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ABSTRACT

The H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 
1990s, which has caused considerable economic losses in the poultry industry. Considering 
the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is 
introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive 
measures and strategies, including vaccination and active national surveillance, have been 
used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the 
H9N2 virus to disappear from the fields. By contrast, the novel Y280 lineage of H9N2 AI was 
introduced in June 2020 and has spread nationwide. This study reviews the history, genetic 
and pathogenic characteristics, and control strategies for Korean H9N2 AI. This review 
may provide some clues for establishing control strategies for endemic AIV and a newly 
introduced Y280 lineage of H9N2 AI in South Korea.
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INTRODUCTION

H9N2 avian influenza viruses (AIVs) have spilled over from wild birds, their natural host, to 
domestic poultry. These viruses have become endemic in poultry in many countries since the 
1990s. H9N2 AIVs can be broadly categorized into two major lineages: Eurasian and American. 
Eurasian H9N2 AIVs, in particular, have circulated in poultry and are classified further into 
several lineages: G1 (represented by A/quail/Hong Kong/G1/1997), Y280 (represented by A/
duck/Hong Kong/Y280/1997; also known as the BJ94 or G9 lineage) and Y439 (represented by 
A/duck/Hong Kong/Y439/1997; also known as the Korean lineage) lineage [1-3].

The Y439 lineage of H9N2 AIV is a group originating from Eurasian wild birds, and it has 
been reported in many regions, including Europe and Asia [4]. In South Korea, the Y439 
lineage of H9N2 AIV was first reported in chicken farms in 1996 and has since spread in 
poultry and become endemic since 2000s [5-7]. Outbreaks of the Y439 lineage of H9N2 
AI decreased after vaccinating layer and broiler breeders since 2007. However, even after 
vaccination, the virus has continued to circulate mainly in Korean native chicken farms and 
live bird markets (LBM), there have been no reports since it was last detected in 2018 [8-10].
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The G1 lineage of H9N2 AIV is the most widely distributed H9N2 AIV group in Asia, the 
Middle East, and Africa [11,12]. The lineage is divided into two sublineages according to 
the geographical distribution and genetic association: “G1-Eastern” and “G1-Western” 
[3,13,14]. Among them, the G1-Eastern lineage is endemic to poultry in southern China and 
neighboring Southeast Asian countries, Vietnam and Cambodia. On the other hand, the G1-
Western is distributed across a wide range of regions, from Asia, including Bangladesh and 
India, to the Middle East and Africa [14].

The Y280 lineage of H9N2 AIV has become the dominant lineage in China since the mid-
1990s and has evolved into sublineages (presented as BJ/94, HK/G9, and SH/F98) and various 
genotypes (A-W, G1-G81) [15-17]. This lineage is distributed in Asian countries, such as 
China, Vietnam, Cambodia, Indonesia, and Myanmar. In Vietnam, which borders China, the 
Y280 lineage of H9N2 AIV has circulated mainly in poultry since 2012 [4,18]. Recently, it was 
reported in Japan and eastern Russia, which does not border China [19,20]. In addition, the 
Y280 lineage of H9N2 AIV was first isolated from LBMs in South Korea in June 2020 and has 
spread rapidly nationwide [9,10].

Wild birds are the natural host of AIVs, but H9N2 AIV began to be reported in poultry, such 
as chicken, quail, guinea fowl and partridge in Asia [4], in the mid-1990s and has become 
endemic in poultry beyond the species barrier without pre-adaptation. The endemicity 
of Asian H9N2 AI in poultry has promoted the emergence of various novel AIVs and the 
evolution of H9 AIVs [2]. Infection of H9N2 AIV is an important issue for animal diseases and 
public health [21]. Previous studies have shown that H9N2 AIVs donated internal gene sets to 
other human infecting viruses, including H5N1, H5N6, H7N9, and H10N8 [22-27].

In South Korea, the Y439 lineage of H9N2 AIV, which occurred for a long period, has not been 
reported since 2018, but the Y280 lineage of H9N2 AI was newly introduced in 2020. Considering 
the history of the endemicity of the H9N2 AI in many countries, including South Korea, once 
H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity avian influenza 
(HPAI). This study reviewed the history of Korean H9N2 AI, the genetic and pathogenic 
characteristics of H9N2 AIVs, and the control strategies, including vaccination in South Korea.

