CCFs in the primary
tumour and distant metastasis from the same patient. The colour range reflects the
mutation density. Red circles, founding variants that are clonal both before and
aftermetastasis; purple circles, selected variants that are undetectable or subclonal
before metastasis but clonal after metastasis; blue circles, unselected variants that
are clonal or subclonal before metastasis and undetectable after metastasis; and
green circles, novel variants that are subclonal after metastasis but undetectable
before metastasis. Predicted driver genes harbouring SSNVs are marked.
b Reactome pathway enrichment of mutated genes in the “selected” group.
cDistributionof variant groups duringmetastasis according to keyNPCCNVs. Only
selected CNVs are shown, and the number of selected CNVs was annotated.

d Distribution of variant groups during progression according to the key CNVs
betweenpaired primary tumours and residual tumour after treatment. The number
of selected variants is annotated. e Distribution of variant groups during progres-
sion according to key variants, including SSNVs and CNVs, between paired primary
tumour samples and posttreatment progressed metastatic samples. f The evolu-
tionary landscape of P32. The left panel shows the phylogenetic tree with the key
variants highlighted. The right panel shows the subclone-based evolution archi-
tectureof each sample and their sampling transect, which reflects theproportion of
each subclone at the time of sampling. g Dynamic subclone-based evolution
architecture of P32 plotted using TimeScape, with the proportion of each cluster at
the time of sampling annotated. Source data are provided as a Source Data file.
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Fig. 3 | “Lymphatic” and “hematogenous” evolution pattern of NPCmetastases
indicated from genome sequencing data. a Schematic diagram illustrating the
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except P14-Met3 (subclones that uniquely shared by Lyn and Met are
undetectable) and P01-Met (subclone-based evolution architecture
unavailable) (Supplementary Fig. 11).

Interestingly, we found that different metastatic tumours from
the same patient tended to obey the same evolutionary route. In
other words, the lymphatic route and hematogenous route might be
exclusive. The liver and lungmetastases in P07 evolved from regional
lymph nodes, and all metastatic tumours (liver, bone and inguinal
lymph node) of P14 also evolved from regional lymph node tumours
(Fig. 3e, f; Supplementary Fig. 11). Similarly, all distant metastatic
tumours (multiple axillary lymph nodes) of P15 hematogenously
originated from the primary tumour (Fig. 3g; Supplementary Fig. 11).
As the classification of metastatic routes is mainly based on the
phylogenetic tree, omission of tumour subclones due to single-
region biopsy might give rise to false classification. However,
since surgery is not recommended for NPC patients, it is difficult to
exhaust tumour cells. Thus, comprehensively evaluating metastases
through 18F-fluorodeoxyglucose positron emission tomography-
computed tomography (18F-FDG PET-CT) and other imaging exam-
inations, we safely obtained as much tumour tissue as possible via
biopsy and obtained multi-region samples of large tumours in
available patients (e.g., P10, P14 and P15; Supplementary Fig. 11). We
found that different regions from the same primary tumour or the
same regional lymph node tumour had consistent evolutionary
routes (e.g. P10, P14, P15; Supplementary Fig. 11). To determine
the influence of the number of samples biopsied on the categorisa-
tion of the metastatic routes, we removed one sample at a time,
reconstructed the phylogenetic tree and reclassified the patients
according to the two metastatic routes. No change in metastatic
routes was found in P14 and P10 when one sample was randomly
removed, while the classification of the metastatic routes of P15 was
changed only when Lyn1 was removed. All these results suggested
that biopsy of samples had limited influence on the determination
of the evolutionary route of metastasis based on the phylogenetic
tree and underlined the importance of multiregion sampling in such
studies.

scRNA-seq could dissect tumour heterogeneity at the cellular
level and subsequently add additional resolution to tumour
evolution51, thus we further performed scRNA-seq inmatched primary,
regional lymph node and distant metastatic tumours from lymphatic
(P14) and hematogenous (P15) metastatic patients (Fig. 1b; Supple-
mentary Table 2). After quality control and batch effect removal,
53,913 cells from 11 samples were detected (Fig. 4a–c; Supplementary
Table 2). Malignant cells were identified using epithelial markers
such as EPCAM and KRT18, and nonmalignant cells were annotated
as myeloid immune cells, B cells, plasma cells, T cells and cancer-
associated fibroblasts according to canonical markers (Fig. 4a–c;
Supplementary Fig. 4a). Unsupervised clustering of malignant cells
from P14 and P15 revealed nine and eight distinct clusters, respectively
(Supplementary Fig. 4b, c). Mapping cells with sample origination,
a consecutive tumour evolutionary trajectory was observed via
Monocle252 (Fig. 4d–e; Supplementary Fig. 4b, c). Intriguingly, primary
tumour cells first migrated to regional lymph nodes and then subse-
quently disseminated to bone and inguinal lymph nodes or the
liver following distinct routes, which was closely consistent with
the lymphatic evolutionary route revealed by the phylogenetic
tree built using the genomic data (Fig. 4d; Supplementary Fig. 4b).
In contrast, malignant cells from primary and metastatic sites were
blended andno clear evolutionary route related to sample originations
was found in P15, probably due to the direct dissemination of tumour
cells from the primary tumour to regional lymph nodes or distant
metastasis revealed by the phylogenetic tree (Fig. 4e; Supplementary
Fig. 4c). Overall, the scRNA-seq data not only confirmed the evolu-
tionary route derived from the WES data but also provided a finer
resolution to clarify NPC metastases.

Molecular differences between lymphatic and hematogenous
routes of NPC metastases
Next, we investigated whether the two routes have distinct genomic
features. We found that the trunk mutations in patients with metas-
tases emerging via the lymphatic route displayed a significantly higher
fraction of the “C>A” transition than those in patients withmetastases
emerging via the hematogenous route (P =0.030, Wilcoxon signed-
rank test) (Supplementary Fig. 5). Moreover, mutation signature 6
(DNA mismatch repair-related) was significantly enriched in the
hematogenous route (P =0.002, Wilcoxon signed-rank test; Fig. 5a).
Interestingly, we found that metastatic tumours emerging via the
lymphatic route had dramatically more selected mutations than those
emerging via the hematogenous route (286mutations vs. 6mutations,
P <0.001, Fisher’s exact test), and mutations in NFKBIA, TP53, genes
involved in EMT, such as CTNNB1, vinculin (VCL), and Rho GTPase
activators (ARHGAP35 and VAV3), were evidently selected during
metastasis via the lymphatic route but not during metastasis via the
hematogenous route (Fig. 5b).

Furthermore, the bulk RNA-seq data showed that primary
tumours of the lymphatic route were significantly enriched in path-
ways such as EMT (NES = 2.1, FDR <0.001), UV response (NES = 1.7,
FDR =0.006) and angiogenesis (NES = 1.5, FDR =0.001), while primary
tumours of the hematogenous route were significantly enriched in the
interferon-alpha (IFN-α) (NES = 2.4, FDR <0.001) and interferon-
gamma (IFN-γ) (NES = 1.9, FDR <0.001) response pathways (Fig. 5c).
The scRNA-seq data also showed that the IFN-α and IFN-γ response
pathways were significantly enriched in primary tumour cells of the
hematogenous route (Fig. 5d; Supplementary Fig. 4d). Previous studies
have shown that IFN-γ upregulates the checkpoint inhibitor PD-L1
and cooperates with PD-1 to exhaust T cells, thus suppressing the
antitumour immune response53,54. Concordantly, we observed that the
proportion of PD-L1+ primary tumour cells was significantly higher
in P15 (hematogenous) than P14 (lymphatic) (Supplementary Fig. 6a;
chi-square test, P < 0.001). Based on the bulk RNA-seq data, we also
found that the expression level of PD-L1 tended to be higher in the
hematogenous group than in the lymphatic group, although the dif-
ference was not statistically significant, probably due to the small
sample size (Supplementary Fig. 6b, Wilcoxon rank test, P =0.43).
We hypothesise that the immune microenvironment of primary
tumour of the hematogenous route should be present with more
exhausted T cells, which is convenient for tumour cell dissemination.
Thus, we examined and reclustered the immune cells derived from the
primary tumourof P14 andP15.According to specific genes of different
immune cell types (Supplementary Fig. 6c), we observed distinct
clusters for B cells, CD4+ T cells, CD8+ T cells, macrophages and den-
dritic cells (Supplementary Fig. 6d). We found that the tumour
immune microenvironments of P14 (lymphatic route) and P15 (hema-
togenous route) were significantly different. The fraction of CD8+

