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The extracellular matrix (ECM) plays a vital role in the progression and

metastasis of glioma and is an important part of the tumor microenviron-

ment. The matrisome is composed of ECM components and related pro-

teins. There have been several studies on the effects of matrisomes on the

glioma immune microenvironment, but most of these studies were per-

formed on individual glioma immune-related matrisomes rather than inte-

gral analysis. Hence, an overall analysis of all potential immune-related

matrisomes in gliomas is needed. Here, we divided 667 glioma patients in

The Cancer Genome Atlas (TCGA) database into low, moderate, and high

immune infiltration groups. Immune-related matrisomes differentially

expressed among the three groups were analyzed, and a risk signature was

established. Eight immune-related matrisomes were screened, namely, LIF,

LOX, MMP9, S100A4, SRPX2, SLIT1, SMOC1, and TIMP1. Kaplan–
Meier analysis, operating characteristic curve analysis, and nomogram were

constructed to analyze the relationships between risk signatures and the

prognosis of glioma patients. The risk signature was significantly correlated

with the overall survival of glioma patients. Both high- and low-risk signa-

tures were also associated with some immune checkpoints. In addition,

analysis of somatic mutations and anti-PD1/L1 immunotherapy responses

in the high- and low-risk groups showed that the high-risk group had

worse prognosis and a higher response to anti-PD1/L1 immunotherapy.

Our analysis of immune-related matrisomes may improve understanding of

the characteristics of the glioma immune microenvironment and provide

direction for glioma immunotherapy development in the future.
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Glioblastoma (GBM) is the most prevalent and aggres-

sive malignant tumor of the central nervous system

(CNS), accounting for 14.6% of all CNS tumors [1].

Latest data show that approximately 100 000 incident

cases of GBMs are diagnosed annually. Gliomas are

differentiated from glial cells and are histologically

classified as astrocytoma, oligodendroglioma, oligoden-

drocytoma, and ependymoma [2]. GBM has an unfa-

vorable prognosis, with a median survival time of only

14–17 months and an average 2- and 3-year survival

rates of only 3.3% and 1.2%, respectively [3].

Although surgery combined with radiotherapy and

chemotherapy has achieved good results in clinical tri-

als, the recurrence rate is still very high [4]. This poor

prognosis of glioma is attributed to several factors,

such as the unique location, high heterogeneity, and

tumor immunosuppressive microenvironment [5,6].

Immunotherapy has unsatisfactory effects on glioma

owing to the immune-cold phenotype and unique

immune microenvironment [7]. Therefore, there is an

urgent need to identify improved indicators for the

immune microenvironment of glioma.

The extracellular matrix (ECM), an important com-

ponent of an organism, is a complex scaffold network

composed of cross-linked proteins such as collagen,

non-collagen, elastin, proteoglycan, and aminoglycan

that supports surrounding cells [8]. ECM can provide a

tissue scaffold to maintain the morphology and integrity

of organs and is very important in cell development [9].

ECM proteins contain abundant signal molecules that

control cell growth, polarity, shape, migration, and

metabolic activity [10]. The collection of ECM mole-

cules and related proteins is called a matrisome [11].

Extracellular matrix can also promote tumor growth,

providing adhesion sites and cell signals to different cell

groups, including cancer cells. ECM can also store many

ECM-modifying enzymes, ECM binding growth factors,

and other ECM-related proteins that assist with cell sig-

naling of ECM proteins [12]. ECM is also involved in

some pathological processes in the body, such as inflam-

mation and tumors. Studies have shown that an increase

in the ECM component is linked to tumor invasion and

poor prognosis [13,14]. The ECM plays a crucial role in

tumor progression, invasion, and metastasis. For exam-

ple, lysyl oxidase (LOX) is a monoamine oxidase associ-

ated with metastasis and adverse prognosis in gastric

cancer [15]. Matrix metalloproteinase-9 (MMP9) can act

on the degradation of ECM and vascular remodeling,

thus promoting tumor invasion [16].

Matrisomes are also involved in glioma develop-

ment. The proteolytic activity of ECM is associated

with invasion and metastasis of gliomas [17]. The

immune microenvironment of glioma is composed of

glioma cells, immune cells, and the ECM. Studies have

shown that the ECM is related to the glioma immune

microenvironment [18]. Thus, there have been several

studies on the effects of matrisomes on the glioma

immune microenvironment. However, most of these

studies were performed on individual glioma immune-

related matrisomes rather than integral analysis.

Hence, an overall analysis of all potential immune-

related matrisomes in gliomas is needed. In addition,

because of the important prognostic influence of

immune infiltration in gliomas, it is essential to clarify

whether immune-related matrisomes have prognostic

value. Thus, this study intended to analyze the expres-

sion profile of matrisomes in 667 patients with glioma,

using the whole transcriptome data set from The Can-

cer Genome Atlas (TCGA) database.

Materials and methods

Data sources and clinical samples

Human matrisomes were collected from the Molecular Signa-

tures Database V7.4. Meanwhile, the fragments per kilobase

per million (FPKM) of transcriptome data, statistical data,

and clinical features of patients with human low-grade glioma

(LGG) and GBM were extracted from the Cancer Genome

Atlas Database (TCGA, https://cancergenome.nih.gov/) [19].