HISTORY AND CURRENT SITUATION OF Y280 LINEAGE 
OF H9N2 AIV IN ASIA
Since the mid-1990s, the Y280 lineage of H9N2 AIV has become the dominant strain and 
circulated in chickens in China [2,28,29]. From 1995 to June 2022, 8,968 cases of the Y280 
lineage of H9N2 AIVs were isolated worldwide (Supplementary Fig. 1, excluding mammal 
infections, based on the Global Initiative for Sharing All Influenza Data [https://www.
gisaid.org/]). Of these, 8,311 cases, approximately 92.7%, were reported in China, where 
the outbreaks have increased dramatically since 2009. Although vaccination programs for 
chickens have been in place for a long time in China [17,27,29], the Y280 lineage of H9N2 
AIV has been endemic to poultry and has increased the genetic diversity of the virus due to 
the high proportion of traditional small-scale mixed breeding and the preference for fresh 
poultry trading through the LBMs [30,31]. According to Gu et al. [27], at least 23 genotypes 
of Y280 lineage of H9N2 AIV isolated in China from 1994 to 2014 were identified, of which 
three types were suggested to be major genotypes: A, H, and S. In particular, genotype S 
is a reassortant of the PB2 and M genes of the G1 lineage of H9N2 AIV based on the gene 
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constellation of the Y280 lineage of H9N2 AIV and has become dominant in China since 
2010 [32]. The Y280 lineage of H9N2 AIV, which was almost restricted to China before 2010, 
has spread to other Asian countries, including Vietnam, Cambodia, Indonesia, and recently 
South Korea (Fig. 1) [4,9,18,33,34].

In Hong Kong, the Y280 lineage of H9N2 AIV was first isolated in 1997, and some cases 
subsequently occurred in poultry and humans. Since the early 2000s, cases of H9N2 AI infection 
have been reported sporadically until recently [1,35,36]. Interestingly, in Japan, the Y280 lineage 
of H9N2 AIV was first isolated in imported chicken meat products collected in 1997, 2001, and 
2002. In addition, in 2015–2016, H9N2 AIVs were isolated in illegally imported poultry products 
by flight passengers from China and Taiwan into Japan during the quarantine process [19,37].

In Vietnam and Cambodia, Y280 H9N2 AI was reported in 2009 and 2013. Since then, the 
Y280 lineage of H9N2 AIV has become dominant in poultry, mainly in LBMs [38-40]. The 
Y280 lineage of H9N2 AIV of the two countries was genetically closely related to the strain in 
China. These viruses may have flowed into adjacent countries locally through active poultry 
trading [19,33,40].

Since the mid-2010s, the Y280 lineage of H9N2 AI has been spreading further in Southeast 
Asia, and the virus has also been identified in Myanmar, Indonesia, and Laos (Fig. 1, 
Supplementary Fig. 1). These viruses are genetically closely related to the Y280 lineage of 
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(square) and the number of genetic information of Y280 H9N2 (yellow to deep blue), uploaded to the Global Initiative for Sharing All Influenza Data database 
(the hemagglutinin gene sequence collected from January 1995 to June 2022, http://gisaid.org/).

http://gisaid.org/


H9N2 AIV in China [41-43]. In addition, The H9N2 AIV was first identified in Russia in 2012 
but was not defined genetically. Later, in 2018, the Y280 lineage of H9N2 AIV was isolated at 
a poultry farm in Primorsky Krai, Far East region of Russia, and was found to be genetically 
related to that isolated in Tajikistan, Central Asia [20].

Long-distance migrating wild birds, as shown in the high pathogenicity H5 AIV, are one of the 
factors of AIV transmission and spread [44-47]. In China, there have been several sporadic 
reports of H9N2 AIV detection in wild birds since 2010 [48-52]. Most H9N2 AIVs in wild birds 
have been identified as the Eurasian aquatic origin, but some cases were North American and 
poultry-derived G1 or Y280 lineages. Thus far, there is no direct evidence that the Y280 lineage 
of H9N2 AIV has been transmitted between countries or continents by wild birds, despite 
the surveillance programs conducted in several countries [9,53-55]. Although the detection 
of poultry-derived H9N2 AIV in wild birds was limited, the virus can be disseminated by wild 
migratory birds if this virus acquires more adaptability to wild waterfowl.

