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BACKGROUND: Sleep is fragmented by brief arousals, and excessive arousal burden has been
linked to increased cardiovascular (CV) risk, but mechanisms are poorly understood.

RESEARCH QUESTION: Do arousals trigger cardiac ventricular repolarization lability that may
predispose people to long-term cardiovascular mortality?

STUDY DESIGN AND METHODS: This study analyzed 407,541 arousals in the overnight poly-
somnograms of 2,558 older men in the Osteoporotic Fractures in Men sleep study. QT and
RR intervals were measured beat-to-beat starting 15 s prior to arousal onset until 15 s past
onset. Ventricular repolarization lability was quantified by using the QT variability index
(QTVi).

RESULTS: During 10.1 � 2.5 years of follow-up, 1,000 men died of any cause, including 348
CV deaths. During arousals, QT and RR variability increased on average by 5 and 55 ms,
respectively, resulting in a paradoxical transient decrease in QTVi from 0.07 � 1.68 to –1.00 �
1.68. Multivariable Cox proportional hazards analysis adjusted for age, BMI, cardiovascular and
respiratory risk factors, sleep-disordered breathing and arousal, diabetes, and Parkinson disease
indicated that excessive QTVi during arousal was independently associated with all-cause and
CV mortality (all-cause hazard ratio, 1.20 [95% CI, 1.04-1.38; P ¼ .012]; CV hazard ratio, 1.29
[95% CI, 1.01 -1.65; P ¼ .043]).

INTERPRETATION: Arousals affect ventricular repolarization. A disproportionate increase in
QT variability during arousal is associated with an increased all-cause and CV mortality and
may reflect ventricular repolarization maladaptation to the arousal stimulus. Whether
arousal-related QTVi can be used for more tailored risk stratification warrants further study,
including evaluating whether arousal suppression attenuates ventricular repolarization
lability and reduces subsequent mortality.
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Take-home Points

Study Question: Is ventricular repolarization lability
during sleep arousal associated with mortality?
Results: Cox proportional hazards models adjusted
for confounders show that excessive QT variability
during arousal is associated with an increased all-
cause and CV mortality in older men.
Interpretation: QT variability may be an effective
marker of cardiac maladaptation to arousal stimuli
during sleep.
Sleep is fragmented by brief intrusions of unconscious
wakefulness, so-called cortical arousals, which last
between 3 and 15 s and are a normal feature of sleep.1

Sleep arousals can occur spontaneously or in response to
sleep-disordered breathing, periodic limb movements,
trauma, pain, temperature, light, and noise. Importantly,
excessive nocturnal arousal burden (ie, > 8.5% and >

6.5% arousal time relative to total sleep time in men and
women, respectively) is associated with long-term
cardiovascular (CV) and all-cause mortality.2

CV responses to sleep arousal may explain, at least in
part, the association between sleep arousals and
mortality observed in epidemiologic studies.2

Irrespective of the underlying trigger,3 individual sleep
arousals may elicit an acute transient activation of the
autonomic nervous system and hemodynamic changes,
including surges in sympathetic nerve activity and a
combined volume and pressure overload.4 All of these
arousal-related responses have been individually linked
to worse CV outcomes,3 but none of them is currently
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incorporated into the clinical assessment of episodic
arousals, which exclusively considers cortical activation
via EEG traces on overnight polysomnography.5

Autonomic and hemodynamic alterations critically
determine ventricular repolarization reflected in the
T wave on an ECG. The QT interval, a global marker
of ventricular repolarization duration, can be tracked
on the ECG channel of a standard polysomnogram
(PSG) to quantify the transient CV response to
individual sleep arousals. Beat-to-beat variability in the
QT interval captures transient dynamics in ventricular
repolarization, yielding a simple, noninvasive marker of
repolarization lability predictive of sudden arrhythmia
death.6 In particular, when normalized to heart rate
variability, the so-called QT variability index (QTVi) has
been established as a powerful predictor of CV mortality
in several patient populations.7 The quantification of
arousal-related CV responses has the potential for a
more disease-oriented and pathophysiology-based
assessment of sleep-related abnormalities.5 It may
provide the foundation for a better-tailored sleep
arousal-specific risk stratification. Because high-fidelity
computer algorithms for fully automated precise QT
interval measurement are available,8,9 it could be
incorporated into a clinical PSG assessment.

We hypothesized that the intensity of cardiac
repolarization lability elicited by arousals identifies
patients at risk for increased mortality. The objective of
the current study therefore was to determine the QT
variability in response to arousal in a large sample
population of older men and its association with long-
term CV and all-cause mortality.