Patient characteristics included the total number of patients

(n = 667), gender, age, grade, isocitrate dehydrogenase (IDH)

status, Karnofsky performance score (KPS), chemotherapy,

radiotherapy, and MGMT promoter methylation status. Veri-

fied FPKM transcriptome data and patient clinical character-

istics (n = 970) were extracted from the Chinese Glioma

Genome Atlas (CGGA) database (http://www.cgga.org.cn/)

[20]. We also verified it by GEO database under accession

number GSE150604 (n = 239). We have drawn a flow chart

(Fig. S8) more intuitively to display the research ideas.

In addition, brain tissue samples of 26 patients (Table S6)

with GBM and 18 patients with paracancerous lesions were

obtained from Union Hospital, Tongji Medical College,

Huazhong University of Science and Technology, Wuhan,

China. The study was conducted according to the guidelines

of the Declaration of Helsinki, and approved by the Ethics

Committee of Tongji Medical College, Huazhong University

of Science and Technology (protocol code: [2019]IEC(S742),

date of approval: MAR 4th 2019). All patients provided writ-

ten informed consent for the use of their samples and data.

Generation and verification of immune grouping

We used single-sample gene set enrichment analysis

(ssGSEA) and R package “GSVA” to analyze the level of
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immune infiltration in glioma samples. By utilizing unsu-

pervised hierarchical clustering algorithm, the glioma

patients were classified into high immune cell infiltration

cluster, middle immune cell infiltration cluster and low

immune cell infiltration cluster according to the level of

immune cell infiltration using “HCLUST” (R package). To

verify the correctness of clustering, immune cell expression

in the three groups was calculated using the CIBERSORT

deconvolution algorithm, which is a method that can

explore the stromal and immune cell proportion using gene

expression profiles, and a heatmap was generated. The dif-

ferences among the three groups were verified by stromal

score, immune score, estimated score, tumor purity, human

leukocyte antigen (HLA) expression level, and immune cell

composition.

Screening of immune-related matrisomes

We divided the TCGA gene expression profile data of

glioma patients into three groups: low, medium, and high

immune cell infiltration. Taking |log2FC| > 1, P value

< 0.05 as the standard, the differentially expressed matri-

somes between the low and moderate immune cell infiltra-

tion groups and between the moderate and high immune

cell infiltration groups were analyzed using “EDGER” pack-

age. Using online Venn analysis, overlapping matrisomes

between the above two groups of differentially expressed

matrisomes were selected to screen immune-related matri-

somes.

Establishing a risk signature based on immune-

related prognostic matrisomes

The relationship between immune-related matrisome

expression and overall survival (OS) of glioma patients was

analyzed using univariate Cox regression. In univariate

Cox analysis, a P-value < 0.05 was considered statistically

significant. Least absolute shrinkage and selection operator

(LASSO) regression was used to screen the applicable com-

bination of immune-related prognostic matrisomes, and a

risk signature was constructed. The candidate genes were

divided into two groups: risk type (HR > 1) and protective

type (0, < 1). A prognostic risk score equation was then

established based on the results of LASSO analysis, and a

linear combination of expression level and regression coeffi-

cient weighting was used. The risk score equation was as

follows:

risk score ¼ matrisome 1ð Þ � β 1ð Þ expression
þmatrisome 2ð Þ � β 2ð Þ þ⋯⋯
þMatrisome n� β nð Þ:

Kaplan–Meier (KM) curves and time-dependent receiver

operating characteristic (ROC) curves were then generated

based on the median risk score to verify the prognostic

significance of risk signature [21]. A total of 667 patients

with glioma were divided into the high-risk and low-risk

subgroups (Table S1). The effectiveness of the risk signa-

ture was further verified using the CGGA data set compris-

ing 970 glioma patients (Table S2) and GEO database

under accession number GSE150604 comprising 239 glioma

patients (Table S10).

Establishing and assessing the nomogram

To improve the clinical value of the risk signature in the

clinic, we conducted univariate and multivariate Cox

regression analyses to determine the relationship between

factors (gender, age, grade, IDH status, 1p/19q codeletion,

Karnofsky performance score, MGMT promoter status,

history of radiotherapy and chemotherapy, and risk score)

and OS. The nomogram was established using the TCGA

database and verified using the CGGA database. The prog-

nostic predictive accuracy of the nomogram was demon-

strated using calibration curves. These analyses were

performed using the R package “RMS.” ROC curves were

used to evaluate the prognostic capacity of the nomogram

and other predictors (risk score, age, grade, IDH mutation

status, and 1p/19q codeletion) for 1-, 3-, and 5-year OS of

patients with glioma.

Functional enrichment analysis

To further explore the eight immune-related matrisomes,

we screened differentially expressed genes between the high-

and low-risk subgroups using R software package “EDGER.”

The functional enrichment of the differentially expressed

genes was then analyzed with the Gene Ontology (GO)

enrichment analysis and Kyoto Encyclopedia of Genes

and Genomes (KEGG) using the R software package

“GGPOLT2,” with |log2FC| > 1 and P value < 0.05 as the

standard.

