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Abstract
Rationale COPD has been associated repeatedly with single biomarkers of systemic inflammation,
ignoring the complexity of inflammatory pathways. This study aimed to cluster patients with COPD based
on systemic markers of inflammatory processes and to evaluate differences in their clinical characterisation
and examine how these differences may relate to altered biological pathways.
Methods 213 patients with moderate-to-severe COPD in a clinically stable state were recruited and
clinically characterised, which included a venous blood sample for analysis of serum biomarkers. Patients
were clustered based on the overall similarity in systemic levels of 57 different biomarkers. To determine
interactions among the regulated biomarkers, protein networks and biological pathways were examined for
each patient cluster.
Results Four clusters were identified: two clusters with lower biomarker levels (I and II) and two clusters
with higher biomarker levels (III and IV), with only a small number of biomarkers with similar trends in
expression. Pathway analysis indicated that three of the four clusters were enriched in Rage (receptor for
advanced glycation end-products) and Oncostatin M pathway components. Although the degree of airflow
limitation was similar, the clinical characterisation of clusters ranged from 1) better functional capacity and
health status and fewer comorbidities; 2) more underweight, osteoporosis and static hyperinflation; 3) more
metabolically deranged; and 4) older subjects with worse functional capacity and higher comorbidity load.
Conclusions These new insights may help to understand the functionally relevant inflammatory
interactions in the pathophysiology of COPD as a heterogeneous disease.

Introduction
COPD has been shown to be consistently associated with systemic inflammation [1]. Most COPD studies
have only focused on one or a limited number of markers of systemic inflammation, revealing the
heterogeneity within and between the different systemic inflammatory biomarkers [1–3]. Multiple other
inflammatory biomarkers exist; for example, acute phase proteins and the complement system [1, 4, 5],
cytokines and chemokines and their receptors [6–10], inhibitors of cytokine signalling [11], adhesion
molecules [12, 13], immunoglobulins [14], growth factors [10, 15, 16], proteins involved in tissue
remodelling [17, 18], hormones and adipokines [19, 20], coagulation [21, 22] and plasma carrier proteins
[23, 24] have all been shown to be associated with COPD. These data suggest that to better understand
the complexity of COPD on a systemic level, a variety of serum markers encompassing a wider scope of
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Lessons for clinicians
Evidence before the study multiple markers of inflammation, such as acute phase proteins and the complement
system, cytokines and chemokines and their receptors, inhibitors of cytokine signalling, adhesion molecules,
immunoglobulins, growth factors, proteins involved in tissue remodelling, hormones and adipokines,
coagulation and plasma carrier proteins have been shown to be associated with COPD. These data suggest
that to better understand the complexity of COPD on a systemic level, a variety of serum markers
encompassing the wider scope of inflammatory processes are needed. Previous studies showed that
combinations of biomarkers can improve predictive outcome of relevant cross-sectional and longitudinal
outcome. Only a limited number of studies have used large-scale proteomics to find different subgroups of
well-characterised COPD patients.
Added value of this study Biomarker-based clustering in clinically well-characterised patients with COPD
resulted in four distinct clusters. Although a similar degree of airflow limitation was seen among the clusters,
they were associated with distinct clinical phenotypes. Pathway analysis revealed components of the RAGE
(receptor for advanced glycation end products) pathway to be enriched in three clusters, suggesting a systemic
role for this pathway in COPD.
Implications of all the available evidence This study provides new insight into identifying and understanding
relevant inflammatory interactions in the heterogeneous disease COPD. Furthermore, the evidence provided by
this study may aid in generating new hypotheses into the similarities and differences observed between
subgroups of COPD patients.

inflammatory processes are needed. PINTO-PLATA and co-workers [25, 26] previously showed a pattern of
systemic biomarkers in patients with COPD that can be associated with different clinical variables known
to predict disease outcome, including the degree of airflow limitation, lung transfer factor, functional
capacity, BODE (body mass index, airflow obstruction, dyspnoea and exercise) index and exacerbation
frequency. Additionally, in studies such as COPDGene and Evaluation of Clevidipine in the Perioperative
Treatment of Hypertension Assessing Safety Events (ECLIPSE), combinations of biomarkers improved
predictive value for relevant cross-sectional and longitudinal COPD outcomes [27].