Study Design and Methods
Study Population

We studied participants of the Osteoporotic Fractures in Men (MrOS)
observational cohort study that enrolled 5,995 community-dwelling
men aged > 65 years to investigate the epidemiology of osteoporosis
in older men and identify the risk factors for fracture and bone
loss.10-12 Of the 5,995 MrOS participants, 2,860 men in the main
cohort did not participate in the sleep study visit (1,995 were
unwilling to participate, 421 did not undergo screening because
recruitment goals were met, 270 died prior to the sleep study visit,
150 were ineligible because they were receiving therapy for sleep
apnea [CPAP or oxygen], and 24 were terminated prior to the sleep
study visit).13 Thus, 3,135 men participated in the MrOS sleep study
and completed an examination that included a clinic visit and
overnight in-home overnight PSG, including a single-channel
ECG.13,14 Of these men, 2,892 (92.2%) had technically adequate PSG,
while another 196 men were excluded because of insufficient ECG
quality. A flowchart of participants included in the study is
presented in e-Figure 1.
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Follow-up

MrOS sleep participants were followed up via postcards and/or
telephone every 4 months to survey for recent hospitalizations or
medical treatment for CV disease (CVD) or clinically relevant
arrhythmia requiring medical attention; the study had a > 99% response
rate. A board-certified cardiologist verified all relevant medical
records and supporting documents for centralized adjudication using
a prespecified protocol.15 The death certificate and hospital records
from the time of death were collected for fatal events. If a fatal event
did not occur at the hospital, a proxy interview with the next of kin
and the participant’s most recent hospitalization documents in the
prior 12 months were collected. Only events confirmed by the
adjudicator were included for analysis.

In-Home Overnight PSG and Sleep Scoring

Sleep recordings were performed by using an unattended, portable in-
home PSG over 1 night at the participant’s residence using the Safiro
Sleep Monitoring System (Compumedics) for the MrOS sleep study.
Trained staff members visited the participants to attach the sensors
and electrodes and conduct overnight PSG. The setup included two
central EEGs, bilateral electrooculograms, bilateral chin
electromyogram, a bipolar ECG, nasal-oral thermistor, nasal flow via
a pressure transducer and nasal cannula, abdominal and respiratory
inductance plethysmography, finger pulse oximetry, bilateral leg
movements by piezoelectric sensors, and body position.14

Research sleep technicians at a central sleep reading center, blinded to
all other data, scored arousals along with other typical sleep events
such as limb movements, respiratory events, and body movement,
following the standard criteria defined by the American Academy of
Sleep Medicine1 and described previously in detail.13,16 Interscorer
and intrascorer reliability for all key indexes exceeded 0.90.

Ventricular Repolarization Measurement

In 2,558 men, a total of 407,541 arousal episodes were observed, on
average 159 events (27 per hour) per participant. For every arousal,
beat-to-beat RR and QT intervals were automatically extracted from
the ECG channel of the PSG using our validated two-dimensional
signal-warping algorithm that tracks QT changes with high precision
(e-Fig 2).17 Although QT variability can be observed on any ECG
lead, leads with tall T waves, such as lead II, recorded during PSG,
are preferable due to a better signal-to-noise ratio.18

The 15 s prior to every arousal onset were extracted to capture the
baseline characteristics in the ECG. Because the cardiac response
elicited by brief sympathetic activation, such as caused by arousal,
largely diminishes within 10 s, and most arousals do not exceed a
few seconds, the 15 s following arousal onset were captured. To
investigate the effect of arousal on repolarization in detail, we
measured both QT and RR intervals beat-to-beat across three 10 s
time windows: (1) baseline period, –15 to –5 s prior to arousal onset
detected in the central EEG channels; (2) arousal onset, –5 s prior to
arousal onset to 5 s following arousal onset; and (3) postarousal
onset, 5 to 15 s following arousal onset.
chestjournal.org
To quantify the ventricular repolarization dynamics prior to, during,
and following arousal onset, we computed the QT variability index
(QTVi):

QTVi ¼ 21n

SDQT

MQT

SDRR
MRR

where SDQT, MQT, SDRR and MRR here represent the mean and SD of
QT and RR intervals for each arousal. Because both QT and RR
variability are measured in units of milliseconds, QTVi is
dimensionless. Owing to the logarithm in the definition of QTVi,
values < 0 indicate greater RR variability relative to QT variability,
whereas QTVi> 0 represents higher QT variability than RR variability.