Immunohistochemistry

The paraffin-embedded tissues of 16 patients with GBM

and 12 patients with paracancerous brain tissue were cut

into 5 μm-thick sections and stained with hematoxylin. The

sections were incubated with anti-leukemia inhibitory factor

(LIF), LOX, MMP9, S100A4, SRPX2, SLIT1, SMOC1,

and TIMP1 primary antibodies at 4 °C; washed with phos-

phate buffer three times; and incubated with secondary

antibody at room temperature for 30 min.

We used 3,3-diaminobenzidine (DAB; 1 : 50) as the chro-

mogenic substrate and counterstained with hematoxylin

[22]. The staining was evaluated by two independent

pathologists who were blinded to the patients’ clinical data.

The tissue sections were scored according to the percentage

of staining positive cells as follows: 0, 0%; 1, 1–10%; 2,
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11–25%; 3, 26–50%; 4, 51–70%; and 5, 71–100%. Mean-

while, staining intensity was scored as 0 for negative stain-

ing; 1, weak staining; 2, moderate staining; and 3, strong

staining. The final staining score was calculated as the pro-

duct of staining intensity and percentage of positive cells.

The samples with a final staining score of < 3 and ≥ 3 were

divided into the negative and positive expression groups,

respectively.

Real-time quantitative reverse transcriptase-

polymerase chain reaction

Total RNA was extracted from 10 glioma and 6 adjacent

brain tissue samples using TRIzol reagent (Thermo Fisher

Scientific, Waltham, MA, USA). A reverse transcription kit

(Vazyme, Wuhan, China) was used to reverse transcribe

cDNA, and then real-time polymerase chain reaction

(PCR) was performed with SYBR Green real-time PCR

kit, with GAPDH as the internal reference control. The

PCR cycle conditions were as follows: 95 °C for 2 min,

then 94 °C for 20 s, 58 °C for 20 s, and 72 °C for 30 s, for

a total of 40 cycles. All RT-qPCR reactions were indepen-

dently performed three times. The tissue samples and

primer sequences of the matrisomes are shown in Tables S3

and S4.

Tumor mutation burden and anti-PD1/L1 therapy

of risk groups

Somatic mutation data were obtained from TCGA data-

base. Somatic mutations mainly included frameshift muta-

tions, non-synonymous mutations, non-silent mutations,

frameshift mutations, and deletion mutations. The tumor

mutation burden (TMB) as the number of somatic muta-

tions per megabyte. We used the R package “MAFTOOLS” to

analyze the mutation profiles [23]. Meanwhile, tumor

immune dysfunction and exclusion (TIDE; http://tide.dfci.

harvard.edu) and immune cell abundance identifier (Immu-

CellAI; http://bioinfo.life.hust.edu.cn/ImmuCellAI) algo-

rithms were used to analyze the potential response to PD1/

L1 therapy.

Statistical analysis

The ROC curve was generated to measure the accuracy of

survival prediction, using the R package “SURVIVALROC.”

Student’s t-test was used to compare the risk scores among

subgroups based on clinical characteristics. The Wilcoxon

test was used to compare the immune infiltration data

between the risk groups. GSEA was used for the functional

analysis [24]. All statistical analyses were performed using

the R 4.0.2. Statistical significance was defined as a two-

tailed P-value < 0.05 (***P < 0.001; **P < 0.01; and

*P < 0.05). All pictures were drawn using the R language.

Results

Identification of immune-related matrisomes in

glioma patients

A total of 667 low-grade glioma (LGG) and GBM

samples were extracted from TCGA database. The

clinical characteristics of the patients are summarized

in Table 1.

Of these, 269, 338, and 61 samples were categorized

into the low infiltration (immunity_L), moderate

infiltration (immunity_M), and high infiltration

Table 1. The clinical features of glioma patients in TCGA and

CGGA database. KPS, Karnofsky Performance Score.

Characteristic TCGA (n = 667) CGGA (n = 970)

Age (years)

≤ 60 472 877

> 60 195 93

Gender

Female 255 399

Male 356 571

NA 56 0

WHO grade

II 215 270

III 236 322

IV 160 374

NA 56 4

IDH status

Mutant 401 500

Wild type 257 421

NA 9 49

1p19q codeletion

Codel 166 199

Non-codel 495 697

NA 6 74

KPS

≤ 80 193 –
> 80 217 –
NA 257 –

MGMT promoter status

Methylated 472 456

Unmethylated 161 361

NA 34 153

TERT promoter status

Mutant 153 –
Wild type 202 –
NA 312 –

TMZ chemotherapy

Yes 393 670

No 10 266

NA 264 34

Radiotherapy

Yes 388 742

No 178 193

NA 101 35
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(immunity_H) groups, respectively, using the unsuper-

vised hierarchical clustering algorithm (Fig. 1A). As

seen in Fig. 1B–D, there were notable differences in

immune score, stromal score, and estimate score

among the three groups, and the score increased grad-

ually from the low immune group to the high immune

infiltration group (P < 0.001). Tumor purity was also

significantly different, increasing from the high infiltra-

tion group to the low infiltration group (P < 0.001).

In addition, HLA expression and the types of

immune cell infiltration in the high infilitration group

were higher than those in the other two groups

(P < 0.001). For differentially expressed matrisomes,

119 were differentially expressed between the low and

moderate infiltration group; of these 97 and 22 matri-

somes were upregulated and downregulated, respec-

tively (Tables S7 and S8). Meanwhile, 76 matrisomes

were differentially expressed between the moderate

and high infiltration groups; of these, 46 and 30

were upregulated and downregulated, respectively

(Fig. 1E,F).