T cells, themaindefender against tumour cells,was significantlyhigher
in P14 (lymphatic route) (P <0.001, Fisher’s exact test; Supplementary
Fig. 6d, e). CD8+ T cells were further clustered into eight subclusters,
and markers of each subcluster were extracted (Fig. 5e, f). Indeed, we
observed that C7_CXCL13 with reduced cytotoxicity highly expressed
exhausted markers such as ENTPD1, TNFRSF9 and TNFRSF18 and was
significantly abundant in P15 (hematogenous route) (P < 0.001, Fisher’s
exact test; Fig. 5g; Supplementary Fig. 6f, g). We further validated
the enrichment of C7_CXCL13 cells in CD8+ T cells of hematogenous
route samples via multiplex immunohistochemistry (IHC) staining
of markers (CXCL13, TIM3 and CD8), which showed a consistent
result with our single-cell data, although the results failed to reach
statistical significance, probably due to the small sample size (Fig. 5h;
Supplementary Fig. 6h). As immune checkpoint inhibitors (ICIs)
could reinvigorate exhausted T cells, it is rationale to suppose that
the enrichment of C7_CXCL13 might indicate a good response to
immunotherapy. To determinewhether the enrichment of exhausted
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CD8+ T cells with high expression of CXCL13 is correlated with better
efficacy of immune checkpoint blockade (ICB), we collected two
public scRNA-seq datasets with ICB response information55,56 and
found that exhausted CD8+ T cells were more prevalent in patients
sensitive to ICB than in those resistant to ICB in bladder cell carci-
noma (BCC) and clear cell renal cell carcinoma (ccRCC) (Supple-
mentary Fig. 7). These clues suggest that NPC patients with
metastases emerging via the hematogenous route might achieve a
good response to immunotherapy.

Imaging data discriminated the two metastatic routes
Imaging data have been recently utilised to help clinicians diagnose
how body systems work together at the organ-tissue level57. We found
that there were distinct radiomics features between NPC patients with
metastases emerging via the lymphatic route and those with metas-
tases emerging via the hematogenous route. Patients with metastases
emerging via the hematogenous route tended to have larger primary

lesions but less involvement of lower regions of regional lymph nodes
and lessmetastatic lesions in bone (Fig. 6a–c, Supplementary Table 3),
as illustrated in P01 with the lymphatic route (Fig. 6d) and P03with the
hematogenous route (Fig. 6e). Since performing genomic sequencing
and analysis onmatched primary, regional lymphnode andmetastases
tumours to classify metastatic routes is complicated, high-cost and
time consuming, we wondered whether radiomics features could be a
proxy to identify different metastatic routes. Thus, we extracted the
image features of primary tumours and then built a machine learning-
based prediction model to identify the lymphatic route from the
hematogenous route using the radiomics data of the 13 patients with
genomic evidence as the training dataset; this model, obtained a high
accuracy rate of 1.0 and a high area under the curve (AUC) of 1.0
(Fig. 6f; Supplementary Fig. 8; Supplementary Fig. 9a–c; Supplemen-
tary Table 1; Supplementary Data 6; Methods). Moreover, we applied
the radiomics predictionmodel to patients whodid not have complete
paired primary, regional lymph node and metastatic tumour samples
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before treatment and thus, the metastatic route might not be able to
be identified based on the available genomic data. For P25, the radio-
mics predictionmodel indicated thatmetastasesmight emerge via the
lymphatic route based on the imaging data obtained before treatment.
As expected, the twoposttreatmentmetastatic samples (liver and lung
metastases) did emerge via the lymphatic route according to the
genomic-based phylogenetic tree (Fig. 6g). Similarly, the radiomics

model and genomic evidence both indicated that P27, whose pre-
treatment metastatic tumour was unavailable but progressed pleural
metastasis sample was obtained, had metastases via the hematogen-
ous route (Fig. 6g). Moreover, the primary tumours of the hemato-
genous route predicted via the radiomics model had higher IFN-α
(NES = 2.4, FDR <0.001) and IFN-γ (NES = 2.2, FDR <0.001) response
pathway activities than those of the lymphatic route (Fig. 6h), which
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was consistent with previous results based on samples with genomic
evidence.

It is hard to collect complete matched primary, regional lymph
node and metastases tumour samples as most metastatic sites are
deep seated and near pivotal structures like heart and important ves-
sels, whichmakes biopsy difficult and unsafe. To validate the accuracy
of the radiomics prediction model, we strived to obtain additional
matched primary, regional lymph node andmetastases tumours (P49-
P53) and then constructed genomic phylogenetic trees and predicted
the metastatic route using the radiomics prediction model synchro-
nously, which showed that the phylogenetic trees based on genomic
data were concordant with the results of the radiomics prediction
(Fig. 6i; Supplementary Fig. 9d; Supplementary Fig. 10a). In addition,
we observed that P19 and P23 developed metastases after curative
chemoradiotherapy; thus, we collected the posttreatment metastatic
sites and reconstructed the phylogenetic trees. Consistent with
the results of the radiomics prediction model, P19 had metastases via
the hematogenous route while P23 had metastases via the lymphatic
route according to the reconstructed phylogenetic trees (Supple-
mentary Fig. 10a). Then, we applied our radiomics predictionmodel in
larger clinical cohorts, including the de novo metastatic NPC cohort
(n = 104, NCT02111460; Supplementary Tables 4 and 5) and immu-
notherapy cohort (n = 66; Supplementary Table 7). We found that the
imaging characteristics of the lymphatic and hematogenous routes in
the clinical cohorts were concordant with those in the training dataset
(Supplementary Table 3). Since most patients diagnosed in the clinic
are in stage M0 and might eventually develop metastasis, it would be
of great help to predict the metastatic route as early as possible and
impose specific treatment modalities to prevent the occurrence of
distant metastasis. Thus, we also applied the prediction model to an
M0-stage NPC cohort (n = 201) and found that the size of the primary
tumour was larger and the number of lower cervical lymph nodes was
lower in the hematogenous group than in the lymphatic group (Sup-
plementary Table 3; Supplementary Table 6). These results suggested
that the radiomics prediction model could classify the lymphatic and
hematogenous routes.

Clinical differences between the lymphatic and hematogenous
metastatic routes
Among the 13 metastatic NPC patients with genomic evidence, five
patients with the hematogenous metastatic route had longer
progression-free survival (PFS) times than eight patients with the
lymphatic metastatic route (median PFS, 17 months vs. 6 months,
P =0.26; Fig. 7a). Consistently, in the 104 de novo metastatic NPC
cohort recruited in our randomised, phase 3 trial (NCT02111460;
Supplementary Table 4), whichwas aimed at examining the benefits of
locoregional radiotherapy in de novo metastatic NPC, 26 patients
withmetastases emerging via the hematogenousmetastatic route had

significantly longer 2-year PFS time than 78 patients with metastases
emerging via the lymphatic route (2-y PFS, 42.4% vs. 10.5%, P =0.0044;
Fig. 7b). Multivariable analysis further confirmed that patients with
metastases emerging via the hematogenous route had better PFS than
those with metastases emerging via the lymphatic route (HR =0.397,
95% CI = 0.191-0.825, P =0.013; Supplementary Table 8).