Only a limited number of studies used large-scale proteomics to find different subgroups of COPD. In a
post hoc analysis of the Treatment of Emphysema with a Selective Retinoid Agonist (TESRA) trial, 87
peripheral blood biomarkers in 396 former smokers with emphysema were analysed using multiplex
platforms and included in a cluster analysis [28]. A small subgroup of participants with increased
inflammatory biomarkers was identified, presented with less emphysema and similar lung function, but
worse quality of life compared to the other clusters.

In the present study, we hypothesised that a cluster analysis of a composite panel of biomarkers could
express the heterogeneity of different mechanistic pathways in COPD and could to some extent be
associated with the phenotypic expressions of COPD, including comorbidities/systemic phenotypes.

Therefore, we aimed to perform a cluster analysis on a broad set of biomarkers, related to inflammatory
processes previously associated with COPD. Furthermore, we aimed to compare clinical characteristics
among the identified clusters. Finally, we aimed to analyse the pathways enriched in each cluster which may
suggest alterations in biologically relevant pathways, thus contributing insight into COPD pathophysiology.

Methods
Study design
This is a secondary analysis of the baseline data from the prospective CIRO comorbidity study [29]. In
brief, patients with COPD (forced expiratory volume in 1 s <80% predicted [30]), aged 40–80 years and in
a clinically stable state were recruited during the baseline assessment of a comprehensive pulmonary
rehabilitation programme at CIRO [31]. During a 3-day assessment, patients were clinically characterised,
including multiple comorbidities, as described previously [29].

Venous blood sampling and laboratory analysis
Venous blood was sampled in the fasted state. A total of 57 biomarkers were examined (supplementary
table S1). Measurement of leptin, fetuin A (Quantikine; R&D Systems, Minneapolis, MN, USA) and
human fibrinogen (Abcam, Cambridge, UK) was performed using ELISA. Measurements of other
biomarkers were carried out on multiplex platforms (Meso Scale Discovery, Gaithersburg, MD, USA and
Myriad RBM, Austin, TX, USA). If the level of a specific biomarker was below the detection threshold,
the value was set to the threshold level. Eight biomarkers with >30% missing values were excluded from
the analysis (B-lymphocyte chemoattractant, eotaxin-1, eotaxin-3, interleukin (IL)-1α, IL-12 subunit p70,
IL-15, IL-17 and major histocompatibility complex class I chain-related protein-A.) Measurement of
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TABLE 1 Systemic levels of biomarkers of inflammation, chemoattraction, cell activation, tissue destruction and tissue repair per cluster

Cluster 1: Cluster 2: Cluster 3: Cluster 4:
lower-level
cluster I

lower-level
cluster II

higher-level
cluster I

higher-level
cluster II

Patients, n 64 64 46 39
Acute phase proteins and complement system
Complement C3, mg·mL−1 1.2±0.2 1.1±0.2 1.3±0.2 1.5±1.0
CRP, ng·mL−1 3011±2795 1773±1859 8214±8153 9725±8480
Fibrinogen, μg·mL−1 6417±2826 6870±4533 6465±2374 8879±7911
Serum amyloid A, ng·mL−1 3059±2705 1889±1403 6239±7311 10 745±7810

Cytokines and chemokines and their receptors
Eotaxin-2, pg·mL−1 1022±632 1398±940 1371±954 1337±965
IL-1β, pg·mL−1 4.8±1.2 4.3±1.3 4.2±1.1 5.0±1.6
IL-12 subunit p40, ng·mL−1 0.6±0.2 0.5±0.1 0.5±0.1 0.6±0.1
IL-23, ng·mL−1 1.4±0.4 1.2±0.3 1.2±0.3 1.4±0.3
IL-6, pg·mL−1 2.9±1.6 1.9±1.7 3.4±1.7 6.3±8.2
IL-8, pg·mL−1 12±5 13±5 14±6 14±5
IFN-γ-inducible T-cell α-chemoattractant, pg·mL−1 43±22 44±24 55±25 64±47
IFN-γ-inducible protein-10, pg·mL−1 93±41 73±39 90±30 142±98
IFN-γ, pg·mL−1 0.5±0.3 0.4±0.4 0.5±0.2 1.3±2.6
Macrophage migration inhibitory factor, ng·mL−1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1
MCP-1, pg·mL−1 511±190 469±130 606±159 513±200
MCP-4, pg·mL−1 688±235 678±207 762±210 778±455
T-cell-specific protein RANTES, ng·mL−1 19±8 23±10 31±10 25±14
Thymus and activation-regulated chemokine, pg·mL−1 524±414 636±384 784±620 770±828
IL-2 receptor-α, pg·mL−1 2427±694 2020±535 2695±927 3429±1240
TNF-R2, ng·mL−1 6.0±1.6 4.9±1.2 6.0±1.8 9.8±5.0
TNF-R1, pg·mL−1 1850±476 1531±436 1905±588 2603±919
Osteoprotegerin, pM 7.0±1.9 6.7±1.1 7.2±1.3 8.9±2.0