Other Measures
All participants were required to attend a clinical interview and
complete an enrollment form containing a questionnaire on
medical history in advance of overnight PSG recordings. The
participants’ race/ethnicity, BMI, and history of physician
diagnosis of diabetes, hypertension, coronary artery disease
(CAD), myocardial infarction (MI), congestive heart failure,
transient ischemic attack, asthma, COPD, Parkinson disease, atrial
fibrillation, and stroke were surveyed. Furthermore, participants
reported smoking habits and alcohol consumption and completed
the Physical Activity Scale for the Elderly questionnaire. Arterial
BP was measured during the clinical visit. From overnight PSG,
we derived the mean respiratory rate,14 the time of sleep spent
below 90% oxygen saturation,19 the apnea-hypopnea index (AHI),
the arousal index, arousal burden,2 and the periodic limb
movement index.
Statistical Analysis

QTVi values were divided into quartiles for Kaplan-Meier curve
survival analysis and log-rank testing. Anthropometric data, lifestyle
metrics, and medical history were compared by using dichotomized
variables, t test, and c2 test. A repeated measures analysis of
variance was performed to evaluate variables prior to, during, and
following the onset of arousal. We used restricted cubic splines with
knots at the 5th, 35th, 65th, and 95th percentiles to explore the
potential nonlinear association of the continuous variables with the
outcome. Association between exposure variables (continuous and
quartiles) and mortality were established with Cox proportional
hazards models. The hazard ratio (HR) proportionality was
determined by using cumulative sums of martingale residuals.
Cumulative incidence function and Fine-Gray subdistribution hazard
models were applied to predict CV death in the presence of
competing risks of non-CV death. In all statistical tests, a P value of
.05 was considered statistically significant.

MATLAB (R2020a, MathWorks) and Python libraries such as Lifelines
and SciPy (Python Software Foundation) were used for computing and
statistical analysis.
Results

Participant Characteristics

At the baseline visit, MrOS cohort participants were
on average 76.3 � 5.5 years old and had a BMI of
27.2 � 3.8 kg/m2; almost one-half of the men were
overweight (Table 1). About 16% of men had CAD/MI,
and almost 6% had heart failure. Overnight PSG
revealed that AHI, arousal index and arousal burden
values were 19.9 � 12.8 h–1, 25.1 � 12.5 h–1, and
6.6% � 3.2%, respectively.

Participants in the highest QTVi quartile were more
likely to have a slightly greater BMI, consume
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alcohol, be less physically active, have a faster
mean respiratory rate, and have a history of atrial
fibrillation, congestive heart failure, and MI/CAD.
TABLE 1 ] Cohort Characteristics of Osteoporotic Fractures

Variable
All Subjects
(N ¼ 2,558)

Age, y 76.3 � 5.5

Race

White 2,336 (91.3) 1

Black 79 (3.1)

Asian 79 (3.1)

Other 64 (2.5)

Body weight

BMI, kg/m2 27.2 � 3.8

Overweight 1,276 (49.9)

Obese 525 (20.5)

Cardiac assessment

Atrial fibrillation 258 (10.1)

SBP, mm Hg 126.5 � 17

DBP, mm Hg 67.5 � 9.4

Lifestyle

Smoking

Never 1,019 (40)

Past 1,489 (58.2) 1

Current 50 (1.9)

Current alcohol consumers 1,687 (66) 1

PASE score 146.4 � 71.2

Medical history

Stroke 87 (3.4)

CAD/MI 418 (16.3)

CHF 151 (5.9)

TIA 233 (9.1)

Asthma 202 (7.9)

COPD 136 (5.3)

HTN 1271(49.7)

Diabetes 328 (12.8)

Parkinson disease 27 (1.1)

Overnight polysomnography

AHI, h–1 19.9 � 12.8

AI, h–1 25.1 � 12.5

AB, % 6.6 � 3.2

PLMI, h–1 10.6 � 10

MRR, min–1 14.8 � 1.9

T90, min 14.2 � 32.6

Data are presented as mean � SD or No. (%). Boldface indicates a P value with s
AI ¼ arousal index; CAD ¼ coronary artery disease; CHF ¼ congestive heart fai
MrOS ¼ Osteoporotic Fractures in Men; MRR ¼ mean respiratory rate; PASE ¼
QTVi ¼ QT variability index; SBP ¼ systolic BP; T90 ¼ time of sleep spent belo
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e-Table 1 presents the men’s characteristics
dichotomized on the highest quartile of QT
and RR variance (SDQT and SDRR).
(MrOS) Based on Arousal-Related QTVi Quartiles

QTVi < 0.42 (Q1-Q3)
(n ¼ 1,918)