In the cohort of 104 metastatic NPC patients, locoregional radio-
therapy was associated with a significantly higher objective response
rate (ORR) than no locoregional radiotherapy in patients with the
lymphatic metastatic route when evaluating metastatic lesions at
the end of treatment (ORR, 73.0% vs. 47.2%, P =0.045). In contrast,
locoregional treatment was not associated with significantly higher
ORR than no locoregional radiotherapy in patients with metastases
emerging via thehematogenous route (ORR,81.8% vs. 85.7%,P = 0.807;
Fig. 7c). Moreover, we found that adding locoregional radiotherapy to
the treatment of patients with the lymphatic metastatic route resulted
in improved disease control (2-y PFS, 22.9% vs. 2.4%, P = 0.005), while
patients with the hematogenous metastatic route did not significantly
benefit from combined locoregional radiotherapy (2-y PFS, 45.1% vs.
37.5%, P =0.366; Fig. 7e, f). For M0-stage NPC, patients in the hema-
togenous group achieved better survival outcomes than those in the
lymphatic group, which indicated that intense treatment modalities
such as aggressive chemoradiotherapy might be needed for the lym-
phatic group (Supplementary Fig. 10b).

Additionally, in the immunotherapy cohort containing 66patients
who received combination immunotherapy consisting of toripalimab,
apatinib and gemcitabine, 14 patients in the hematogenous group
achieved a significantly higher ORR than 52 patients in the lymphatic
group (ORR, 85.7% vs. 57.7%, P =0.012; Fig. 7d). These findings sug-
gested that the lymphatic and hematogenous metastatic routes might
be effective in stratifying patients who are at a high risk of disease
progression and might be potentially used to choose specific patients
for locoregional radiotherapy or immunotherapy.

Discussion
Our study provided broad insights into the evolutionary trajectory and
characteristics of NPC metastasis. We portrayed a comprehensive
genomic landscape of NPC primary, regional lymph node and meta-
static tumours. According to the phylogenetic analysis and scRNA-seq
analysis, two distinct dissemination routes of distant metastases were
observed, including lymphatic dissemination from regional lymph
node metastases and hematogenous dissemination from primary
tumours. Primary tumours via the lymphatic route were significantly
enriched in pathways such as EMT, UV response and angiogenesis,
while primary tumours via the hematogenous route were significantly
enriched in the IFN-α and IFN-γ response pathways. We successfully
utilised radiomics data to categorize NPC metastatic routes into lym-
phatic metastasis and hematogenous metastasis instead of genomic

Fig. 5 | Molecular characteristics of the lymphatic and hematogenous evolu-
tionarymodes. aMutation signatureprofile of trunkmutations in sampleswith the
lymphatic pattern (n = 8) and the hematogenous pattern (n = 5). The y-axis shows
the contribution of each signature. In each box plot, the centre line represents the
median, the bounds represent the first and third quartiles, and whiskers extend
from the hinge to the largest value no further than 1.5 × interquartile range (IQR)
from the hinge. After adjusting for age, gender and tumour stage by using covar-
iance analysis model, the Wilcoxon signed-rank test (two-sided) was used to cal-
culate the P values. b Scatter plots showing the selection pattern of all mutations
during metastasis in the lymphatic (left) and hematogenous (right) routes
according to the comparison of the CCF for each variant between primary (x-axis)
and metastatic (y-axis) tumours. The colour range reflects the mutation density in
the scatter plot. The circle box indicates the selected mutations with the numbers
of selected mutations marked. c Hallmark GSEA of lymphatic vs. hematogenous
primary tumour using bulk RNA-seq data. d Hallmark GSEA of P14 primary tumour
cells vs. P15 primary tumour cells using scRNA-seq data. An empirical phenotype-

based permutation test (two-sided) was used to calculate the P value and false
discovery rate (FDR). eHeatmap showing the differentially expressed genes among
different CD8+ T-cell subclusters from primary tumours. Information on the clus-
ters and patient-of-origin is shown at the top. f The t-SNE projection of CD8+ T cells
from primary tumour, with cells coloured based on the unsupervised clustering
results. The statistical significance of the difference in the proportion of each cell
type between P14 and P15 wasmeasured using Fisher’s exact test (two-sided) and is
marked in the figure legend (“*”, P <0.05; “**”, P <0.01; “***”, P <0.001). g Pie charts
showing fractions of CD8+ T-cell subclusters for P14 (left) and P15 (right).
h Infiltration of exhausted CD8+ T cells enriched in the microenvironment of the
hematogenous route. Independent experiments were conducted in patients with
clear metastatic route classification (n = 13). Representative multiplex immunohis-
tochemistry (IHC) staining images of CXCL13+ TIM3+ CD8+ T cells in the lymphatic
route (P02 & P14) and hematogenous route (P04 & P15). Scale bar, 100μm. Source
data are provided as a Source Data file.
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characteristics. Finally, we observed that adding locoregional radio-
therapy to the treatment of patients with the lymphatic metastatic
route resulted in improved survival outcomes, while patients with the
hematogenous route benefited more from immunotherapy.

Whether metastasis seeding initiates via blood or lymphatic ves-
sels may rest largely on the structural restrictions imposed on invasive
tumours. Lymphatic vessels lack the tight junctions and surrounding

layers of basement membranes typically seen in blood vessels, which
makes lymphatics “leakier” than blood vessels, thus lowering the bar-
riers for tumour cell spreading. Whether tumour cells subsequently
disseminate to lymph nodes and distant sites remains elusive.
According to previous genomic studies with small sample sizes,
the dissemination of tumours cells from primary tumours to distant
sites independent of regional lymphnodes appears to be the dominant
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metastatic route in colorectal cancer58,59, lung cancer60, breast
cancer61,62, melanoma63 and oesophageal adenocarcinoma64. However,
ccRCC seems to be a possible exception, as lymph nodes and distant
metastases were always found to originate from common subclones65.
Notably, we observed that the lymphatic route was more prevalent in
NPC than the hematogenous route, which is compatible with the
clinical observations that 80% of patients with NPC have regional
lymph node metastases at diagnosis66. Instead of merely describing
the phenomenon of different dissemination routes, we confirmed our
findings using single-cell sequencing data, further explored the
molecular features of differentmetastatic routes andbuilt a radiomics-
based prediction model to conveniently identify the lymphatic and
hematogenous routes. In addition to structure-dependent selection,
studies have also recently proposed that the choice of hematogenous
or lymphatic disseminationmight be attributed to different molecular
mechanisms driving tumour cells to specific types of metastatic dis-
semination. The data from in vivo and 3D cultures showed that
EMT cells prefer to migrate towards lymphatic vessels rather than
blood vessels67. Consistently, our data indicate that patients with
metastases emerging via the lymphatic route have higher activation of
EMT signalling.

Moreover, our data showed that patients with metastases emer-
ging via the hematogenous route had higher expression of IFN-γ
response-related genes. IFN-γ upregulates several checkpoint inhibi-
tors, such as PD-L1 and PD-L2, on the surface of tumour cells and
cooperates with PD-1 to induce T cell exhaustion, thus suppressing the
antitumour immune response67–69. Indeed, we observed a significant
enrichment of exhausted CD8+ T cells in the tumour microenviron-
ment of patients with metastases via the hematogenous route based
on scRNA-seq and multi- IHC. The recruitment of immunosuppressive
cells to the primary tumour site protects cancer cells from being killed
by cytotoxic cells and makes the blood vessels “leaky”, similar to
lymphatic vessels, thereby increasing theprobability of hematogenous
dissemination70. Therefore, we hypothesise that for patients with
metastases emerging via the hematogenous route, the barriers of
blood vessels for tumour cell spreading are lowered due to the
impaired antitumour immune response that is caused by IFN-γ
response signalling, and immunotherapy should be effective in these
patients. As a result, we found that patients with metastases emerging
via the hematogenous route had a significantly better response
to immunotherapy than patients with metastases emerging via the
lymphatic route.