By intersecting with the above results, 36 differen-

tially expressed matrisomes among the three groups

were further screened by Venn analysis (Table S9)

among them, 28 and 8 were upregulated and downreg-

ulated, respectively.

Prognostic value of the risk signature

In total, eight immune-related matrisomes were identi-

fied to have prognostic value, namely, LIF, LOX,

MMP9, S100A4, SRPX2, SLITI1, SMOC1, and

TIMP1 (Fig. 2A–C). The univariate analysis results

showed that among the eight immune-related mati-

somes we screened, LIF, LOX, MMP9, S100A4,

SRPX2, and TIMP1 were considered as risk effectors

with HR > 1 both in TCGA and CGGA databases.

However, the HR values of the other two immune-

Fig. 1. Characteristics of immune grouping and screening of immune-related matrisomes. (A) A total of 667 glioma samples were divided

into three groups based on immune cell infiltration: low infiltration group (immunity_L, n = 269), medium infiltration group (immunity_M,

n = 338), and high infiltration group (immunity_H, n = 61). (B) ESTIMATE score, immune score, stromal score, and tumor purity of immune

groups. (C) HLA expression of the three immune groups. (D) The immune infiltration of different groups. (E) and (F) are differentially

expressed matrisomes and intersection Venn diagrams of the three immune groups.
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related matrisomes SMOC1 and SLITI1 in TCGA

database were 0.990 and 0.961, close to 1 but less than

1, while the HR values of SMOC1 and SLIT1 in

CGGA database were 0.804 and 0.755, both less than

1, which can be considered as protective effectors. The

survival analysis of their prognostic impact was shown

in Fig. S1. According to median score, 315 and 352

patients were classified into the high- and low-risk

groups. LIF, LOX, MMP9, S100A4, SRPX2, and

TIMP1 were upregulated in the high-risk group,

whereas SLIT1 and SMOC1 were downregulated in

the low-risk group. The OS rate was significantly

worse in the high-risk group than in the low-risk

group (P < 0.001) (Fig. 2D), demonstrating that the

risk score had good prognostic value.

The risk curve and scatter plot showed that the mor-

tality rate was higher in the high-risk group than in

the low-risk group (Fig. 2E). On ROC curve analysis

to verify the predictive significance of the risk signa-

tures, the AUCs for predicting 1-, 3-, and 5-year

Fig. 2. Establish and analyze immune-related matrisomes risk signatures for the prognosis of glioma. (A, B) LASSO regression analysis verified

the prognosis of eight immune-related matrisomes. (C) Univariable Cox regression of eight immune-related matrisomes in TCGA database. (D)

The KM curve showed that the overall survival rate in the high-risk group was worse than that in the low-risk group in TCGA database. (E) The

risk curve and scatter plot of high and low group in TCGA database. (F) The AUCs of the 1-, 3-, and 5-year survival rates in TCGA database. (G)

The KM curve indicated that the overall survival rate in the high-risk group was worse than that in the low-risk group in CGGA database. (H) The

risk curve and scatter plot of high and low group in CGGA database. (I) The AUCs of the 1-, 3-, and 5-year survival rates in CGGA database.
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survival rates were 0.885, 0.895, and 0.844, respec-

tively, in TCGA database (Fig. 2F). Further verifica-

tion using the CGGA database showed AUCs of

0.813, 0.814, and 0.803 for predicting the 1-, 3-, and 5-

year survival rates, respectively (Fig. 2G–I). We also

utilized GEO database under accession number

GSE150604 to verify the predictive significance of the

risk signatures (Fig. S5A–C).

Association between risk signature and clinical

parameters

The heatmap showed the relationship between high- and

low-risk groups and clinical features of glioma patients,

such as gender, age, WHO grade, IDH mutation status,

KPS, 1p/19q codeletion, TERT promoter status, and

MGMT promoter methylation status, in TCGA database

(Fig. 3A). There were more elderly patients in the high-

risk group, and patients aged < 60 years had significantly

lower risks of mortality than did patients aged > 60 years

(P < 0.001) (Fig. 3B). Patients with KPS > 80 had a sig-

nificantly lower risk score than those with a KPS < 80

(P < 0.001) (Fig. 3G). There was no significant difference

in the distribution of gender between the high-risk and

low-risk groups (Fig. 3C).

Meanwhile, there were more high WHO grade

patients in the high-risk group and more low WHO

grade patients in the low-risk group (P < 0.001)

(Fig. 3D). For IDH mutation status, IDH wild-type

patients tended to be included in the high-risk group,

while IDH-mutant patients tended to belong to the

low-risk group (P < 0.001) (Fig. 3E). In addition, 1p/

19q non-codeletion and MGMT promoter unmethyla-

tion were more frequent in the high-risk group

(P < 0.001) (Fig. 3F,H). For TERT promoter status,

patients with TERT promoter wild type had lower risk

score than did patients with TERT promoter muta-

tions (P < 0.001) (Fig. 3I). The clinical characteristics

of glioma patients in the high- and low-risk groups in

the CGGA database and GEO data set were shown in

Figs S2 and S6.