Considering the spread of the H9N2 AIV in neighboring countries of China and the detection 
of H9N2 AIV through the quarantine process in Japan, the Y280 lineage of H9N2 AIV could 
be transmitted by the movement of contaminated poultry products, people, or goods [56,57]. 
Another transmission factor, the LBM, is a central point in generating and spreading novel 
viruses to other species due to the high prevalence and genetic diversity of H9N2 AIV and 
should be considered a hotspot for surveillance programs [18,30,58].

THE OUTBREAK AND GENOTYPE OF H9N2 AI IN SOUTH 
KOREA
Since the first outbreak of H9N2 in South Korea in 1996, the Y439 lineage of the H9N2 
virus has been endemic since the 2000s (Fig. 2). Nationwide outbreaks of H9N2 AI, which 
have caused considerable economic losses, have led to the use of vaccination programs 
since 2007 [7]. Since then, the outbreaks of H9N2 AI in poultry farms, such as layers and 
breeders, have decreased gradually, but the virus was not completely eradicated and was 
circulated continuously, mainly in Korean native chickens in LBM, until 2018 (data not 
shown). The Y439 lineage of H9N2 AIV, which has circulated in South Korea for a long 
time, has continuously evolved by antigenic drift and reassortment with other AIVs from 
wild birds and domestic ducks in LBMs [5,59,60]. The Y439 lineage of H9N2 AIV in South 
Korea is divided broadly into two genotypes according to their gene constellation (Fig. 3). 
The first is the MS96-like genotype, represented by A/chicken/Korea/MS96/1996 (H9N2) 
and its reassortant viruses with the genes from domestic ducks and wild bird origin, which 
was distributed in poultry until 2008 (designated as K1, K2, and K3 genotype in Youk et 
al. [59]). Second, the A146/09-like genotype, represented by A/chicken/Korea/A146/2009 
(H9N2), is a reassortant of the hemagglutinin (HA) and nucleoprotein genes of the MS96-
like virus with six internal genes originating from wild aquatic birds; this strain has become 
the dominant strain (designated as K4 genotype in Youk et al. [59]). In South Korea, the 
national active surveillance program was established for HPAI control, and various measures 
have been applied, including movement restriction, disinfection, and the culling of infected 
animals since 2008 (Fig. 4). These preventive measures may play a role in reducing the low 
pathogenicity avian influenza (LPAI) virus and HPAI virus, particularly in domestic ducks and 
LBM. Consequently, the emergency of reassortant viruses has been reduced, and finally, the 
Y439 lineage of H9N2 AIV has disappeared in South Korea since 2018.
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In June 2020, the Y280 lineage of H9N2 AIV was first isolated from Korean native chickens 
in LBM by active surveillance programs, and has since spread nationwide (Fig. 2). A/chicken/
Korea/LBM261/2020 (H9N2), which was the virus of the index case in South Korea, was 
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closely related to the A/chicken/Shandong/1844/2019 (H9N2) virus of China. The Korean 
Y280 lineage of H9N2 AIV is designated as the LBM261/20-like genotype, which belongs to a 
subgroup of genotype S in China (Fig. 3) [9]. Five hundred sixteen cases of the Korean Y280 
lineage of H9N2 AI have been detected nationwide in various breeds, such as Korean native 
chickens, layer and broiler chickens by active surveillance of domestic poultry from June 2020 
to July 2022 (Fig. 2). Although the route of introduction of the novel H9N2 AIV into South 
Korea remains unclear, the likelihood of introduction by wild migratory birds is considered 
low. This is because the poultry-derived Y280 lineage of H9N2 AIV in wild birds is rarely 
reported even in China [48-52], and there is no virus isolation in wild birds, including feces, 
captive birds, carcass through intensive active surveillance in South Korea. Therefore, the 
virus is likely to be introduced through contaminated poultry products or human activities, 
as shown in the periodical AIV detection cases in the quarantine process in Japan [9].

PATHOGENIC CHARACTERISTICS OF H9N2 AIV IN 
CHICKENS AND DUCKS
Although H9N2 AIV is classified as a low pathogenicity virus in poultry, it is causing 
economic damage to the poultry industry by the decrease in spawning and some mortality 
rates in commercial chickens. Most chickens infected with H9N2 AIV at farms showed typical 
signs of influenza, such as respiratory symptoms, egg drop, and mortality (0% to 40%) 
(summarized in Table 1) [2,5,61,62]. On the other hand, experimental infections in specific-
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pathogen-free chickens showed no mortality and only mild symptoms, such as depression 
and decreased feed intake [5,19,63-66]. This disparity between laboratory and field infections 
with H9N2 AIV suggested that the pathogenicity of H9N2 AIV can vary depending on ages, 
breeds, the level of immunity, and another secondary opportunistic pathogen infection 
[5,64,67-69].