QTVi $ 0.42 (Q4)
(n ¼ 640) P Value

76.2 � 5.5 76.5 � 5.6 .256

,739 (90.7) 597 (93.3) .051

58 (3.0) 21 (3.3) .846

71 (3.7) 8 (1.2) .003

50 (2.6) 14 (2.2) .658

27.1 � 3.7 27.5 � 4.1 .019

957 (49.9) 319 (49.8) .982

393 (20.5) 132 (20.6) .987

160 (8.3) 98 (15.3) < .001

126.4 � 17 126.7 � 17 .730

67.4 � 9.4 67.7 � 9.3 .499

764 (39.8) 255 (39.8) .966

,116 (58.2) 373 (58.3) .996

38 (2.0) 12 (1.9) .997

,193 (62.2) 493 (77.0) < .001

148.5 � 71.6 140.2 � 69.8 .011

63 (3.3) 24 (3.8) .663

281 (14.7) 137 (21.4) < .001

96 (5.0) 55 (8.6) .001

163 (8.5) 70 (10.9) .075

151 (7.9) 51 (8.0) .994

100 (5.2) 36 (5.6) .764

938 (48.9) 333 (52) .186

237 (12.4) 91 (14.2) .249

18 (0.9) 9 (1.4) .436

19.9 � 13 20.0 � 12.4 .956

25.0 � 12.4 25.4 � 12.7 .456

6.6 � 3.4 6.6 � 3.2 .728

10.5 � 9.6 10.9 � 11.1 .356

14.7 � 1.8 14.9 � 1.7 .049

13.6 � 31.5 15.9 � 35.8 .118

tatistical significance. AB ¼ arousal burden; AHI ¼ apnea/hypopnea index;
lure; DBP ¼ diastolic BP; HTN ¼ hypertension; MI ¼ myocardial infarction;
Physical Activity Scale for Elderly; PLMI ¼ periodic limb movement index;
w 90% oxygen saturation; TIA ¼ transient ischemic attack.
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Repolarization Variability During Arousal

Figure 1A illustrates the transient ECG changes during
cortical arousal. Across the entire cohort, QTVi
significantly decreased from 0.07 � 1.68 to –1.00 � 1.68
at arousal onset and gradually recovered within 5 to 10 s
following arousal onset (–0.39 � 1.45; P < .001) (Fig
1D). Assessing the contributions of RR and QT interval
variability individually, both significantly increased
during arousal (baseline SDQT, 14 � 10 ms; arousal
SDQT, 19 � 11 ms; baseline SDRR, 71 � 66 ms; arousal
SDRR, 126 � 71 ms) (Figs 1B, 1C). The relative increase
in RR variability was more pronounced than the QT
variability (77% � 7.5% vs 36% � 10%), resulting in a
transient paradoxical QTVi decrease.
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Figure 1 – A, Graphical example of ECG and EEG activation during an arousa
(C), and following (D) the onset of arousal from sleep. P value indicates the re
RR variance; QTVi ¼ QT variability index.
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Investigating the effect of arousal trigger on repolarization
lability, respiratory event-related arousals caused
significantly higher QTVi than nonrespiratory arousals
(0.23 � 0.89 vs –0.33 � 0.68; P < .001); baseline QTVi
was comparable (e-Fig 3).

Comparing arousal responses during rapid eye
movement (REM) sleep with non-REM sleep, QTVi
during arousal was higher in non-REM sleep than in
REM sleep (–0.68 � 0.59 vs –0.77 � 0.61; P < .001);
baseline QTVi was similar (e-Fig 4).

QTVi was only marginally influenced by arousal
duration index (e-Fig 5) and arousal frequency
(e-Fig 6).
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TABLE 2 ] Association of QT and RR Time Intervals Variables Prior to, During, and Following Arousals With All-Cause and Cardiovascular Mortality

Variables

All-Cause Mortality (n ¼ 1,000) Cardiovascular Mortality (n ¼ 348) Noncardiovascular Mortality (n ¼ 552)

Univariate Analysis Multivariable Analysis Univariate Analysis Multivariable Analysis Univariate Analysis Multivariable Analysis

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

Prior to
arousal

QTVi (SD) 1.19
(0.86-1.64)

.287 1.20
(0.85-1.71)

.321 1.81
(1.06-2.18)

.029 1.66
(0.94-2.95)

.088 0.95
(0.63-1.41)

.789 1.01
(0.65-1.56)

.978

QTVi $ 0.42 1.03
(0.91-1.17)

.616 1.09
(0.95-1.25)

.238 1.19
(0.96-1.46)

.115 1.23
(0.98-1.55)

.074 0.96
(0.82-1.12)

.593 1.02
(0.86-1.21)