Nomogram performance for predicting 1-, 3- and

5-year survival rates

The results of univariate and multivariate Cox analyses

showed that the risk signature can be used as an inde-

pendent prognostic factor in patients with glioma in

TCGA database (Fig. 4A,B), CGGA database

(Fig. S3A,B), and GEO data set (Fig. S5D,E). For

practical application, a nomogram was established

using the 667 glioma patients of TCGA database to

predict the 1-, 3-, and 5-year OS (Fig. 4I), and the

predictive performance was verified from 970 glioma

patients in the CGGA database (Fig. S3). The predic-

tors included risk score, age, grade, IDH mutation, and

1p/19q codeletion status. The actual probabilities of 1-,

3-, and 5-year OS in the TCGA cohort (Fig. 4C–E), the
CGGA cohort (Fig. S3C–E) and GEO data set

(Fig. S7A–C) were consistent with those predicted by

the nomogram. We used decision curve analysis to ver-

ify the diagnostic capacity of the nomogram and other

predictors (age, grade, IDH mutation status, 1p/19q

codeletion and riskscore), as shown in Fig. S9. The

results show that nomogram can be used as a predictor.

We also used Schoenfeld residual graph method to test

the proportional risk hypothesis of nomogram. The

result showed that the Schoenfeld residual chart has no

time-related change trend, which conformed to the pro-

portional hazards assumption (Fig. S10).

In addition, time-dependent ROC curves to evaluate

the predictive capability of the nomogram and other

predictors (risk score, age, grade, IDH status, and 1p/

19q codeletion) showed AUCs of 0.890, 0.942, and

0.906 for TCGA (Fig. 4F–H), respectively, and 0.788,

0.842, and 0.843, for the CGGA database (Fig. S3F–
H), respectively. In GEO data set, time-dependent

ROC curves to evaluate the predictive capability of the

nomogram and other predictors (risk score, age, grade,

Karnofsky Performance Score, MGMT promoter

methylation status, and Mini-mental State Examina-

tion) showed AUCs of 0.907, 0.887, and 0.936. These

results support that the nomogram is more reliable

and accurate predictor of prognosis.

Correlation between risk signature and immune

infiltration of glioma microenvironment

GSEA of high- and low-risk groups (Fig. 5A) showed

that in the GO signaling pathway, biological pro-

cesses, such as ECM tissue, leukocyte chemotaxis,

myeloid leukocyte migration, and cytokine activity,

were significantly related to the signature. For the

KEGG signaling pathway, immune-related pathways

and proliferation and migration-related pathways were

significantly related to the signature. Immune-related

pathways included viral protein cytokine, cytokine–
cytokine receptor interaction, complement and coagu-

lation cascade reaction, tumor necrosis factor signaling

pathway, IL17 signaling pathway, toll-like receptor

signaling pathway, chemokine signaling pathway, and

transforming growth factor β signaling pathways. Pro-

liferation and migration-related pathways included the

PI3K Akt and Wnt signaling pathways (Fig. 5B).

Given that the high- and low-risk groups were

related to immune-related pathways, we explored the
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Fig. 3. Relationship between risk signature and clinical features of glioma in TCGA database. (A) The heatmap showed the relationship

between high- and low-risk groups and clinical features of glioma patients. Risk scores of high- and low-groups of (B) age, (C) gender, (D)

WHO grade, (E) IDH mutation status, (F) 1p/19q codeletion, (G) Karnofsky performance score, (H) MGMT promoter methylation status and

(I) TERT promoter status. (B–I) were performed in triplicate, and the t test was performed. *P < 0.05, **P < 0.01, and ***P < 0.001.
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difference in immune cell infiltration between the two

groups. There were significant differences in the levels

of immune cells including T cells CD8, T cells CD4

memory resting, T cells CD4 memory activated, T cells

regulatory (Tregs), T cells gamma delta, monocytes,

macrophages M0, macrophages M1, macrophages M2,

activated mast cells, activated NK cells, and neu-

trophils showed significant between the high- and low-

risk groups (P < 0.05). Analysis of the correlation

between risk scores and immune checkpoint expression

(Table S5) showed that the number of immune check-

points, such as CD276, CD274, CTLA4, LAIR1,

LILRA5, CD70, and LAG3, was positively related to

the risk score. This indicated an immunosuppressive

microenvironment in the high-risk glioma patients.

Association between tumor mutation burden and

treatment response to anti-PD1/L1 therapy

according to the risk signature

As shown in Fig. 6A,B, we selected the top 20 signifi-

cant mutant genes for analysis. The tumor mutation

load was higher in the low-risk group than in the

high-risk group. Mutant genes accounted for 99.38%

and 89.47% of genes in the low- and high-risk groups,

respectively. Among them, the mutation frequencies of

IDH1 and ATRX mutations were 46% and 28% in

the high-risk group and were 93% and 39% in the

low-risk group, respectively. This indicated that the

high-risk group had worse prognosis. Meanwhile,

the mutation frequencies of the oncogenes PTEN and

EGFR were higher in the high-risk group than in the

low-risk group (11% and 18% vs 2% and 0%), indi-

cating more aggressive disease in the high-risk group.