Inhibitors of cytokine signalling
IL-1 receptor antagonist, pg·mL−1 423±132 336±74 372±99 388±118

Adhesion molecules
sICAM-1, ng·mL−1 282±76 292±76 321±102 389±113
sVCAM-1, ng·mL−1 520±116 493±106 517±142 719±396

Immunoglobulins
IgA, mg·mL−1 2.9±1.6 2.4±1.2 3.1±1.4 3.6±2.9
IgM, mg·mL−1 2.1±1.4 1.8±1.9 1.7±1.1 2.5±4.2

Growth factors
Angiopoietin-2, ng·mL−1 3.7±1.8 3.8±1.3 4.4±1.4 5.1±1.3
BDNF, ng·mL−1 18.1±4.9 22±5 23±7 18±7
Stem cell factor, pg·mL−1 397±93 330±83 354±88 473±163
Vascular endothelial growth factor, pg·mL−1 242±111 258±122 354±159 290±170

Tissue remodelling
α1-Antitrypsim, mg·mL−1 1.9±0.3 2.0±0.4 1.9±0.4 2.3±0.6
LAP TGF-β1, ng·mL−1 9.4±2.8 12±3 13±3 10±3
MMP-3, ng·mL−1 19±14 13±7 14±7 23±16
MMP-9, ng·mL−1 147±72 130±62 153±69 159±83
Tissue inhibitor of metalloproteinases-1, ng·mL−1 150±23 163±27 195±30 199±65

Hormones and adipokines
Adiponectin, μg·mL−1 4.4±2.1 7.0±3.3 5.1±2.7 7.4±4.7
Leptin, ng·mL−1 14.8±12.3 8.2±8.8 16.8±14.6 13.7±14.8
Erythropoietin, IU·mL−1 11.3±5.2 8.4±2.6 11±7 13±4
Osteocalcin (OCN/BGLAP), ng·mL−1 117±20 127±18 116±17 135±25

Coagulation
α2-Macroglobulin (A2Macro), mg·mL−1 1.7±0.4 1.7±0.4 1.7±0.6 1.9±0.7
Factor VII, ng·mL−1 447±140 406±99 403±127 422±119
PAI-1, ng·mL−1 195±45 228±53 290±56 220±112

Plasma carrier proteins
Fetuin A, μg·mL−1 574±292 706±364 603±303 652±420
Haptoglobin, mg·mL−1 1.7±0.9 1.6±1.1 2.9±1.4 3.5±3.1
IGFBP-1, ng·mL−1 2978±2432 4368±2771 3204±2178 4504±2870
IGFBP-2, ng·mL−1 79±34 110±53 80±35 132±45

Continued

https://doi.org/10.1183/23120541.00301-2022 3

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | L.E.G.W. VANFLETEREN ET AL.



leukocytes, haemoglobin, haematocrit, total cholesterol, high-density lipoprotein (HDL), low-density
lipoprotein (LDL), triglycerides, bilirubin, creatinine and glucose were determined in the CIRO+ laboratory
(validated, custom-made arrays). Glucose, haemoglobin, total cholesterol and creatinine were not evaluated
as biomarkers, but as markers of comorbidities: hyperglycaemia, anaemia, dyslipidaemia and renal
impairment, respectively.

All markers classified in one of the categories that have shown to be previously linked with the
pathophysiology of COPD (see the introduction) were included in the analysis (table 1). Those classified
as others were included in the analysis because of availability and previous shown association with COPD,
namely ferritin [32], β2-microglobulin [33], myoglobin [34], osteonectin [35], osteopontin [36], bilirubin
[37], leukocytes [1], LDL and HDL [38].

Statistics
All statistical analyses were performed using Viscovery SOMine 7.1 (Viscovery Software; www.viscovery.
net). Self-organising maps (SOMs, also known as Kohonen maps) were used to create an ordered
representation of the data [39]. The SOM method can be viewed as a nonparametric regression technique
that converts multidimensional data spaces into lower dimensional abstractions. A SOM generates a
nonlinear representation of the data distribution and allows the user to visually identify homogenous
data groups.