.861

Arousal onset

QTVi (SD) 1.80
(1.35-2.41)

< .001 1.47
(1.07-2.02)

.029 3.47
(2.11-5.72)

< .001 2.47
(1.43-4.25)

.001 1.28
(0.89-1.82)

.169 1.12
(0.76-1.67)

.693

QTVi $ 0.42 1.25
(1.09-1.43)

.001 1.20
(1.04-1.38)

.012 1.49
(1.19-1.86)

< .001 1.29
(1.01-1.65)

.043 1.13
(0.95-1.34)

.161 1.11
(0.92-1.32)

.279

Postarousal
onset

QTVi (SD) 1.68
(1.15-2.44)

.007 1.37
(0.90-2.07)

.138 3.02
(1.59-5.72)

< .001 2.09
(1.04-4.18)

.039 1.23
(0.77-1.95)

.385 1.10
(0.66-1.85)

.763

QTVi $ 0.42 1.05
(0.92-1.20)

.455 1.02
(0.89-1.19)

.745 1.17
(0.94-1.46)

.159 1.05
(0.83-1.34)

.668 0.99
(0.84-1.17)

.916 1.01
(0.84-1.22)

.883

Multivariable analysis was adjusted for age, history of stroke, atrial fibrillation, myocardial infarction/coronary artery disease, congestive heart failure, transient ischemic attack, diabetes, hypertension, COPD, asthma and
Parkinson disease, mean heart rate, mean respiratory rate, Physical Activity Scale for Elderly, systolic and diastolic BPs, time of sleep spent below 90% oxygen saturation, BMI, apnea-hypopnea index, arousal index, average
corrected QT, arousal burden, and drink and smoking habit. QT variability index (QTVi) values were dichotomized at the 75th percentile of the arousal-onset QTVi. Boldface indicates a P value with statistical significance. HR ¼
hazard ratio.
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Physical Activity Scale for Elderly, systolic and diastolic blood pressures, time of sleep spent below 90% oxygen saturation, BMI, apnea-hypopnea index,
arousal index, average corrected QT, arousal burden, and drink and smoking habit. CV ¼ cardiovascular; QTVi ¼ QT variability index.
CV and All-Cause Mortality

End point data were available for 2,558 participants (e-
Fig 1). During the mean � SD follow-up period of 10.1
� 2.5 years, 1,000 (39.1%) men died of any cause,
including 348 (34.8%) confirmed CV deaths, 42 (4.7%)
deaths from stroke, 249 (24.9%) deaths from cancer, and
81 (8.1%) pulmonary disease deaths. A total of 322
(32.2%) deaths were adjudicated as due to causes other
than cancer, CVD, and pulmonary disease.

Univariate and Multivariate Survival Analyses

Although prearousal QTVi was not significantly
associated with mortality outcomes (Figs 2A, 2B), the
QTVi response to arousal onset was modestly associated
with increased overall mortality (Figs 2C, 2E).
Subsequently, we dichotomized QTVi values on the
fourth quartile of arousal onset QTVi to compare CV
vs non-CV mortality risks. Augmented QTVi in
response to arousal increased the probability of CV
mortality by about 7% compared with men in the lower
three QTVi quartiles (Fig 2D). The association between
the highest QTVi quartile and CV mortality faded
426 Original Research
following arousal onset (Fig 2F). QTVi was not
associated with non-CV mortality.

We developed univariate and multivariable Cox
proportional regression models for QTVi prior to,
during, and following arousal onset to assess
associations with all-cause, CV, and non-CV mortality
(Table 2). Continuous QTVi was significantly associated
with CV mortality prior to, during, and following
arousal onset in univariate Cox proportional hazards
analysis. Associations were modest in magnitude (HR,
1.81-3.47 per 1 SD increase in QTVi). After adjusting
the Cox proportional hazards regression model for age,
BMI category, history of hypertension, MI/CAD, atrial
fibrillation, congestive heart failure, stroke, diabetes,
transient ischemic attack, Parkinson disease, asthma and
COPD, drinking and smoking habits, arousal index,
arousal burden, apnea/hypopnea index, mean
respiratory rate, time spent with oxygen desaturation
below 90%, and the average rate-corrected QT interval,
continuous QTVi in response to arousal (but not QTVi
at baseline) remained independently associated with all-
cause mortality (HR, 1.47; 95% CI, 1.07-2.02; P ¼ .029)
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TABLE 3 ] Characteristics of the Sample With a Baseline QTVi Within the First QTVi Quartile

Variable
All Subjects
(N ¼ 640)

Arousal QTVi Less
Than –0.96 (Q1)

(n ¼ 417)