We use RNA-seq data in TCGA database to calcu-

late immune infiltration, and score immune infiltration

by the expression of each immune cell characteristic

gene. Observe the difference of immune cells in differ-

ent groups and blockade with immune checkpoints,

whether there are differences between immune cells in

different groups, and the score of each immune cell,

and observe whether each sample has a response to

immune checkpoint blockade. The results showed that

the immune infiltration score of the high-risk group

Fig. 4. A nomogram based on risk score and some clinical characteristics was established. (A) Univariate and (B) multivariate Cox regression

analyses were used to verify the prognostic value of risk signature. (C–E) Calibration plots for predicting patient 1-, 3- and 5-year OS. (F–H)
ROC curves were used to evaluate the predictive ability of the nomogram and other predictors (1-, 3- and 5-year). (I) The nomogram for pre-

dicting proportion of patients with 1-, 3- and 5-year OS.
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was higher than that of the low-risk group, and more

patients in the high-risk group responded to anti-PD1/

PDL1 immunotherapy than in the low-risk group.

Analysis of the predictive value of immune-related

matrisomes risk signatures for treatment response to

anti-PD1/L1 immunotherapy showed that in TIDE,

73% and 61% of patients in the high- and low-risk

groups responded to PD1/L1 immunotherapy, respec-

tively (Fig. 6D). In immuCellAI, 49% and 32% of

patients in the high- and low-risk groups responded to

PD1/L1 immunotherapy, respectively (Fig. 6C).

Expression of the eight immune-related

matrisomes

We verified the mRNA and protein levels of the eight

immune-related matrisomes in brain tissue samples of

26 glioma patients and 18 patients with paracancerous

lesions. Quantitative PCR and immunohistochemical

analysis showed that LIF, LOX, MMP9, S100A4,

SRPX2, and TIMP1 were expressed at high levels in

glioma, whereas SLITI1 and SMOC1 were expressed

at low levels, consistent with our previous results

(Fig. 7; Fig. S4).

Discussion

Glioma is the most malignant tumor in the brain [25].

Despite several treatment options, including surgery,

targeted radiotherapy, and chemotherapy, most

patients with GBM die within 2 years [26].

Immunotherapy has made great progress in the treat-

ment of hematological diseases such as lymphoma and

leukemia [27,28]. The main treatment strategies include

immune checkpoint inhibitors, monoclonal antibodies,

and cell therapy [29]. However, immunotherapy has

unsatisfactory benefits for glioma, with patients still

having low survival rate possibly owing to the unique

immune microenvironment of gliomas [30].

GBM is characterized by remarkably unique location,

high heterogeneity, and an “immune-cold” phenotype,

promoting an immunosuppressive microenvironment [7].

Fig. 5. Functional enrichment pathway analysis and immune infiltration of risk signatures. (A) GO analysis. (B) KEGG analysis. (C) Immune

cell infiltration in high-and low-risk groups.
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There are only few tumor-infiltrating lymphocytes

(TILs) in the glioma microenvironment, and they often

show a state of exhaustion [31,32]. Further, glioma cells

can produce 2,3-dioxygenase to promote the accumula-

tion of regulatory T cells (Tregs), which can inhibit the

function of T cells [33]. Moreover, M2 macrophages

secrete proangiogenic factors and immunosuppressive

cytokines, which can promote cancer progression. The

abundance of immunosuppressive cells in the glioma

microenvironment makes it challenging to overcome

such immunosuppressive microenvironment [34,35].

Therefore, it is important to explore the components of

the glioma microenvironment.

Extracellular matrix, an important component of the

tumor microenvironment, can promote the formation

and invasion of tumor [36]. There are many immune

cells in the immune microenvironment, including innate

immune cells and adaptive immune cells, such as

macrophages and lymphocytes. The immune response

of TME is mainly related to the composition and activ-

ity of infiltrating immune cells, the cell surface expres-

sion of immune checkpoint molecules and the changes

of related matrix. Tumor-associated macrophages can

secrete different chemokines into tumor tissue. The sig-

nificant increase of immunosuppressive cells regulated

by tumor-associated macrophages, such as M2 macro-

phages, regulatory T (Treg) cells, and myeloid-derived

suppressor cells (MDSCs), thus promoting tumor

immunosuppression. In addition, some cytokines

secreted by activated immune cells, such as interleukin

(IL)-1β, can induce fibroblasts to transform into proin-

flammatory cells and further promote immunosuppres-

sion in TME. Tumor microenvironment (TME) plays a

key role in tumor immunosuppression, distant metasta-

sis, local drug resistance and targeted treatment

response. The interaction of immune and tumor cells

Fig. 6. The tumor mutation burdens and anti-PD1/L1 therapy responses of risk signature. (A) Tumor somatic mutation in high-risk group. (B)

Tumor somatic mutation in low-risk group. (C) Anti- PD1/L1 immunotherapy response of high- and low-risk groups in ImmuCellAI. (D) Anti-

PD1/L1 immunotherapy response of high- and low-risk groups in TIDE.
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Fig. 7. The expression levels of eight immune-related matrisomes in glioma verified by immunohistochemistry and qPCR. Immunohisto-

chemistry of (A) LIF, (B) LOX, (C) MMP9, (D) S100A4, (E) SRPX2, (F) TIMP1, (G) SLIT1, (H) SMOC1. (I) The mRNA expression levels of eight

immune-related matrisomes (qPCR). Scale bars:100 μm. (I) The mRNA expression levels of eight immune-related matrisomes were per-

formed in triplicate, and the t test was performed. The error bars are presented as the means � SDs. *P < 0.05, **P < 0.01, and