Patients were ordered by their overall similarity regarding their systemic levels of biomarkers. Based on the
created SOM model, clusters were generated using the SOM-Ward cluster algorithm of Viscovery, a hybrid
algorithm that applies the classical hierarchical method of Ward on top of the SOM topology. The method
begins by defining each individual node as a separate cluster. In each step of the algorithm, two clusters
with minimal distance according to the SOM-Ward distance measure are merged. This measure heeds the
Ward distances as well as the positioning of two clusters in the map picture by defining that the distance of
nonadjacent clusters is always infinite, limiting merging to topologically neighbouring clusters. A detailed
description of SOMs can be found in the supplementary methods.

Summary variables on the systemic levels of biomarkers and clinical characteristics for the study sample
and for each cluster are presented as mean±SD for quantitative variables and percentage for discrete
variables. Viscovery automatically identified for each cluster the attributes that significantly differ from the

TABLE 1 Continued

Cluster 1: Cluster 2: Cluster 3: Cluster 4:
lower-level
cluster I

lower-level
cluster II

higher-level
cluster I

higher-level
cluster II

Vitamin D-binding protein, μg·mL−1 288±108 300±91 291±122 396±727
Other
Ferritin, ng·mL−1 180±142 151±128 190±160 183±203
β2-Microglobulin, μg·mL−1 2.1±0.5 1.8±0.3 2.1±0.4 2.9±1.0
Myoglobin, ng·mL−1 69±37 74±111 54±28 96±62
Osteonectin, ng·mL−1 1145±344 1394±230 1720±322 1318±394
Osteopontin, ng·mL−1 22±7 22±8 22±7 36±14
Bilirubin, mmol·L−1 11.6±4.9 14±6 10±5 12±3
Leukocytes, ×109 cells·L−1 6.7±1.4 6.9±1.9 8.1±1.4 8.5±2.4
LDL, mmol·L−1 2.7±0.9 3.1±0.9 3.2±1.2 2.9±1.0
HDL, mmol·L−1 1.7±0.4 1.7±0.5 1.7±0.5 1.5±0.5

Data are presented as mean±SD. Eight biomarkers were measured, but excluded from the statistical analysis, because of >30% missing values (B-
lymphocyte chemoattractant, eotaxin-1, eotaxin-3, interleukin (IL)-1α, IL-12 subunit p70, IL-15, IL-17 and major histocompatibility complex (MHC)
class I chain-related protein-A). ▪ A significantly higher level compared to the remaining three clusters (p-value <0.01); ▪ a tendency for a
significantly higher level compared to the remaining three clusters (p-value between 0.05 and 0.01); ▪ a significantly lower level compared to the
remaining three clusters (p<0.01); ▪ a tendency for a significantly lower level compared to the remaining three clusters (p-value between 0.05 and
0.01). CRP: C-reactive protein; IFN: interferon; MCP: monocyte chemotactic protein; TNF-R: tumour necrosis factor receptor; BDNF: brain-derived
neurotrophic factor; sICAM: soluble intercellular adhesion molecule; sVCAM: soluble vascular adhesion molecule; LAP TGF-β1: latency-associated
peptide of transforming growth factor-β1; MMP: matrix metalloproteinase; PAI: plasminogen activator inhibitor; IGFBP: insulin-like growth
factor-binding protein; LDL: low-density lipoprotein; HDL: high-density lipoprotein.
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average of the whole study sample of 213 patients using the integrated two-sided t-test with a confidence
of 95% and 99%.

Pathway analysis
To determine interactions between similarly regulated biomarkers, protein networks were made for each
cluster using String [40], including the serum markers for which an official gene symbol could be
identified (supplementary table S1). The minimum required interaction score was set to high confidence
(0.7) and all possible active interactions were allowed. The edges of the network display predicted
molecular modes of action and unconnected nodes were not shown. Gene ontology of biological processes
as well as pathway enrichment were analysed in each cluster (supplementary tables S2–S9) [40, 41].

Results
General patient characteristics
213 out of 255 patients admitted to CIRO were eligible for the study. These patients had moderate to
very-severe COPD, with a substantial smoking history, moderately impaired diffusion capacity, increased
static lung volumes and multimorbidity (table 2).