Arousal QTVi Equal to Greater
Than –0.96 (Q2-Q4)

(n ¼ 233) P Value

Age, y 76.2 � 5.4 75.8 � 5.2 76.8 � 5.6 .025

White 579 (90.5) 372 (89.2) 207 (92.8) .179

African-American 19 (3.0) 10 (2.4) 9 (4.0) .358

Asian 26 (4.1) 22 (5.3) 4 (1.8) .055

Other 16 (2.5) 13 (3.1) 3 (1.3) .270

Body weight

BMI, kg/m2 26.8 � 3.6 26.5 � 3.5 27.2 � 3.6 .011

Overweight 315 (49.2) 213 (51.1) 102 (45.7) .228

Obese 124 (19.4) 69 (16.5) 55 (24.7) .018

Cardiac assessment

Atrial fibrillation 44 (6.9) 13 (3.1) 31 (13.9) < .001

SBP, mm Hg 127.0 � 16.2 126.7 � 15.9 127.5 � 16.6 .561

DBP, mm Hg 67.3 � 9.4 67.4 � 9.1 67.1 � 9.8 .642

Lifestyle

Smoking

Never 237 (37) 150 (36.0) 87 (39.0) .501

Past 388 (60.6) 257 (61.6) 131 (58.7) .531

Current 15 (2.3) 10 (2.4) 5 (2.2) .881

Current alcohol
consumers

431 (67.3) 281 (67.4) 150 (67.3) .954

PASE score 152.5 � 69.8 156.5 � 70.6 144.9 � 67.6 .049

Medical history

Stroke 23 (3.6) 15 (3.6) 8 (3.6) .829

CAD/MI 88 (13.8) 59 (14.1) 29 (13.0) .779

CHF 23 (3.9) 13 (3.1) 12 (5.4) .232

TIA 57 (8.9) 32 (7.7) 25 (11.2) .177

Asthma 60 (9.4) 35 (8.4) 25 (11.2) .306

COPD 33 (5.2) 16 (3.8) 17 (7.6) .060

HTN 313 (48.9) 197 (47.2) 116 (52.0) .285

Diabetes 87 (13.6) 55 (13.2) 32 (14.3) .774

Parkinson disease 6 (0.9) 4 (1.0) 2 (0.9) .724

Overnight
polysomnography

AHI, h–1 18.7 � 12.3 18.0 � 12 20.0 � 12.7 .049

AI, h–1 24.0 � 11.6 24.0 � 11.1 24.0 � 12.5 .997

AB, % 6.3 � 3.1 6.2 � 2.9 6.6 � 3.5 .077

PLMI, h–1 10.8 � 8.4 11.0 � 8.8 10.4 � 7.7 .414

MRR, min–1 14.7 � 1.9 14.6 � 1.8 14.7 � 1.9 .501

T90, min 12.2 � 31.5 11.0 � 29.6 14.5 � 34.8 .186

Data are presented as mean � SD or No. (%). Boldface indicates a P value with statistical significance. AB ¼ arousal burden; AHI ¼ apnea/hypopnoea
index; AI ¼ arousal index; CAD ¼ coronary artery disease; CHF ¼ congestive heart failure; DBP ¼ diastolic BP; HTN ¼ hypertension; MI ¼ myocardial
infarction; PASE ¼ Physical Activity Scale for Elderly; PLMI ¼ periodic limb movement index; MRR ¼ mean respiratory rate; QTVi ¼ QT variability index;
SBP ¼ systolic BP; T90 ¼ time of sleep spent below 90% oxygen saturation; TIA ¼ transient ischemic attack.
and CV mortality (HR, 2.47; 95% CI, 1.43-4.25; P ¼
.001), both expressed as per SD of QTVi. Forrest plot
analysis (e-Fig 7) shows that the QT component rather
chestjournal.org
than the RR component of QTVi is the primary driver of
the association with CV mortality. Age (HR, 1.07;
95% CI, 1.05-1.10; P < .001), history of atrial fibrillation
427
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Figure 4 – Cumulative incident function curves compare the competing risk of cardiovascular and noncardiovascular mortality in the men of the first
quartile of baseline QTVi. Group 1 represents men whose QTVi values following arousal onset were still in Q1 (QTVi less than –0.96); Group 2
represents participants whose QTVi shifted to upper quartiles (Q2-Q4) following arousal onset. The P value indicates log-rank test results. HR¼ hazard
ratio; QTVi ¼ QT variability index.
(HR, 1.79; 1.33-2.40; P < .001), CAD/MI (HR, 1.49;
95% CI, 1.14-1.90; P ¼ .003), and diabetes (HR, 1.51;
95% CI, 1.12-2.00; P ¼ .006), as well as mean respiratory
rate (HR, 1.07; 95% CI, 1.00-1.10; P ¼ .047), were
significant CV outcome predictors in the model. We
found no evidence of associations of QTVi prior to,
during, or following arousal with the risk of non-CVD
mortality.