Previous studies have shown that similar clinical signs were observed in infection between 
the Y439 and Y280 lineage of H9N2 AIVs (Table 1). In the viral shedding, however, there was 
a significant difference in the preferential replication between the two viruses. The Y280 
lineage of H9N2 AIV was replicated more efficiently in the respiratory tract, while the Y439 
lineage of H9N2 AIV was replicated more efficiently in the intestinal tract [5,19,65,66]. Thus, 
the Y280 lineage of H9N2 AIV can be transmitted airborne more efficiently via the oral-to-
oral pathway than the Y439 lineage of H9N2 AIV. This feature can cause a more efficiently 
spread virus between poultry in the same space. It can be a risk factor that increases the 
chance of viral infection even between species in contact with infected poultry [2,70,71].

Domestic ducks are intermediate species between poultry and wild waterfowl and have 
susceptibility and resistance to AIVs [72-74]. Experiments with H9N2 AIV infections in 
domestic ducks are limited, but the results show that most infected ducks were asymptomatic 
[2,66,75,76]. In addition, viral replication was not detected in most infected ducks and was 
identified as low titers in oropharyngeal (OP) and cloacal (CL) swabs from a few infected 
ducks. According to Wang et al. [76], it was confirmed that the genotype S of the Y280 lineage 
of H9N2 AIV could replicate with relatively high titers in the respiratory tract of the Muscovy 
duck. Despite the limited cases, some experimental results have shown viral replication of 
H9N2 AIV in ducks. If the chicken-adapted H9N2 AIV replicates more efficiently in ducks, it 
can be a potential risk factor in AIV transmission by domestic ducks and wild migratory ducks.

HUMAN INFECTION BY H9N2 AIV

Human infection by the H9N2 AIV was first reported in Hong Kong in 1998 [4]. Since 
then, sporadic cases have been reported continuously in various countries, mainly China. 
As of June 2022, 112 cases have been identified in eight countries, including China, Egypt, 
Bangladesh, and Cambodia. Cases of infection have been reported mainly in people in 
close contact with infected poultry and meats or exposed to contaminated environments 
[77,78]. Children under the age of 10 were most infected with H9N2 AIV but developed mild 
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Table 1. Summary of clinical signs of H9N2 viruses from the Y439 and Y280 lineage in farms and animal experiments, respectively
Cases Species Y439 lineage Y280 lineage

Clinical signs Reference Clinical signs Reference
Field (farm) Chicken 

(commercial)
Egg drop, respiratory sign, 
depression, diarrhea, weight loss, 
decreased feed intake, mortality 
(0%–30%)

[2,5,61,63] Egg drop, respiratory signs (coughing, 
sneezing, gasping), mortality (10%–40%)

[1,2,62]

Animal experiment Chicken (SPF) No mortality, depression [5,63,65,66] No mortality, depression, diarrhea, 
decreased feed intake

[16,17,19,64,66, 
71,89,97,102]

Viral shedding: higher titer via 
CL route

Viral shedding: higher titer via OP route

Mice Mostly no clinical signs and 
mortality, weight loss, inappetence

[5,92,107] Inappetence, huddling, ruffled fur, labored 
breathing, hunched posture, respiratory 
distress, weight loss, mortality (0%–30%)

[2,36,52,82,83, 
89,91,92,93]

Bold: observed major clinical symptoms.
SPF, specific-pathogen-free; OP, oropharyngeal; CL, cloacal.



symptoms [79]. On the other hand, the H9N2 AIV is closely involved in other fatal human 
infections as well as direct infections. The high pathogenicity H5N1 AIV in Hong Kong in 
1997 was found to have reassorted from six internal genes of the G1 lineage of H9N2 AIV, 
excluding HA and neuraminidase [22,80]. In addition, the internal genes of H7N9 AIV, which 
has 1,568 human infections, including 616 fatal cases (case fatality rate, 39%) in China since 
2013, originated from the Y280 lineage of H9N2 AI [23].