***P < 0.001.
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with ECM remodeling may affect tumor metastasis and

therapeutic effect [37]. The disorder of ECM is a

remarkable feature of cancer. In the process of tumor

development, tumor cells will lead to the rigidity of

ECM. The signal pathway between cancer cells and

ECM activates several important pathways related to

mechanical conduction. Considering the increasing

importance of the role of matrisomes in tumors and

their immune microenvironment, we constructed a risk

signature using eight immune-related matrisomes,

namely, LIF, LOX, MMP9, S100A4, SRPX2, SLIT1,

SMOC1, and TIMP1, to predict the survival and prog-

nosis of glioma patients.

Tumor cells and tumor associated fibroblasts can

secrete leukemia inhibitory factor (LIF) and

interleukin-6 (IL-6) to promote ECM remodeling and

provide conditions for tumor cell migration. It is

reported that LIF is related to the adhesion of extrav-

illous trophoblast (EVT) cells and promotes the adhe-

sion of EVT cells. In addition, LIF can promote

neural stem cell self-renewal in the brain [38]. It can

also mediate tumor growth factor-β to induce self-

renewal of glioma-initiating cells (GICs) and prevent

their differentiation [39]. LOX family members can act

on the cross-linking of liver structural ECM and

tumor microenvironment. Studies have shown that the

expression of LOX family members is up-regulated in

invasive and metastatic tumors, and high expression is

associated with poor survival. And they play a crucial

role in tumor proliferation, epithelial mesenchymal

transition (EMT), invasion, migration, microenviron-

ment formation and immune regulation. LOX is an

independent prognostic factor in patients with LGG,

and high LOX expression is related to poor OS and

response to targeted molecular therapy in patients with

LGG [40]. Matrix metallopeptidase 9 (MMP9) is

related to angiogenesis in tumors. MMP9 can induce

the expansion of myeloid derived suppressor cells

(MDSC) and promote tumor immune escape. The

increased expression of MMP9 is associated with a

variety of high-grade tumors, metastasis and angiogen-

esis. MMP9 inhibition reduced angiogenesis and

metastasis. Therefore, MMP9 inhibition can reduce

tumor invasion to surrounding tissues. Studies have

found that diet induced neutralization of granulocyte

macrophage colony stimulating factor (GM-CSF) in

obese mice can significantly reduce tumor angiogene-

sis, immunosuppression, and the progression of meta-

static breast cancer. Similarly, MMP9 inhibition

reduced tumor angiogenesis and significantly reduced

the growth of metastatic tumors. Therefore, the combi-

nation of GM-CSF neutralization and MMP9 inhibi-

tion can synergistically reduce angiogenesis and tumor

progression. MMP9 is associated with unfavorable

prognosis of gliomas and is positively correlated with

the grade of primary and recurrent gliomas [41]. The

increase of S100A4 level is related to the content of

matrix and immune cells. S100A4 mainly exists in the

tumor microenvironment and acts as an extracellular

factor on breast cancer cells (BCC) to recruit immune

cells to the tumor. S100A4 participates in the recruit-

ment of T lymphocytes and the release of cytokines,

thereby stimulating the metastasis of breast cancer.

S100A4 stimulates basal like BCCs to secrete cytokines

and converts monocytes into Tam like cells, thus hav-

ing tumor supporting functions. S100A4 is a new mar-

ker and regulatory factor of glioma stem cells and a

molecular chain of mesenchymal transition and stem-

ness of GBM [42]. SRPX2 plays an important role in

tumorigenesis and metastasis. SRPX2 is highly

expressed in human esophageal squamous cell carci-

noma (ESCC). Knockout of SRPX2 can significantly

inhibit the proliferation, migration and invasion of

ESCC cells and the epithelial mesenchymal transfor-

mation (EMT) process in ESCC cells. What’s more

SRPX2 can promote epithelial-mesenchymal transfor-

mation in GBM and is also related to temozolomide

resistance [43]. TIMP metallopeptidase inhibitor-1

(TIMP-1) is a member of the matrix metallopeptidase

(MMP) inhibitor family. Since MMPs play important

roles in ECM remodeling, growth factor availability,

TIMPs are involved in processes such as tumor growth

and invasion through their regulation of MMPs. More-

over, many evidences have shown that TIMP-1 is also

able to promote tumor cell proliferation and survival,

and studies have shown that TIMP-1 upregulation is

associated with a worse outcome in patients with multi-

ple tumors. High levels of TIMP1 are associated with

poor prognosis of GBM. In glioma cells, TIMP1 knock-

down can delay tumor growth [44,45]. SPARC-related

modular calcium-binding protein1 (SMOC1) maybe an

interactor of tenascin-C. Smoc1 can attenuate the

migration effect of tenascin-C on U87 glioma cells.