The exposure-response analysis shows the nonlinear
association of QTVi at arousal with CV mortality
adjusted for confounders (Fig 3). The risk of CV
mortality gradually increased with an increase in
QTVi beyond –1. e-Figure 8 further illustrates the
association between QTVi quartiles and CV mortality.
To remove the effect of atrial fibrillation from the
analysis, we subsequently only considered participants
with no history of atrial fibrillation. The Cox model
confirmed the significant association between
increased QTVi at arousal onset and CV mortality
(continuous HR, 1.26 [95% CI, 1.12-1.43; P < .001];
dichotomous HR, 1.32 [95% CI, 1.02–1.69; P ¼ .036)
(e-Table 2). In particular, the QT component of QTVi,
age, CAD/MI, diabetes, physical activity, and AHI
were predictive in people with no history of atrial
fibrillation (e-Fig 9).
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Subgroup Analyses

To validate the effect of arousal on ventricular
repolarization lability and its association with mortality,
we investigated the subgroup of men whose QTVi was in
the lowest quartile during baseline; that is, considered
normal but increased beyond the first quartile during
arousal. Men who developed larger QTVi responses
during arousal were older; had a higher BMI, lower
physical activity, and a history of atrial fibrillation; and
were more likely to have severe sleep apnea (Table 3).
The risk of CV death was about 9% greater in men
whose QTVi increased to arousal (P ¼ .007) (Fig 4).
Univariate and multivariable analyses confirmed the
association between an arousal-related QTVi increase
and CV mortality (HR, 2.02 [95% CI, 1.25-3.26; P ¼
.004]; HR, 1.89 [95% CI, 1.14-3.14; P ¼ .013]) (Table 4).
There was no significant association between adjusted
QTVi and non-CV mortality in this subgroup.

Discussion
To the best of our knowledge, the current study is the
first to show that arousal-related transient changes in
ventricular repolarization contribute to high
repolarization lability reflected by changes in arousal-
related QTVi. Irrespective of the cause of sleep arousal,
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arousal-related QTVi identified a group of older men at
higher risk of long-term all-cause and CVD mortality.

Studies have shown changes in ventricular
repolarization in patients with conditions typically
associated with increased arousal burden. For example,
patients with sleep-disordered breathing have an
increased arousal burden, a prolonged QT interval, and
increased QT interval variability,20 and they experience
increased rates of premature ventricular contractions,
all of which might increase their risk21,22 for sudden
cardiac death.3 Herein, we extend this finding by
showing a direct temporal relationship between
episodic sleep arousals and transient dynamics in
ventricular repolarization. In a detailed beat-to-beat
analysis, we found that QT and RR interval variability
rapidly increased at arousal onset and gradually
decreased subsequently. Of note, the relative increase in
RR variability was more pronounced than the QT
variability increase, resulting in a transient paradoxical
QTVi decrease. Irrespective of the cause of sleep
arousal, higher arousal-related QTVi was
independently associated with an increased risk of
long-term mortality. This further supports the
observation by Schmidt et al23 that QTVi increases in
REM sleep predict death from CVD in the Sleep Heart
Health Study. We assessed explicitly arousal-related
QTVi, which focuses on responses in ventricular
repolarization to arousals rather than non-specific QT
dynamics during different sleep stages. Although there
are no normative data on arousal-related QTVi yet
available, and there is considerable variation in QTVi
values reported in the literature in general,24 owing to
differences in measurement, an increase in QTVi from
–2.33 to 0.43 between the first and third quartiles (Fig
2) would seem significant. Effect sizes reported in the
risk stratification literature are of similar magnitude.

Interestingly, QTVi prior to arousal onset (baseline)
was not significantly associated with increased long-
term mortality and was comparable between REM and
non-REM sleep. The association between arousal-
related QTVi and long-term mortality was independent
of the baseline QTVi, suggesting the involvement of
arousal-related mechanisms. We speculate that arousal-
related autonomic and hemodynamic responses may
detrimentally affect the heart and transiently expose the
individual to increased CV risk during sleep.3

Interestingly, arousals induced by simulated obstructive
respiratory events in healthy pigs transiently dissociate
ventricular electromechanical coupling, creating a
dynamic arrhythmogenic substrate during sleep.25 Our
429
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data show higher QTVi during respiratory arousals than
other types of arousal, indicative of pronounced
repolarization lability following respiratory events. The
duration of the arousal only marginally affected QTVi.