Previous retrospective studies, including ours, have demon-
strated that systemic chemotherapy combined with radical locor-
egional radiotherapy might be beneficial for de novo metastatic NPC
patients. However, the survival benefits of locoregional radiotherapy
for de novo metastatic NPC patients have not yet been demonstrated
in a prospective randomised trial. Recently, we conducted an open-
label, phase 3, randomised controlled trial (NCT02111460), which
demonstrated that chemotherapy plus radiotherapy significantly

improved OS in chemotherapy-sensitive de novo metastatic NPC
patients with acceptable toxicity and tolerability4. However, the spe-
cific population of metastatic NPC patients who could benefit from
locoregional radiotherapy remains elusive. Here, we further showed
that patients with the lymphatic metastatic route achieved a better
response to locoregional radiotherapy than those with the hemato-
genous metastatic route. We suspect that the locoregional radio-
therapy probably blocks the metastatic route of tumour cells that
spread to distant sites via regional lymph nodes, but the underlying
mechanism still needs further investigation.

Radiomics is an emerging field that converts imaging data into a
high dimensional mineable feature space using a large number of
automatically extracted data-characterization algorithms71,72. A pre-
vious study revealed that radiomics data contained strong prognostic
information in both lung and head and neck cancer patients and were
associated with the underlying gene expression patterns73. Therefore,
we hypothesise that these imaging features capture the distinct phe-
notypic differences of tumours and can be used to discriminate the
two metastatic routes. Indeed, we found a larger primary tumour size
and a smaller number of lower cervical lymph nodes in patients with
metastases emerging via the hematogenous route than in those via the
lymphatic route. Intriguingly, this was concordant with the results of a
big data intelligence platform-based study that showed an ascending
type with advanced local disease but early-stage cervical lymph node
involvement and adescending typewith advanced lymphnodedisease
but early-stage local invasion74. Compared to patients with ascending
tumours, those with descending tumours had an increased likelihood
of distant metastasis, regional recurrence, disease recurrence, and
death74. The hematogenous route resembled the ascending type, while
the lymphatic route resembled the descending type. In addition, we
found that survival outcomes were inferior in the lymphatic group
compared to the hematogenous group. Then, we built a prediction
model and showed that the radiomics model could distinguish the
hematogenous and lymphatic routes. The gene expression patternwas
similar between the genomic-based route and the radiomic-based
route. Moreover, both the genomic-based route and radiomic-based
route showed consistent prognostic patterns, indicating that patients
withmetastases emerging via the hematogenous route have better PFS
than those with metastases emerging via the lymphatic route. These
findings suggested that the radiomicsmodelwas credible and could be
used as a noninvasive method to predict the evolutionary routes of
NPC metastasis, with potential clinical utility in guiding treatment
decision-making.

According to our WES analysis of multiregion tumours, NPC
tumours have substantial ITH, which may lead to false discoveries in
the construction of evolution routes if only considering single-region
sampling. We collected multiregion samples from available patients,
and observed that the biopsy of samples might exert limited influence
on the classification of metastatic routes, which underlines the
importance of multiregion sampling in such studies. Moreover, in the

Fig. 6 | Imaging characteristics distinguished the lymphaticmetastatic pattern
from the hematogenous metastatic pattern. a Box plot shows the longest dia-
meter of the primary tumour in the axial (left), coronal (middle) and sagittal views
(right) in the lymphatic (n = 8) and the hematogenous (n = 5) models. In each box
plot, the centre line represents themedian, the bounds represent the first and third
quartiles and whiskers extend from the hinge to the largest value no further than
1.5 × interquartile range (IQR) from the hinge. The Wilcoxon signed-rank test (two-
sided) was used to calculate the P values; “*”P <0.05. b, c Box plot shows the
number of lower cervical lymph nodes (b) and bone metastasis lesions (c) in the
lymphatic (n = 8) and hematogenous (n = 5) models. In each box plot, the centre
line represents the median, the bounds represent the first and third quartiles and
whiskers extend from the hinge to the largest value no further than 1.5 * inter-
quartile range (IQR) from the hinge. TheWilcoxon signed-rank test (two-sided) was
used to calculate the P values. “*”p <0.05. d, e Positron emission tomography-

computed tomography (PET-CT) images of the primary tumour (left), regional
lymph node metastasis (middle) and bone metastasis (right) in the lymphatic (d)
and hematogenous (e) models. The red dashed circle indicates tumour location.
f The t-SNE plot shows the unsupervised clustering results of radiomics features of
patients in the lymphatic and hematogenous models. g Phylogenetic tree with the
bootstrap value on each divergence node showed the evolutionary route of
patients without complete matched primary, regional lymph node metastasis and
distant metastasis samples before treatment. The radiomics prediction model
classifies patients with metastatic tumour after treatment into the lymphatic (left)
and hematogenous (right) groups.hGSEAof radiomicsmodel-predicted lymphatic
vs. hematogenous primary tumour using bulkRNA-seq data. iRadiomics prediction
model results and phylogenetic trees for newly collected patients to further vali-
date the radiomics prediction model. *P: progressed samples after treatment.
Source data are provided as a Source Data file.
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Fig. 7 | Different clinical outcomes between the “lymphatic” and “hemato-
genous” metastatic routes. a Kaplan‒Meier curves of progression free survival
(PFS) in the 13 NPC with identified metastatic models via genomic phylogenetic
tree. The data are shown along with 95% confidence intervals. The log-rank test was
used to calculate the P value (two-sided). b Kaplan‒Meier curves of PFS comparing
the radiomics-predicted lymphatic and hematogenousmetastatic models in the de
novo metastatic NPC cohort. The data are shown along with 95% confidence
intervals. The log-rank test was used to calculate the P value (two-sided). c Bar plot
showing the different treatment response rates between patients who received

locoregional radiation therapy and those who did not in the primary diagnosed
metastatic NPC cohort in the lymphatic (left) and hematogenous (right) models.
RT: radiation therapy. d Bar plot showing the different response rates to combi-
nation immunotherapy between the lymphatic and hematogenous groups in the
immunotherapy NPC cohort. e, f Kaplan‒Meier curves of PFS between metastatic
patients who received local radiotherapy and those who did not receive local
radiotherapy in patients with metastases emerging via the lymphatic route (e) or
the hematogenous route (f). The data are shown along with 95% confidence
intervals. The log-rank test was used to calculate the P value (two-sided).
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present study, the number of patients was still limited due to the dif-
ficulty in obtaining samples from distant metastatic sites, especially in
the construction and validation of the radiomics-based prediction
model. Although we applied our prediction model in three additional
clinical cohorts that lacked a clear label of the metastatic route and
observed consistent radiomics features and survival outcomes with
the training cohort, the risk that the classification might be incorrect
could not be completely avoided. Thus, a large cohort of patients with
amultiregion samples is warranted to further validate our conclusions.
Circulating tumour cells (CTCs) have recently been widely used to
explore the mechanisms of tumour cell dissemination from primary
tumours to distant sites. CTCs are an ideal alternative to distant
metastasis sampling for constructing a phylogenetic tree to determine
the metastasis evolution route.

In conclusion, our study provides important insights into the
evolutionary history of distant metastasis in NPC. We provide com-
prehensive genomic evidence that distant metastases originate from
regional lymph node metastases or directly from primary tumours.
The two different metastatic routes identified have distinct genomic
and clinical characteristics and therapeutic responses. Our study pro-
vides strategies for the treatment decision-making of NPC patients
with distant metastasis, which might ultimately further improve the
survival outcomes of NPC.