Clustering based on the systemic levels of the biomarkers
57 serum biomarkers were used to cluster the 213 patients with COPD, which resulted in four clusters with
distinct biomarker profiles. Table 1 describes how these clusters are constituted and which biomarkers have
significantly higher or lower levels compared to the mean values of the whole sample. 15 biomarkers were
not significantly different between the four clusters at the 99% confidence level.

In cluster 1 (“lower-level cluster I”), the levels of 17 biomarkers were significantly lower compared to the
mean values of the whole sample, while two biomarkers were significantly higher. In cluster 2
(“lower-level cluster II”), the systemic levels of 19 biomarkers were significantly lower compared to the
mean values of the whole sample, while three biomarkers were significantly higher. Only three biomarkers
were significantly lower in both clusters. In cluster 3 (“higher-level cluster I”), the systemic levels of three
biomarkers were significantly lower compared to the mean values of the whole sample, while
12 biomarkers were significantly higher. In cluster 4 (“higher-level cluster II”), the systemic level of only
one biomarker was significantly lower compared to the mean values of the whole sample, while the levels
of 27 biomarkers were significantly higher. Only four biomarkers were found to be significantly higher in
both clusters 3 and 4.

TABLE 2 General characteristics of study subjects

Subjects, n 213
Age, years 63.6±7.0
Male 59
BMI, kg·m−2 26.2±5.1
FFMI, kg·m−2 17.0±2.4
mMRC dyspnoea grade 2.1±1.1
Current smoker 28
Smoking pack-years 46±26
Long-term oxygen therapy 17
FEV1, L 1.40±0.54
FEV1, % predicted 51.2±16.9
FEV1/FVC 0.40±0.11
ITGV, % predicted 148±33
DLCO, % predicted 56±17
6MWD, m 470±106
SGRQ, total score 51.3±17.5
Updated BODE score 2.9±2.5
Framingham 10-year risk, % 9.4±6.7

Data are presented as mean±SD or %, unless otherwise stated. BMI: body mass index; FFMI: fat-free mass index;
mMRC: modified Medical Research Council; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity;
ITGV: intrathoracic gas volume; DLCO: diffusion capacity of the lung for carbon monoxide; 6MWD: 6-min walk
distance; SGRQ: St George’s Respiratory Questionnaire; BODE: body mass index, obstruction, dyspnoea, exercise
capacity index.
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Clinical characteristics and objectively identified comorbidities related to the different clusters
Tables 3 and 4 summarise the clinical characteristics and the comorbidities of the four clusters,
respectively. Spirometry results were similar among different clusters as were the mean pack years, mean
score on the modified Medical Research Council (mMRC) dyspnoea scale and the Charlson Comorbidity
Index. Additionally, no difference in exacerbations in the past 12 months was observed among clusters.

While patients in cluster 1 had a similar level of airway obstruction and diffusion capacity, these patients
exhibited less static hyperinflation, better mouth pressures, a higher peak work rate, a longer 6-min walk
distance and were less often current smokers. Subjects in cluster 1 had lower prevalence of low muscle
mass and a better bone mineral density compared to the whole study population. In addition, subjects had

TABLE 3 The clinical characteristics of each cluster

Cluster 1:
lower-level
cluster I

Cluster 2:
lower-level
cluster II

Cluster 3:
higher-level
cluster I

Cluster 4:
higher-level
cluster II

Female 34 47 48 33
Age, years 65±7 61±6 62±6 69±6
Lung function
FEV1, L 1.5±0.5 1.4±0.5 1.4±0.5 1.3±0.6
FEV1, % predicted 54±16 51±19 50±15 48±16
FEV1/FVC, % 41±12 40±11 40±11 38±9
DLCO, % predicted 60±17 54±16 58±17 48±14
ITGV, % predicted 139±32 156±35 147±34 152±29
RV, % predicted 153±45 175±54 162±44 165±39
TLC, % predicted 116±17 123±16 119±17 116±16
PaCO2

, kPa 5.3±0.6 5.2±0.5 5.5±0.7 5.4±0.6
PaO2

, kPa 9.6±1.1 9.6±1.2 9.3±0.9 9.2±0.9
SaO2

, % 95.1±1.9 95.2±1.7 94.7±2.0 94.4±1.8
PImax, % predicted 85±24 77±25 78±22 75±18
PEmax, % predicted 64±20 62±22 60±17 56±17

