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Abstract

Summary: PyGenePlexus is a Python package that enables a user to gain insight into any gene set of interest
through a molecular interaction network informed supervised machine learning model. PyGenePlexus provides pre-
dictions of how associated every gene in the network is to the input gene set, offers interpretability by comparing
the model trained on the input gene set to models trained on thousands of known gene sets, and returns the network
connectivity of the top predicted genes.

Availability and implementation: https://pypi.org/project/geneplexus/ and https://github.com/krishnanlab/PyGenePlexus.

Contact: arjun.krishnan@cuanschutz.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Most functions, phenotypes and diseases are orchestrated by the
complex interactions of many genes. To probe these biological con-
texts, researchers routinely generate sets of genes specific to those
contexts using high-throughput, high-coverage technologies (Heller,
2002; Wang et al., 2009). Additionally, numerous publicly available
databases contain curated gene sets pertaining to various processes
(Ashburner et al., 2000; The Gene Ontology Consortium, 2019),
diseases (Pi~nero et al., 2015, 2017; Schriml et al., 2019) and traits
(Choobdar et al., 2019). However, these gene sets are often incom-
plete, noisy and provide no information on how the genes in the set
interact with each other, making it hard to fully understand the
underlying biology that connects the genes. Hence, developing com-
putational approaches that can provide insights into gene sets is a
grand challenge in biomedical research (Jiang et al., 2016; Piro and
Cunto, 2012; Yang et al., 2011).

Computational methods that incorporate information from
genome-wide, context-specific molecular networks have recently
shown state-of-the-art results in the task of prioritizing genes of
interest and predicting other novel genes that may be highly related
to the original gene set (Greene et al., 2015; Köhler et al., 2008;
Krishnan et al., 2016; Warde-Farley et al., 2010). In a previous
work, we have shown that using a supervised machine learning

(ML) model that uses the connections from a genome-wide molecu-

lar network as the features in the ML model (referred to as
GenePlexus) is a robust, data-driven way to computationally predict

how associated a new gene is to a given input gene set (Liu et al.,
2020). GenePlexus produces more accurate gene classification per-
formance compared to widely-used label propagation-based meth-

ods on diverse sets of tasks including functional, disease and trait
predictions. In this work, we present PyGenePlexus, a python pack-

age that enables users to easily run the GenePlexus method on their
input gene sets of choice on the command line (Fig. 1A).

2 Package overview

PyGenePlexus allows a user to input a set of genes and choose their
desired network and its representation. PyGenePlexus then trains a

custom ML model and returns the probability of how associated
every gene in the network is to the user-supplied gene set, along with
the network connectivity of the top predicted genes. Additionally,

the software provides an interpretation of the custom model by com-
paring it to thousands of models previously trained on gene sets

from known biological processes and diseases. The following sec-
tions describe the different parts of the package.
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2.1 Downloading or supplying data
The GenePlexus method can utilize pre-processed information from
genome-wide molecular networks and gene set collections from the
Gene Ontology (GO) and DisGeNet. These data are archived on
Zenodo (https://zenodo.org/record/6383205) and PyGenePlexus
will automatically download the necessary data given the user input
selections. Users can also supply their own networks and gene set
collections to PyGenePlexus.

2.2 Inputs

The user must first provide a set of human genes, with valid ID types
being Entrez, Symbols, Ensembl genes or Ensembl proteins
(Fig. 1B). The user then chooses which molecular network to use
and how that network should be represented in the ML model: as an
adjacency matrix, an influence matrix, or a low-dimensional embed-
ding of the network using node2vec (Grover and Leskovec, 2016;
Liu and Krishnan, 2021). Finally, negatives are considered to be any
gene annotated to at least one term in a user-chosen gene set collec-
tion (GO or DisGeNet), unless the gene is annotated to a term that
is sufficiently ‘close’ to the user’s set. The set of positive and negative
genes are then used to train a logistic regression binary classification
model.

2.3 Results

PyGenePlexus returns the following results (Fig. 1C):

1. A prediction of how associated every gene in the network is to

the input gene set.

2. The similarity of the model trained on the user-supplied gene set

to thousands of models trained on gene sets from known path-

ways, processes and diseases.

3. The network connectivity of the top predicted genes.

4. The performance of the model through k-fold cross-validation.

For more information on the pre-processed data, input choices
or results, see the package documentation.

3 Example use case

The biological insights achievable using PyGenePlexus can be illus-
trated by considering the genes associated with Bardet-Biedl syn-
drome 1 (BBS1) in the DisGeNet database (Supplementary File S1).
The example below utilizes ‘BioGRID’ as the network, ‘embeddings’
as the feature representation, and ‘DisGeNet’ as the background for
selecting negative genes. Examining the genome-wide predictions
from PyGenePlexus (Supplementary Table S1) shows that the gene
LZTFL1 (leucine zipper transcription factor like 1) at rank 2 was not
in the original list of genes associated with the syndrome, and there is
evidence that LZTFL1 has a role in BBS1 (Marion et al., 2012).
Comparison of the model trained on BBS1 genes to models trained on
known disease gene sets (Supplementary Table S2) shows that BBS1
model is highly similar to Meckel syndrome (both 8 and 1), which is a
disease closely related to BBS1 (Forsythe and Beales, 2013; Karmous-
Benailly et al., 2005). Comparison of the BBS1 model to models
trained on gene sets from known biological process shows that the
top 10 results are terms relating to polydactylism, cholesterol and
glycoside processes, and retina homeostasis, which relate to manifes-
tations of BBS1 such as blindness, obesity and having extra fingers or
toes (Forsythe and Beales, 2013) (Supplementary Table S3).

4 Discussion

PyGenePlexus is designed to be used by any researcher who wishes to
gain insight about a gene set of interest using biological networks. To
help accomplish this, we provide extensive documentation of the
package (https://pygeneplexus.readthedocs.io/en/main/). Additionally,
PyGenePlexus can be run in two ways: pythonically through the
class-based method, or through a command line interface. Interacting
directly with the Python code allows the user the ability to access all
the functionalities of the package. The command line interface
provides users who may not be familiar with Python an easier way to
run the PyGenePlexus pipeline.

The GenePlexus method is also available through a well-
documented, interactive web-server (https://www.geneplexus.net/).
PyGenePlexus offers some complementary functionalities not avail-
able on the web-server. First, PyGenePlexus allows a user to provide
their own networks and gene set collections, which can be tailored
to better fit the context in which their gene set was generated (e.g.
through the use of tissue-specific gene interaction networks).
Second, the local installation of PyGenePlexus allows a user to allo-
cate any computational resources they have at hand to repeatedly
run the pipeline, for example to predict on many gene sets or iterate
through all the network-feature combinations on a given gene
set. Thus, PyGenePlexus is a powerful, intuitive, well-documented
tool that is designed to be used by researchers with varying levels of -
programming ability, allowing users to gain network-based
biological insights into their gene sets of interest.
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Fig. 1. Running PyGenePlexus on the command line. (A) The GenePlexus model

can be run with one simple command that (B) allows the user to select a number of

different parameters and (C) obtain the results that are conveniently saved to the

specified directory
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