Materials and methods
Sample and data collection
Patients at Sun Yat-sen University Cancer Center (SYSUCC)
(Guangzhou, China)were recruited for this study between June 1, 2012,
and May 1, 2016 following the approval of this study by the ethics
committee of SYSUCC. For all patients recruited in the present study,
a comprehensive pretreatment evaluation that included a complete
medical history and physical examination, haematologic and bio-
chemical analyses, nasopharyngoscopic findings, and magnetic reso-
nance imaging (MRI) was conducted. 18F-Fluorodeoxyglucose positron
emission tomography-computed tomography (18F-FDGPET-CT), which
can confidently and sensitively detect small tumours75, was also man-
datory for distant metastasis staging. After a comprehensive evalua-
tion, patients would receive standard treatments provided by the
clinicians. Almost all patients received cisplatin-based chemotherapy
(97.7%, 43/44), and a total of 24 (54.5%) patients underwent intensity-
modulated radiotherapy (IMRT). All the samples taken from these
patients were histologically confirmed as nasopharyngeal carcinoma
(NPC) (WHO I, II, or III). The quality of the tumour samples was
examined by tissue sectioning and haematoxylin & eosin (H&E) stain-
ing to estimate the tumour content. Only the highest quality samples
with ≥30% tumour content were selected for subsequent study. The
full clinical characteristics of the sequenced patients are provided in
Supplementary Table 1.

These 104 de novo metastatic NPC patients were all from our
clinical trial “Chemotherapy plus radical local-regional radiotherapy
compared with chemotherapy alone in primary metastatic naso-
pharyngeal carcinoma: A randomised, open-label, phase 3 trial”
(NCT02111460; Supplementary Table 4). To reduce the batch effect,
only patients present in SYSUCC were included. In addition, patients
without high-quality MRI image data (3 T MRI) were excluded from
the subsequent radiomics analysis. A total of 54 patients were treated
with six cycles of cisplatin and 5-fluorouracil chemotherapy plus
locoregional radiotherapy, and a total of 50 patients were treated
with six cycles of cisplatin and 5-fluorouracil chemotherapy alone.
Tumour response at the end of treatment was based on the Response
Evaluation Criteria in Solid Tumours (RECIST) v1.1 and assessed by
nasopharyngoscopy and MRI for the primary site and 18F-FDG PET-
CT, CT or MRI for distant lesions. The patients were followed up
every two to three months until death to evaluate the efficacy and
safety of the treatment.

A total of 201 nonmetastatic primary NPC patients were recrui-
ted for this study between January 1, 2010, and January 1, 2013
(Supplementary Table 6). These patients had not previously received
chemotherapy or radiotherapy when diagnosed. All nonmetastatic
NPC patients received standard treatments including IMRT with a
radical dose, and almost all patients (183/201, 91.04%) were treated
with cisplatin-based chemotherapy combined with radiotherapy.

The immunotherapy cohort contained 66 patients confirmed to
have progressive disease (PD) during follow-up (Supplementary
Table 7). In other words, these patients were refractory to at least one
line of systemic therapy. All these patients were clinically treated at
SYSUCC from January 2019 to July 2019 and had not been enrolled in
any clinical trials. Among them, 55 patients experienced metastatic
lesion relapse, and 11 patients experienced only locoregional lesion
relapse. Since the survival outcomes were generally inferior for these
patients and there was no standard treatment, we organised the con-
sultation of doctors in our department to determine the treatment
modality for each patient. After carefully weighing the advantages and
disadvantages of different treatment modalities, all doctors in our
department approved the application of the combination of gemci-
tabine, apatinib and toripalimab as the salvage treatment modality
(off-label). All patients then received apatinib (anti-VEGFR) via oral
administration, 250mg, once a day; gemcitabine (chemotherapy)
1000mg/m2 (Day 1 and Day 8); and toripalimab (anti-PD-1), 200mg/kg
dose (Day 1) every 21 days for atmost 6 cycles, followedby toripalimab
200mgevery threeweeks (Q3W) and apatinibonce a daymaintenance
for the remainder of the study or until documented PD. All patients
who received the combination treatment provided written informed
consent to receive this therapy.

This study was approved by the ethics committee of SYSUCC
(B2022-413-01). All patients provided written informed consent to
participate in the study.

Nucleic acid extraction
A section was cut from frozen blocks and stained with H&E. An expert
NPC pathologist reviewed the slides to determine and circle the area
with the highest tumour content. Guidedby theH&E-stained slides, the
region with the highest tumour content was cut from the frozen
blocks, pulverised using CryoPrep (Covaris, Woburn, MA) and homo-
genized in lysis buffer from the AllPrep RNA/DNA/Protein Mini Kit
(Qiagen, Valencia, CA). DNA, RNA and protein were isolated from each
sample using the respective kits (Qiagen, Valencia, CA) following the
manufacturer’s protocol.

Whole-genome/whole-exome sequencing
For whole-genome sequencing (WGS), a total of 0.8μg of genomic
DNA per sample for patients with high molecular weight (>20 kb
single band) was used for DNA library preparation. A sequencing
library was generated using the TruSeq Nano DNA HT Sample Prep
Kit (Illumina, USA) following the manufacturer’s recommendations,
and index codes were added to each sample. In brief, the genomic
DNA sample was fragmented to a size of ~350 bp by a Covaris soni-
cation system. Then, DNA fragments were end-polished, A-tailed,
and ligated with the full-length adapter for Illumina sequencing,
followed by further PCR amplification. After PCR products were
purified (AMPure XP system), libraries were analysed for size dis-
tribution by the Agilent 2100 Bioanalyzer and quantified by real-time
PCR (3 nmol/L). The clustering of the index-coded samples was
performed on a cBot Cluster Generation System using the HiSeq X
PE Cluster Kit v2.5 (Illumina) according to the manufacturer’s
instructions. After cluster generation, the DNA libraries were
sequenced on the Illumina HiSeq X platform, and 150 bp paired-end
reads were generated.

For whole-exome sequencing (WES), qualified genomic DNA from
tumours and matched peripheral blood was fragmented by Covaris
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technology with resultant library fragments of 180–280 bp, and then
adaptors were ligated to both ends of the fragments. The extracted
DNA was then amplified by ligation-mediated PCR (LM-PCR), purified,
and hybridized to the Agilent SureSelect Human Exome V6 for
enrichment, andnonhybridized fragmentswere thenwashedout. Both
uncaptured and captured LM-PCR products were subjected to real-
time PCR to estimate the magnitude of enrichment. Each captured
library was then loaded onto the Illumina HiSeq X platform, and we
performed high-throughput sequencing for each captured library
independently to ensure that each samplemet thedesired average fold
coverage.

SSNV/InDel and SCNA calling from WGS/WES
We used a commercial variant detection pipeline named Sentieon,
which improves upon BWA-50, GATK-51, and Mutect-52 based pipelines,
to call SSNVs and short insertion/deletions (InDels). Based on this
pipeline, the 2×150 bp paired-end reads were mapped into the human
reference genome (UCSC hg38), and SSNVs and InDels were called
after the BAM file was sorted and deduplicated.

To further reduce false-positive variant calls, additional filtering
was performed. A single nucleotide variant (SNV) was considered a
true positive if the supported read counts for this SNVwere≥5, and the
P calculated by Fisher’s test between the mutant read count and the
wild-type read count was <0.05. Variants in variant call format (VCF)
were annotated using ANNOVAR53.

To detect significantly mutated genes, we first filtered mutations
frequently detected (minor allele frequency (MAF) > 0.001) in normal
databases, including the 1000 Genome (2015 Aug, http://www.
internationalgenome.org/), ESP6500 (version esp6500siv2, https://
esp.gs.washington.edu/drupal/) and ExAC (version ExAC03, http://
exac.broadinstitute.org/) databases. Then MutSigCV54 was used to
define significantly mutated genes in each sample group (primary,
regional lymph node and distant metastatic tumours). To avoid the
statistical bias induced by repeat sampling in each group, we merged
all mutations of repeat samples in each patient of each sample group
before MutSigCV analysis. A gene with a P less than 0.0001 was con-
sidered to be significantly mutated.

Somatic copy number variants (SCNVs)were called using Control-
FREEC v11.155. The GISTIC2 algorithm34 was used to infer recurrently
amplified or deleted genomic regions in primary tumours, regional
lymph nodes and distant metastases. To avoid the statistical bias
induced by repeat sampling in each group, we randomly selected only
one sample from each patient in each group to perform GISTIC2
analysis. G-scores were calculated for genomic and gene-coding
regions based on the frequency and amplitude of amplifications or
deletions affecting each gene. We obtained “amplification (AMP)” and
“deletion (DEL)” alterations at the gene level based on the “high-level
amplification (or deletion) thresholds of segment mean” provided by
GISTIC2. The key genes with CNVs represented in this paper were
selected from previous studies6–8,76–78.