COPD-specific characteristics
mMRC dyspnoea grade 2.0±1.1 2.0±1.1 2.1±0.9 2.4±1.3
Long-term oxygen therapy 11 14 17 31
Smoking pack-years 44±21 47±28 48±30 47±23
Current smoker 14 31 37 36
Hospital admissions for COPD in past 12 months, n 0.51±1.17 0.42±1.17 0.49±0.84 0.69±1.28
Steroid/antibiotic courses for COPD in past 12 months, n 1.53±1.95 1.42±1.61 1.01±1.32 1.92±1.92
Exacerbations in past 12 months, n 2.05±2.60 1.85±2.41 1.54±1.81 2.55±2.18
GOLD group A/B/C/D 19/30/20/30 18/26/15/40 11/40/7/40 15/18/15/51

Physical fitness
6MWD, m 493±91 497±101 461±91 402±126
Peak work rate, W 86±30 76±23 75±27 58±26
Peak work rate, % predicted 63±25 62±25 61±29 47±22
Constant work-rate test, s 409±264 408±329 296±191 234±187

Health status
SGRQ symptoms domain 54±19 53±21 57±18 57±25
SGRQ activity domain 65±22 68±22 73±17 69±27
SGRQ impact domain 35±19 38±18 47±16 43±26
SGRQ total score 48±19 50±17 57±12 53±23

Prognostic indices
Updated BODE index 2.2±1.8 2.7±2.3 2.6±2.0 4.6±3.7
Framingham risk score 9.7±6.1 7.5±5.9 9.3±7.2 12.3±7.2

Data are presented as mean±SD or %, unless otherwise stated. ▪ A significantly higher level compared to the remaining three clusters (p<0.01); ▪ a
tendency for a significantly higher level compared to the remaining three clusters (p-value between 0.05 and 0.01); ▪ a significantly lower level
compared to the remaining three clusters (p<0.01); ▪ a tendency for a significantly lower level compared to the remaining three clusters (p-value
between 0.05 and 0.01). FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; DLCO: diffusion capacity of the lung for carbon monoxide;
ITGV: intrathoracic gas volume; RV: residual volume; TLC: total lung capacity; PaCO2

: arterial carbon dioxide partial pressure; PaO2
: arterial oxygen

partial pressure; SaO2
: arterial haemoglobin oxygen saturation; PImax: maximal inspiratory mouth pressure; PEmax: maximal expiratory mouth

pressure; mMRC: modified Medical Research Council; GOLD: Global Initiative for Chronic Obstructive Lung Disease; 6MWD: 6-min walk distance;
SGRQ: St George’s Respiratory Questionnaire; BODE: body mass index, obstruction, dyspnoea, exercise capacity index.

https://doi.org/10.1183/23120541.00301-2022 6

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | L.E.G.W. VANFLETEREN ET AL.



better renal function, a higher body mass index (BMI), lower blood cholesterol and lower St George’s
Respiratory Questionnaire (SGRQ) levels.

Cluster 2 had a lower mean age, BMI and fat-free mass index and were more likely to be underweight. In
contrast to cluster 1, cluster 2 had more hyperinflation. Bone mineral density was worse, with a
corresponding higher prevalence of osteoporosis. Conversely, atherosclerosis and dyslipidaemia were less
prevalent, with a lower Framingham cardiovascular risk score.

Cluster 3 had a higher SGRQ score and higher scores on the depression score of the Hospital Anxiety and
Depression Score. Cluster 3 had a higher BMI, triglycerides and cholesterol, but worse renal function and
more anaemia.

Cluster 4 had the highest mean age. The mean score on the updated BODE index and for the Framingham
risk score within 10 years were increased in cluster 4, suggesting an overall more severe disease status.
Although the degree of airflow obstruction was similar compared to the other clusters, diffusion capacity
was lower. Exercise capacity was significantly less compared to the whole study population and there was
a higher mMRC, a lower haemoglobin oxygen saturation and a higher proportion of patients on long-term
oxygen therapy. Cluster 4 had a higher number of comorbidities, including a significantly higher degree of