Kaplan–Meier curves, time-varying ROC curves, and

a nomogram were used to verify the relation between

the risk signature and clinical characteristics and prog-

nosis of glioma patients [46]. The functional enrichment

pathway showed that the risk signature was related to

tumor immunity, proliferation, and migration. Analysis

of immune infiltration showed significant differences in

the proportion of immune cells between the high- and

low-risk groups. Furthermore, some immune check-

points, such as CD274 and CTLA4, are related to the

risk signature. Therefore, it is necessary to establish pre-

dictors that can reflect the somatic mutation burdens in

the tumor microenvironment and patient prognosis.
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This will be helpful in understanding the composition of

the tumor microenvironment and predicting response to

immunotherapy.

We also found that the high-risk group was more sen-

sitive to anti-PD1/L1 immunotherapy than is the low-

risk group, possibly due to the higher expression of

immune checkpoints in the high-risk group. The eight

immune-related matrisomes identified may potentially

help in the diagnosis and immunotherapy of glioma.

Conclusions

We screened and verified eight immune-related matri-

somes and established a risk signature. The results

showed that the risk signatures were significantly related

to the prognosis of glioma patients and immune infiltra-

tion of the tumor microenvironment. Thus, they can

serve as an indicator to predict the prognosis and

immunotherapy response of glioma patients.
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Fig. S1. The Kaplan Meier (KM) curve showed the

overall survival rate of the 8 immune-related matri-

somes. (A) LIF (B) LOX (C) MMP9 (D) S100A4 (E)

SRPX2 (F) TIMP1 (G) SLIT1 (H) SMOC1.

Fig. S2. Relationship between risk signature and clini-

cal characteristics of glioma in CGGA database. (A)

The heatmap showed the relationship between high

and low risk groups and clinical features of glioma

patients. Risk scores of high and low groups of (B)

Age, (C) Gender, (D) IDH mutation status, (E) Grade,

(F) Chemotherapy, and (G) Radiotherapy. (H) Uni-

variable Cox regression of 8 immune-related matri-

somes in CGGA database. (B)-(G) were performed in

triplicate, and the t test was performed. *P < 0.05, **P

< 0.01, and ***P < 0.001.

Fig. S3. Calibration plots were used to validate the

efficacy in the CGGA cohort (C-E). ROC curves were

used to evaluate the predictive ability of the nomo-

gram and other predictors (F-H). Univariate Cox

regression analysis (A) and Multivariate Cox regres-

sion analysis (B) in CGGA database. All data was per-

formed in triplicate. The error bars are presented as

the means � SDs.

Fig. S4. Immunoreactive scores (IRS) of expression of

eight immune related matrixes in glioma and adjacent

tissues. (A) LIF. (B) LOX. (C) MMP9. (D) S100A4.

(E) SRPX2. (F) TIMP1. (G) SLIT1. (H) SMOC1. (A)-

(H) were performed in triplicate. The error bars are

presented as the means � SDs.

Fig. S5. Establish and analyze immune-related matri-

somes risk signatures for the prognosis of glioma in

CGGA database. (A) The Kaplan Meier (KM) curve

showed that the overall survival rate in the high-risk

group was worse than that in the low-risk group in

GEO database under accession number GSE150604.

(B) The risk curve and scatter plot of high and low

group in GEO database under accession number

GSE150604. (C) The AUCs of the 1-year, 3-year and

5-year survival rates in GEO database under accession

number GSE150604. (D) Univariate and (E) Multi-

variate Cox regression analyses were used to verify the

prognostic value of risk signature.

Fig. S6. Relationship between risk signature and clinical

characteristics of glioma in GEO database. (A) The heat-

map showed the relationship between high and low risk

groups and clinical features of glioma patients. Risk

scores of high and low groups of (B) Age, (C) Gender,

(D) Grade, (E) Karnofsky Performance Score, (F)

MGMT promoter methylation status, and (G) Mini-men-

tal State Examination (MMSE). (H) Univariable Cox

regression of 8 immune-related matrisomes in GEO data-

base under accession number GSE150604. (B)-(G) were

performed in triplicate, and the t test was performed. *P

< 0.05, **P < 0.01, and ***P < 0.001.

Fig. S7. Calibration plots were used to validate the

efficacy in GEO database under accession number

GSE150604 (A-C). ROC curves were used to evaluate

the predictive ability of the nomogram and other pre-

dictors (D-F). All data was performed in triplicate.

The error bars are presented as the means � SDs.

Fig. S8. The flow chart of the research route of this

paper.

Fig. S9. The decision curve analysis of nomogram and

other predictors. (A) age. (B) 1p/19q codeletion. (C)

Grade. (D) IDH mutation status. (E) Riskscore.

Fig. S10. The proportional hazard assumption of the

nomogram.

Table S1. The comparison of clinicopathological char-

acteristics between the high-risk and low-risk groups in

the TCGA cohort.

Table S2. The comparison of clinicopathological char-

acteristics between the high-risk and low-risk groups in

the CGGA cohort.

Table S3. The expression of tissues used for qRT-

PCR.

Table S4. The primers sequence used in this study.

Table S5. Correlation between risk score and expres-

sion of immune checkpoints.

Table S6. The clinical features of 26 GBM patients.

Table S7. 119 differentially expressed genes between

the low and medium infiltration group.

Table S8. 76 differentially expressed between the med-

ium and high infiltration groups.

Table S9. 36 matisomes in Lasso analysis.

Table S10. The comparison of clinicopathological

characteristics between the high-risk and low-risk

groups in the GEO database.
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