Variant call validation
To determine the accuracy of the somatic variant calls, we randomly
selected all 32 non-silent mutation sites (29 SSNVs and 3 InDels of a
total of 64 mutations across all selected samples) from the most
recurrently mutated genes to perform Sanger sequencing validation.
The location of the mutation site was used to retrieve the adjacent
genomic sequence in the UCSC Genome Browser (https://genome.
ucsc.edu/), and targeted primerswere designedwith Primer 3 software
(http://primer3.ut.ee/) based on the genomic sequence obtained from
UCSC. We used PCR with the designed primers to amplify the desired
DNA template for the targeted region and then performed Sanger
sequencing. All mutations were successfully validated except two
mutations that failed in primer design and three mutations that failed
in sequence amplification.

Whole-exome imputation of SSNVs and InDels
Multisampling sequencing provides the opportunity to increase the
sensitivity to detect low frequency mutations. By sharing the inde-
pendently called mutations across the multiple regions and reasses-
sing the reads at each position for each tumour region, it is possible to
call more mutations and reduce the possibility of overrepresenting
the mutational heterogeneity. SAMtools v1.3.179 mpileup with the
parameter “-p 20 -P 20”was used to extract read information across all
tumour regions where a variant (SSNV or InDel) was detected in one or
more regions in this patient. For somatic variants that were not called
ubiquitously across tumour regions, themissing variants were fetched
back if themutant read countwas≥3 and the readdepthwas > 10. If the
read depth was ≤ 10, wemarked this site in the specific region as “NA”.

Mutation signature analysis
We first identified de novo-derived mutational signatures for primary,
regional lymph node and metastatic tumour samples separately using
the signature analysis module in maftools v2.0.1080. As a result, we
obtained four,five andfive signatures forprimary, regional lymphnode
and metastatic tumours, respectively. Cosine similarity was then cal-
culated tomap the de novo-derived signatures to the known signatures
in the COSMIC database. A signature with a cosine similarity greater
than 0.5 is considered an interpretable signature. The de novo-derived
signatures in primary tumours were mapped to signatures 2, 4 and 6;
the de novo-derived signatures in regional lymph node tumours were
mapped to signatures 2, 5, 6 and 13; and the de novo-derived signatures
in distant metastatic tumours were mapped to signatures 4, 6 and 13.
We then applied the R package “Palimpsest v1.0.0”81 in all the samples
to estimate the contribution of signatures 2, 4, 5, 6 and 13, as well as
signature 1,whichhas been found in all cancer types and inmost cancer
samples. Palimpsest was also used to estimate the probability of each
mutation being due to each process to predict the mechanisms at the
origin of driver events, by which we estimated the contribution of each
signature in each branch of the phylogenetic tree and determined the
most dominant signature of each branch (branches with less than 15
mutations were ignored during this analysis).

Bulk RNA sequencing
Total RNAwas extracted fromapproximately 106 freshly collectedNPC
cells following standard TRIzol RNA extraction protocols. RNA-seq
libraries were prepared from 500ng of total RNA using the Illumina
TruSeq Stranded Total RNA Kit. Libraries were barcoded and pooled
on the Illumina HiSeq X platform. We performed transcriptome
sequencing (RNA-seq) on primary tumour samples from 28 patients
(P02, P04-P05, P07-P08, P10-P12, P14-P16, P20-P23, P26, P28, P30, P33-
P34, and P40-P48; Supplementary Data 2).

Bulk RNA-seq analysis
The 150bp paired-end reads from RNA sequencing (RNA-seq) were
mapped to the human reference genome (UCSC hg38) using STAR
v02020182. RSEM v1.3.083 was then used to perform gene expression
quantification. DESeq2 v1.20.084 was used to perform differential
expression analysis. The log2TPM normalised data were used in the
clustering and correlation analysis.

10x Genomics single-cell RNA sequencing (scRNA-seq)
For experiments using the 10x Genomics platform, the Chromium
Single Cell 3’ Library & Gel Bead Kit V2 (PN- 120237), the Chromium
Single Cell 3’ Chip Kit V2 (PN-120236) and the Chromium i7 Multiplex
Kit (PN-120262) were used according to the manufacturer’s instruc-
tions in the Chromium Single Cell 3’ Reagents Kits V2 User Guide. The
single-cell suspension was washed twice with 1x PBS + 0.04% BSA.

The cell number and concentration were confirmedwith a TC20™
Automated Cell Counter. Approximately 5000 cells were immediately
injected into the 10x Genomics Chromium Controller machine for Gel
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Beads-in-Emulsion (GEMs) generation. mRNA was prepared using the
10x Genomics Chromium Single Cell 3’ Reagent Kit (V2 chemistry).
During this step, cells were partitioned into GEMs along with gel beads
coated with oligos. These oligos provided poly-dT sequences to cap-
ture mRNAs released after cell lysis inside the droplets, as well as cell-
specific and transcript-specific barcodes (16 bp 10x barcode and 10 bp
unique molecular identifier (UMI), respectively). After real-time PCR,
cDNA was recovered, purified and amplified to generate sufficient
quantities for library preparation. Library quality and concentration
were assessed using anAgilent Bioanalyzer 2100. Libraries were run on
the HiSeq X or NovaSeq platform for Illumina PE150 sequencing. In
total, 11 samples of two patients (P14, P15) were subjected to scRNA-
seq, including 2 primary tumour samples, 4 regional lymph node
metastasis samples and five distant metastasis samples.

10x Genomics scRNA-seq data preprocessing
The CellRanger v2.1.1 (10x Genomics) analysis pipeline was used to
performoriginal computational analysis of single-cell sequencingdata.
In general, raw sequencing data (bcl files) were converted to FASTQ
format files with Illumina’s bcl2fastq tool (“cellranger mkfastq”); the
FASTQ files were aligned to the human genome reference sequence
(UCSC hg38), and the raw single-cell gene expression matrix was
quantified (“cellranger count”). The outputs of each region from the
same patient were aggregated for sequencing depth normalization
(“cellranger aggr”), and then an experiment-wide gene-barcodematrix
was generated for further analysis.

Expression matrix filtering and clustering algorithms for tumour-
normal cell classification were implemented and performed using
Seurat v3.085. First, genes detected (UMI count >0) in less than 5 cells
were removed. In brief, cells with small (detected genes <200) or large
(detected genes > 5000) library sizes and those with a mitochondrial
genome transcript ratio >10% were removed. The gene expression
measurements for each cell were normalised by the total expression,
multiplied by a scale factor (10,000) and log-transformed. Highly
variable genes were calculated and used for principal component
analysis (PCA) to reduce the number of dimensions representing each
cell, and “significant” principal components (PCs) were manually
determined by looking at a plot of the standard deviations of the PCs
following Seurat’s suggestions. Then, a shared nearest neighbour
graph-based clustering approach was performed, and clusters were
visualised using t-distributed stochastic neighbour embedding of the
PCs (spectral t-SNE) as implemented in Seurat.

Since NPC is a cancer that originates in the epithelium, we dis-
tinguished malignant cells from nonmalignant cells using known epi-
thelial markers, such as KRT14, KRT17, and EPCAM. Then, we selected
widely recognised markers of possible cell types in our samples and
mapped their expression levels into cell clusters. The scores of func-
tional modules for CD8+ T-cell clusters were calculated using the
AddModuleScore function in Seurat at the single-cell level. The
exhausted gene set included HAVCR2, LAG3, TIGIT, CTLA4, PDCD1 and
LAYN. The cytotoxicity gene set included GZMA, GZMB, GZMM, NKG7,
GNLY and PRF1.