Frequent arousal results in significant sleep
fragmentation and circadian rhythm disturbance. In
turn, they contribute to increased CV mortality by
various mechanisms involving autonomic nervous
system activation, nocturnal BP, and heart rate
increases.3 Long-term exposure to repeated arousal-
related pathophysiological conditions may create a
detrimental substrate contributing to CV long-term
mortality. QTVi may also represent a risk marker in
some patients. Concomitant conditions associated with
increased arousal burden, such as sleep-disordered
breathing, shift work,26 or sleep deprivation27 due to
nocturnal noise pollution, have all been shown to
increase all-cause and CV mortality. Moreover, irregular
sleep duration28 and timing increase CVD risk
independent of traditional CVD risk factors and sleep
quality and quantity.3,29,30 Indeed, participants in the
highest QTVi quartile were more likely to report a
history of CAD, MI, or congestive heart failure. Thus,
the association between elevated QTVi and long-term
CV may be caused by excessive sympathetic outflow to
the ventricles as part of the normal arousal response31 or
indicate structural heart disease or a combination of
both. Because we adjusted the Cox regression model for
self-reported CAD/MI and congestive heart failure,
excessive sympathetic outflow following arousal is likely
to contribute to elevated QTVi and possibly a key driver
mediating the relationship with long-term CV mortality.
Indeed, the subgroup analysis of men with strong QTVi
arousal responses (Table 2) suggests an essential role of
autonomic nervous system activation. The relationship
between QT variability and sympathetic outflow has
been documented using cardiac noradrenaline spill-over
measurement,32 muscle sympathetic nerve activity, or
pharmacologic adrenergic receptor activation.24 In
particular, rhythmic repolarization changes are linked
with sympathetic drive.33,34

Several consensuses3,5,35 and scientific statements
propose a more disease-oriented and pathophysiology-
based assessment of sleep-related abnormalities.
Extending the continuous effort to improve the
evaluation of sleep-disordered breathing severity by
incorporating apnea-related hypoxemia17,36,37 and heart
rate responses,38 we introduce arousal-related QTVi to
quantify cardiac repolarization responses to arousal.
QTVi is a robust, established ECG-derived parameter
430 Original Research
that yields a simple, noninvasive measure of
repolarization dynamics predictive of sudden
arrhythmia death3,39 and could be integrated into
analysis software packages to analyze clinical PSGs. In
addition, wearable devices40 that can provide surrogate
parameters of arousal burden and ECG recordings
during sleep could supply valuable data on periodic
repolarization dynamics to apply this approach more
widely.41,42 Whether a routine assessment of arousal-
related cardiovascular responses such as arousal-related
QTVi improves the clinical evaluation of arousals and
results in a better and more tailored sleep arousal-
specific risk stratification of a patient5 remains to be
established. In addition, its utility in guiding
personalized interventions to reduce arousal-related
risks, such as managing the underlying conditions and
lifestyle changes, warrants further study.

The current study had certain limitations. Participants
were predominately white men and were
predominantly older. Hence our findings cannot be
extrapolated to women, other races, or younger
individuals. Further studies, including men and
women, can help delineate the relationship between
cardiac arousal response, sex, and mortality. Our
observations are based on a single night. Repeated
studies over multiple nights will be required to shed
light on day-to-day variations and reproducibility.
Also, baseline exposure to various conditions was self-
reported rather than systematically ascertained through
medical records or direct measurement. We did not
consider the possible confounding effects of
medications and did not examine the cause of arousal.
P values were not adjusted for multiple testing. In
addition, in line with the American Academy of Sleep
Medicine scoring rules, cortical but not subcortical
arousals were considered. The current study
investigated the association between arousal-related
QTVi response and mortality. Individual arousal
causes were not explicitly modeled, although we
adjusted the regression models for arousal burden and
common arousal triggers such as sleep-disordered
breathing (eg, AHI, time of sleep spent below
90% oxygen saturation). Our observation of transient
changes in ventricular repolarization around arousals
does not prove a causal relationship.

Interpretation
Sleep arousal-related variability in ventricular
repolarization, quantified by QTVi, is associated with
long-term all-cause mortality, primarily due to higher
[ 1 6 3 # 2 CHES T F E B R U A R Y 2 0 2 3 ]



CV mortality, in older community-dwelling men.
Further intervention studies targeting sleep arousal are
warranted to investigate whether sleep arousal-related
QTVi represents a modifiable risk marker of underlying
disease or a modifiable risk factor.
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