Poultry-adapted AIVs exhibit asymptomatic or weak signs and can evolve as potential 
infection sources in mammals through circulation in poultry [81-83]. The HA protein of AIV 
is determined in the host range by binding with sialic acid on the surface of the host cell. 
In general, AIV has the highest binding affinity with the α2,3-linked sialic acid of birds, but 
mutations on the receptor binding sites for high affinity with α2,6-linked sialic acid have 
been found to increase infectivity in mammals [84,85]. Previous studies reported that leucine 
(L) in position 226 of the HA proteins plays an important role in the binding affinity to sialic 
acid as a representative mammalian affinity marker [86,87]. Thus far, the human infection 
cases by H9N2 AIV were only reported in Y280 and G1 lineages, most of which have a Q226L 
substitution on the HA protein. In addition, the genotype S of the Y280 lineage, which has 
been dominant in poultry in China since 2010, has acquired various mammalian affinity 
markers: H183N, T190V, and Q226L in the HA protein; A588V in the PB2 protein; K356R and 
S409N in the PA protein; V15I in the M1 protein; I28V and L55F in M2 protein [4,65,88-92]. 
Newly introduced H9N2 AIV into South Korea in 2020 belonged to genotype S of the Y280 
lineage of H9N2 AIV, which has similar genetic characteristics [9].

Although the Y439 lineage of H9N2 AIV had circulated for a long period (1996–2018), there 
have been no human infection cases in South Korea (Fig. 2). The Korean Y439 lineage of 
H9N2 AIV had retained poultry affinity markers rather than mammals [9,86]. In mouse 
experiments, the Y280 lineage of H9N2 AIV replicated well in the respiratory tract of infected 
mice without adaptation and showed various clinical signs, body weight loss, and mortality, 
whereas the Y439 lineage of H9N2 AIV showed mostly no clinical signs or mild symptoms, 
such as inappetence and weight loss (Table 1) [5,89-93]. These results show that the Y439 
lineage of H9N2 AIV is at least less lethal in mammalian infections than the Y280 lineage of 
H9N2 AIV.

CONTROL STRATEGIES OF H9N2 AI IN SOUTH KOREA

National active surveillance for AI has been conducted since 2008 to monitor HPAI in South 
Korea. Although there is a slight difference annually, 784,836 laboratory diagnostic tests were 
conducted in 2021 (Fig. 4). The main targets of active surveillance were domestic chickens 
(approximately 25%), domestic ducks (approximately 21%), wild birds (approximately 
2%), LBMs and poultry traders (approximately 2%), and the epidemiological-related places 
with HPAI outbreaks (approximately 44%). Surveillance has been applied to wild birds for 
an early warning of HPAI introduction, including fecal samples, captive wild birds, and 
carcasses. High pathogenicity H5Nx AIVs have been detected in wild birds at the early time 
of migration before poultry outbreaks [94,95]. Domestic ducks are considered an important 
target of active surveillance because they can be a potential viral transmission factor, 
despite not showing clinical symptoms when infected with HPAIV [72]. LBM, which has a 
high risk of viral transmission by live bird trading, is one of the main targets of surveillance 
[18,30,58]. For effective control of AIV, surveillance has also been conducted in the place 
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of poultry merchants and farms related to LBMs. Through the surveillance of LBM, the 
introduction of the Y280 lineage of H9N2 AIV into South Korea was also found [9]. Overall, 
intensive national active surveillance and followed control measures, such as disinfection, 
restriction of movement, ban of poultry trading, and stamping out of HPAI-infected birds, 
have gradually reduced LPAI as well as HPAI in South Korea. Therefore, active surveillance 
programs are essential to monitor the emergence of new viruses and to control the spread of 
the viruses in the early stages after detection.

As a preventive measure, vaccination has been used to control H9N2 AI in many countries, 
particularly in endemic regions. China has implemented vaccination programs for H9N2 
AI on chicken farms since 1998 [65,96]. On the other hand, the H9N2 AI still has a high 
prevalence in China (Supplementary Fig. 1). Moreover, the long-term circulation of the 
H9N2 AIV in a vaccinated population has caused many virus mutations [17,97-102]. This 
is considered to have been compositely caused by factors, such as inefficient application 
of vaccines, low doses, low vaccination coverage, and limited updates of vaccine strains 
[98,100,103]. At least 20 commercial vaccines have been used in China to cope with various 
viruses, which need to be updated regularly [97,98,101].