Processing and analysis of public scRNA-seq data
Public scRNA-seq data (accession numbers: GSE123813 and
PRJNA705464) of basal cell carcinoma and clear cell renal cell carci-
noma samples from the initial publication were downloaded and rea-
nalyzed for this manuscript. First, the dead or dying cells with more
than 10%mitochondrial RNA content were removed, and the cells with
too low of a number (less than 200) were also removed. Cell doublets
were predicted using DoubletFinder with default parameters. Then,
the filtered gene expression matrix for each sample was normalised
using the “NormalizeData” function in Seurat, and only highly variable
genes were retained using the “FindVariableFeatures” function in
Seurat. Next, the “Runharmony” function in harmony were used to

integrate the gene expression matrices of all samples, where batch
effects between different samples were adjusted. Then, the “RunPCA”
function was used to perform the PCA, and the “FindNeighbors”
function was used to construct a K-nearest neighbour graph. Next, the
most representative PCs selected based on PCA were used for clus-
tering analysis with the “FindCluster” function to determine different
cell types. Finally, UMAP was used to visualise the different cell types.
We identified the clusterwith high expressionofCD3G,CD3D andCD3E
as T cells. CD4 and CD8A gene expression was used to differentiate
CD4+ andCD8+ T cells. Subcluster of CD4+ T cells and CD8+ T cells were
named by the top marker gene.

Reconstruction of phylogenetic trees
To reconstruct phylogenetic trees based on SSNVs and InDels, we
firstly constructed amutationbinarymatrix basedonmutationswhose
information was still available across all samples after imputation.
Considering the influence of genomic losses on mutation detection,
we filtered mutations that met the following conditions: 1) the muta-
tionwas not present in all the samples of the samepatient; and 2) there
was a loss of heterozygosity (LOH) detected by Control-FREEC in this
region of the sample(s) without this mutation. We then used the
neighbour-joining (NJ)method86–88 implemented in theRpackage “APE
v5.0”89 to construct phylogenetic trees based on the mutation binary
matrix. The NJ method takes an S×M binary matrix D as input, where
Dij = 1 if the jthmutation is observed in the ith sample. To estimate the
robustness of eachphylogenetic tree, weperformedbootstrapping for
the internal nodes of each NJ tree using the Tree Bipartition and
Bootstrapping Phylogenies (boot.phyo) function in the R package
“APE”. Based on the “boot.phylo” function, we performed a put-back
sampling of all mutations with the number of samplings equal to the
total number of mutations. Thus, a new mutation binary matrix was
constructed, and the new matrix was used to construct the phyloge-
netic tree. This analysis was carried out 1000 times, and finally the
number of times that each branch node of the original tree reappears
during the thousand reconstructions was counted. We used the
bootstrap reproducibility of branch nodes as a reliability evaluation
metric for distinguishing the two modes (progression model prob-
ability), and determined that a reliable model classification should
have a reproducibility greater than 75%. The length of each branchwas
adjusted to reflect the number of shared mutations in that branch.
Driver genes with non-silent mutations or CNVs (AMP/DEL) were
marked on each branch based on the sharing across all samples.

Classification of the origin of distant metastasis
The evolutionary route of distant metastasis was determined based on
thephylogenetic tree thatwas reconstructed using theNJ treemethod.
The evolutionary route of the metastatic lesion was “lymphatic” if the
node closest to the metastatic lesion was prior to the regional lymph
node; otherwise, it was “hematogenous”. We quantified the branching
confidence in the inferred evolutionary tree by bootstrapping with
1000 iterations.

Cancer cell fraction (CCF) estimation of variants
The ABSOLUTE v1.0.690 algorithm was used to estimate the tumour
sample purity, ploidy, and CCF of each SSNV, InDel and CNV. In line
with the recommended best practice, all ABSOLUTE solutions were
reviewed by 3 researchers, with solutions selected based on majority
vote. In this analysis, variants (SSNVs, InDels and CNVs) were classified
as either clonal or subclonal based on the confidence interval of the
CCF evaluated by ABSOLUTE. Mutations were defined as clonal if the
95% confidence interval overlapped by 1 and as subclonal otherwise.

Variant clustering and subclone-based evolution analysis
All variants (SSNV, InDels and CNVs) were collected for clustering
and subclone-based evolutionary analysis. For individual samples, we
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inferred the number of subclones and the fraction of cells within
each subclone using an algorithm named “density-based spatial clus-
tering of applications with noise (DBSCAN)”91,92 to cluster mutations
according to their putative CCF values in all related samples. The
DBSCAN algorithm was performed based on Euclidean distance, with
the number of core points set as 1 and the support radius set as 0.05.
A cluster with more than 10mutations was considered a subclone that
arose during tumour evolution (except the founding cluster, which
means the CCF (see below) in all samples was more than 0.9).

The phylogenetic tree was constructed based on the CCF value
and adjustable CCF interval of each subclone. The CCF value of a
subclone in one sample was determined as the median value of the
CCF of all mutations belonging to this subclone in this sample nor-
malisedby the founding clone’sCCF in this sample. The adjustableCCF
interval of each subclone was calculated as follows:

H = F + k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i = 1ðhi � f iÞ2

n

s

ð1Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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n

s

ð2Þ

where F is theCCF valueof the subclone, andH and L are the adjustable
CCFupper and lower boundsof the subclone, respectively; fi is theCCF
value of the ithmutation site in the subclone, and hi and li are the upper
and lower bounds of the confidence interval of ith mutation site in the
subclone, respectively. k is the expansion factor, which was defined as
3 in this study.

The evolutionary relationship between two subclones could be
divided into two categories. The first category is called the “contain-
ment relationship”; that is, one subclone is the “parent” of another
subclone during tumour evolution. The other relationship is called the
“parallel relationship”, which means that these two subclones are not
the parent of each other and belong to different cell lineages during
evolution.

The first step of evolutionary relationship analysis is to construct
the backbone of the phylogenetic tree based on the specific subclonal
relationships:

Li + Lj > 1 ! subclone i is subclone j0s parent or j is i0s parent;

Li >Hj ! subclone j is not subclone i0s parent:

If the relationship between subclone i and subclone j is different
from the above two relationships, there is no definite relationship
between the two subclones, and further investigation is needed. After
the relationship between two subclones is determined, the backbone
of the phylogenetic tree is established according to the containment
and noncontainment relationships.

The second step of evolutionary relationship analysis is to add the
remaining subclones to their possible positions in the phylogenetic
tree based on CCF values in order from large to small. The distant
values that CCF needs to be adjusted for each possible situation are
calculated, and the phylogenetic tree with the smallest adjustment
value is chosen as the final evolution model. If a small subclone could
be added to multiple places of the phylogenetic tree without CCF
adjustment, these phylogenetic trees would bemerged and only show
one result. We used modified functions of the R package “ClonEvol”93

to visualise the results.
To assess the robustness of the above analysis, we used boot-

strapping, subsampling 1000 times from the number of clustered
mutations with replacement. Then, the phylogenetic tree was recon-
structed according to the different CCF values and confidence

intervals and compared with the original phylogenetic tree to deter-
mine whether the two results were consistent.

Selection of events during metastasis
Based on the clonality across all sample regions of each variant, we
determined the selected, novel, founding and unselected classes of
variants during metastasis:
1. variants that are selected (“selected”, n = 1193 mutations, defined

as variants that are clonal in metastatic tumours but subclonal or
not found in seeding donor tumours);

2. variants that are novel (“novel”, n = 3603 mutations, defined as
variants that are subclonal inmetastatic tumours but not found in
seeding donor tumours);

3. variants that are founding (“founding”, n = 718mutations, defined
as variants that are clonal in bothmetastatic tumours and seeding
donor tumours);

4. variants that are unselected (“unselected”, n = 5634 mutations,
defined as variants that are not found in metastasis but are clonal
or subclonal in seeding donor tumours)

The relationship of metastasis with seeding donor tumour was
identified by both the phylogenetic tree and tumour subclonal archi-
tecture. If one metastasis had an uncleared seeding donor, for exam-
ple, primary or lymph node metastasis, or primary-1 or primary-2,
we selected the larger mutation CCF as the seeding donor’s mutation
clonality.

Determination of the evolutionary route of malignant cells
based on scRNA-seq
Tocharacterize the potential evolutionary routes in the process ofNPC
metastasis, we performed pseudotime analysis for malignant cells,
using Monocle252 (version 2.8.0). The data of the indicated clusters
calculated in Seurat were fed directly into Monocle2. Next, we carried
out density peak clustering (Monocle2 dpFeature procedure) to
order cells based on the genes with differential expression between
clusters, using the differentialGeneTest function in Monocle2. The top
1000 significant genes (ordered by q value) were used for ordering in
all instances. Then the evolutionary trajectory was inferred after
dimension reduction and cell ordering with the default parameters of
Monocle2.

Multiplex immunohistochemistry (multi-IHC)
To validate the enrichment of exhausted CD8+ T cells in the micro-
environment of patients with the hematogenous metastatic route,
formalin-fixed paraffin-embedded (FFPE) slides from 13 NPC primary
tumours with a complete genomic based phylogenetic tree were
subjected to multi-IHC and multispectral imaging using the PANO
7-plex IHC Kit (cat 0004100100, Panovue, Beijing, China), to examine
specific cell markers, including CD8A (Cell Signalling Technology,
70306), CXCL13 (Abcam, ab246518), and TIM3 (Cell Signalling Tech-
nology, 45208). Different primary antibodies were sequentially
applied, followed by horseradish peroxidase-conjugated secondary
antibody incubation and tyramide signal amplification. The slides were
microwave heat-treated after each TSA operation. Nuclei were stained
with 4′−6′-diamidino-2-phenylindole (DAPI, Sigma-Aldrich) after all the
human antigens had been labelled.

To obtain multispectral images, the stained slides were scanned
using the Mantra System (PerkinElmer, Waltham, Massachusetts, US),
which captured the fluorescence excitation spectrum at 20-nm wave-
length intervals (420–720 nm) within the same exposure time. Multi-
ple scans were combined to build a single stack image. The spectrum
of autofluorescence of the tissues and each fluorescein was extracted
from the images of unstained and single-stained sections to establish
a spectral library required for multispectral unmixing by InForm
image analysis software (PerkinElmer, Waltham, Massachusetts, US).
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Using this spectral library, the reconstructed images of sections were
obtained with the autofluorescence removed.

Construction of the machine learning prediction model based
on radiomics data
Contrast-enhanced T1-weighted (CE-T1W) MRI images were used to
build the classification models. For each patient, all the slices with
tumour were selected. Regions of interest (ROIs) were first manually
drawn by three experienced radiologists manually using the software
Analyze Pro (https://analyzedirect.com/analyzepro/). They were
required to cautiously draw all discernible tumour regions along axial
directions, in which the images had a high resolution of 0.43mm×
0.43mm. After that, we applied the classical active contour model to
obtain the segmented ROI for some small or tiny tumours in MATLAB.
The labelled boundary drawn by the radiologists was used to initialize
the active contour. Any disagreements were resolved through nego-
tiation until consensus was reached by the three experts. The raw
image type we used was DICOM.

Within each ROI, we computed the radiomics features for each
pixel centred by a sliding window with a size of 11 × 11. A total of 192
radiomics features were extracted for each sliding window. The
radiomics features included three types of features, namely, statistical,
texture andGabor features94–96. (1) Statistical features: the grey valueof
the central point, momentum with order 1 to 5, was used. (2) Texture
features: grey level co-occurrence matrices (GLCMs) with offsets of
[−3, −1; −1, 0; 0, 1; 0, 3; 1, −1; 1, 3; and 2, −2] and angles of 0, 45, 90 and
135 were calculated. Twenty-two statistical features were extracted,
including energy, entropy, dissimilarity, contrast, inverse difference,
correlation, homogeneity, autocorrelation, cluster shade, cluster pro-
minence, maximum probability, sum of squares, sum average, sum
variance, sum entropy, difference variance, difference entropy, two
kinds of information measures of correlation, maximal correlation
coefficient, inverse difference normalised and inverse difference
moment normalised. A total of 7 × 22 = 154GLCM-related featureswere
extracted from each sliding window. (3) Gabor features: Each ROI was
filtered by 32 Gabor filters with wavelengths of 2.83, 5.66, 11.31, and
22.63 and eight orientations to obtain 32 filtered images. A total of
4 × 8 = 32 Gabor features were extracted from each sliding window.
All the feature extractionmethodswere implementedbasedonbuilt-in
functions in MATLAB and the formulas below. After obtaining the
radiomics features for eachpixel,we computed the averaged value and
used it to quantify the corresponding patient.

We then performed recursive feature elimination (RFE), to find
the feature subset with the highest prognostic accuracy97. The iden-
tified feature subset consisted of ten features and achieved the
highest accuracy of 0.8462. The accuracy was dramatically less than
that using the whole feature set (Supplementary Fig. 9a); thus, we
used all the features to build the prediction classifier. In the training
cohort, we first built a K- nearest neighbour (KNN) classifier with
correlation distance K = 1 to categorize each patient into one of the
two groups. The input variables were radiomics features with the
corresponding binary label, determined by the molecular subtypes
as hematogenousmetastasis or lymphatic metastasis. The leave-one-
out cross-validation scheme, a popular method that is very suitable
for small datasets, was employed to train the model to achieve
optimal performance98. In practice, we first prepared Q candidate
models (M1,…,MQ) and calculated the error E1,…, EQof each learning
result. We choose the model with the smallest error E1…, EQ as the
final model. The constructed classifier then served as a baseline to
evaluate the metastasis pattern for a new query patient. In the vali-
dation cohort, each patient was assigned one of the metastasis pat-
terns based on his or her radiomics features. After the metastasis
patterns were obtained for the validation cohort, the survival risks
were estimated for the two groups to compute their significant
differences.

Functional enrichment analysis
Gene enrichment was performed using the R package “clusterProfiler
v3.8.1”99. clusterProfiler implements a hypergeometric model to test for
gene set overrepresentation relative to a given background gene set.

Statistics
R 3.5.1 was used for all statistical analyses. Parameters such as sample
size, number of replicates, number of independent experiments, and
the measures of centre, dispersion, and precision (mean ± SD or SEM)
and statistical significance are reported in the Figures and Figure
Legends. The results were considered statistically significant when
P <0.05 or a lower threshold when indicated by the appropriate test
(analysis of variance (ANOVA), t test, or Pearson correlation). Student’s
t test, permutation test, and hypergeometric test were used for com-
parisons in experiments with two sample groups. In experiments with
more than two sample groups, ANOVA was performed followed by
Bonferroni’s post hoc test. Survival analysis was performed using the
Kaplan-Meier (KM)method. The log-rank test was used to evaluate the
significanceof the difference between different KM curves. The hazard
ratio was determined using a Cox proportional hazards model.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequence data generated in this paper have been deposited in
the Genome Sequence Archive (GSA, Genomics, Proteomics & Bioin-
formatics 2017) in theBIGDataCenter (Nucleic AcidsRes 2018), Beijing
Institute of Genomics (BIG), Chinese Academyof Sciences [http://bigd.
big.ac.cn/gsa-human/]. The genomic sequencing data is available
under accession number HRA000034, the transcriptomic sequencing
data is available under accession number HRA000035, and the single-
cell sequencing data is available under accession numberHRA000036.
The publicly available scRNA-seq data of basal cell carcinoma used in
this study are available in the Gene Expression Omnibus (GEO) data-
base under accession number GSE123813. The publicly available
scRNA-seq data of clear cell renal cell carcinoma used in this study are
available at https://www.ncbi.nlm.nih.gov/sra/PRJNA705464. The
remaining data are available within the Article, Supplementary Infor-
mation or Source Data file. Source data are provided with this paper.

Code availability
The codes used for subclone-based evolution analysis are available in
GitHub (https://github.com/sys2019/cloneTree). Other custom codes
are provided in Supplementary Data 7.
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