The H9N2 AIV has been prevalent nationwide in South Korea since 2000 but officially 
reported outbreaks were limited (Fig. 2) [7]. Therefore, since 2007, Korean animal health 
authorities have permitted the use of H9N2 vaccines, which use a single vaccine strain (A/
chicken/Korea/01310/2001) of the Y439 lineage of H9N2 AI in layer and breeder chicken to 
prevent damage to the poultry industry [104,105]. Although outbreaks of the Y439 lineage of 
H9N2 AI have decreased since the vaccine program, it took more than a decade to disappear 
from the field (Fig. 2). The H9N2 AIV had remained especially in LBMs and small-scale 
Korean native chicken farms for a long time. This fact suggests a limit to controlling the 
H9N2 AI with vaccination alone.

Another factor to consider in vaccination strategy is the possibility of virus mutations and 
the need to update the vaccine strain. Immune pressure by long-term vaccination may cause 
genetic and antigenic changes, as shown in China and South Korea [8,28,59,65,101,106,107]. 
This leads to a gradual decrease in the suitability of vaccine strain and vaccine efficacy in the 
field. Although the vaccine strain for the Y439 lineage of H9N2 AIV has never been updated 
in South Korea, but depending on the situation in which the Y439 lineage of H9N2 AI is 
circulated in poultry again, it will be necessary to update the vaccine strain by the genetic and 
antigenic characteristics of the field virus.

Unfortunately, as the Y280 lineage of H9N2 AIV was newly introduced into South Korea 
in 2020, previously authorized vaccines against the Y439 lineage of H9N2 AIV may not 
be an appropriate option to control the current Y280 lineage of H9N2 AIV because of the 
difference in the genetic and antigenic features (81.8% nucleotide similarity) [108]. In animal 
experiments, the Y439 lineage of the vaccine showed only limited efficacy to heterogeneous 
Y280 lineage of H9N2 AIV (Y439 lineage of the vaccine reduced the replication of the Y280 
lineage of H9N2 AIV in the cecal tonsils by 37.5%, and also partially inhibits viral shedding 
in respiratory and intestinal tracts) (Fig. 5). By contrast, the rgHS314 virus (derived from A/
chicken/Korea/H314/2020), which was newly developed as an autogenous vaccine for the 
current epizootic Y280 lineage of H9N2 AIV, can reduce viral replication significantly with 
100% inhibition of virus recovery in the cecal tonsil and no viral shedding in OP and CL 
swabs (Fig. 5) [108]. New commercial vaccines using the Y280 lineage of the H9N2 vaccine 
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seed strain may be available in the field in the first half of 2023. However, active surveillance 
and enhanced biosecurity levels must be combined with vaccination to control the H9N2 AI 
effectively [86,103].

CONCLUSION

This report provides an overview of the history of outbreaks and the control strategies for 
H9N2 AI in South Korea. Unlike many endemic countries, including China, where new 
variants of H9N2 AIV are emerging by genetic mutations, in South Korea, the Y439 lineage 
of H9N2 AI has disappeared by effective control measures, such as continued large-scale 
national surveillance, improved levels of biosecurity, appropriate vaccination, and culling 
of poultry in the case of HPAI. Therefore, in order to control the new Korean Y280 lineage 
of H9N2 AI, measures such as updating vaccine strain, organizing surveillance based on the 
potential risks of H9N2 AI (breeds and prevalence rate, etc.) and strengthening follow-up 
monitoring of LBM's supply farms and distribution networks are urgently needed. These 
intensive measures and strategies will help control the Y280 lineage of H9N2 AI as soon as 
possible. This review paper is expected to assist in establishing control strategies and provide 
insight for low pathogenicity H9N2 AI in endemic countries.

SUPPLEMENTARY MATERIAL

Supplementary Fig. 1
Y280 lineage H9 subtype virus detection graph by country and year (total 8,967 cases based 
on the GISAID database).

Click here to view
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Challenged with Y280 lineage of H9N2 AIV
(A/chicken/Korea/H314/2020)

Not vaccinated
(Control)

Y439-vaccinated Y280-vaccinated

Fig. 5. Assessment of the protective efficacy of the commercial Y439 vaccine and newly developed Y280 vaccine 
(used homologous strain, A/chicken/Korea/H314/2020) when challenged with the Y280 H9N2 virus. In an animal 
experiment, the commercial Y439 vaccine has been found only partially to inhibit viral replication and shedding 
and has been shown to provide incomplete protection against the Y280 H9N2 virus [108]. 
AIV, avian influenza virus.

https://vetsci.org/DownloadSupplMaterial.php?id=10.4142/jvs.22216&fn=jvs-24-e5-s001.ppt
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