TABLE 4 Comorbidities per biomarker-based cluster

Cluster 1: lower-level
cluster I

Cluster 2: lower-level
cluster II

Cluster 3: higher-level
cluster I

Cluster 4: higher-level
cluster II

Comorbidities, n 3.5±1.5 3.4±1.5 3.7±1.7 4.3±1.8
Charlson Comorbidity Index 1.6±0.7 1.5±0.9 1.6±0.8 1.8±1.1
eGFR, mL·min−1 78±21 83±23 87±25 66±20
Creatinine, μmol·L−1 93±20 78±15 84±14 99±32
Renal impairment 23 14 15 41
Haemoglobin, mmol·L−1 9.0±0.6 9.1±0.7 9.1±0.9 8.7±0.7
Haematocrit 44±4 44±4 44±5 42±4
Anaemia 2 2 11 10
Systolic blood pressure, mmHg 140±17 136±25 138±15 145±28
Diastolic blood pressure, mmHg 83±8 82±11 83±9 83±12
Hypertension 45 44 48 62
BMI, kg·m−2 27.4±4.8 24.2±4.9 28.1±5.4 25.2±4.2
Obese 28 16 33 18
Underweight 9 25 4 15
FFMI, kg·m−2 17.6±2.0 16.1±2.5 17.5±2.8 16.9±2.0
Muscle wasting 14 50 20 26
Glucose, mmol·L−1 5.8±1.0 5.7±0.8 5.9±1.0 5.6±0.9
Hyperglycaemia 56 55 61 44
Triglycerides, mmol·L−1 1.6±0.7 1.3±0.5 2.0±1.3 1.4±0.7
Cholesterol, mmol·L−1 5.0±1.0 5.4±1.0 5.8±1.5 5.1±1.1
Cholesterol/HDL ratio 3.2±1.0 3.3±0.9 3.8±1.3 3.6±1.1
Dyslipidaemia 41 22 52 33
Thrombocytes, ×109 cells·L−1 235±57 253±65 334±138 260±72
HADS Anxiety 5.5±3. 6.7±4.3 7.0±3.8 6.0±3.7
Anxiety 16 23 25 22
HADS Depression 5.1±3.5 5.5±3.9 6.7±3.3 5.7±3.2
Depression 16 15 20 14
c-IMT, mm 1.0±0.2 0.9±0.2 1.0±0.2 1.0±0.2
Atherosclerosis 61 35 57 62
Cardiac Infarction Injury Score 10.4±7.2 11.2±5.4 11.3±5.7 13.3±7.0
T-score total body −0.6±1.1 −1.4±1.3 −0.8±1.2 −1.4±1.5
Osteoporosis 22 41 22 41

Data are presented as mean±SD or %, unless otherwise stated. ▪ A significantly higher level compared to the remaining three clusters (p<0.01); ▪ a
tendency for a significantly higher level compared to the remaining three clusters (p-value between 0.05 and 0.01); ▪ a significantly lower level
compared to the remaining three clusters (p<0.01); ▪ a tendency for a significantly lower level compared to the remaining three clusters (p-value
between 0.05 and 0.01). eGFR: estimated glomerular filtration rate; BMI: body mass index; FFMI: fat-free mass index; HDL: high-density lipoprotein;
HADS: Hospital Anxiety and Depression Score; c-IMT: carotid intima-media thickness.
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renal impairment, lower bone mineral density than in other clusters and a significantly increased
Framingham cardiovascular risk and a higher cardiac infarction injury score.

A pathway analysis based on the identified clusters of biomarkers
Protein levels that were altered in the same direction (significantly upregulated or downregulated) per
cluster were used to generate networks and predict enriched pathways (figure 1). In all clusters there were

Cluster 1 Cluster 2

Cluster 3 Cluster 4

Positive interaction

Negative interaction

Unspecified interaction

FIGURE 1 Network interactions of predicted upregulated or downregulated proteins by cluster. Proteins that were similarly and significantly
upregulated (clusters 3 and 4) or downregulated (clusters 1 and 2) were entered into String [35], all possible interaction sources were allowed and
subjected to a minimum required high-confidence interaction score (0.7). Disconnected nodes are not shown. All clusters had a p-value of
⩾3.53×10−11. The mode of interaction is depicted as an arrow (positive interaction), inhibition (negative interaction) or ball (unspecified
interaction). Gene names, with corresponding biomarker names in parenthesis, used in this figure: ADIPOQ (adiponectin), BDNF (brain-derived
neurotrophic factor), B2M (β2-microglobulin), C3 (complement C3), CCL2 (monocyte chemotactic protein-1), CCL5 (RANTES), CRP (C-reactive
protein), CXCL10 (interferon (IFN)-γ-induced protein-10), CXCL11 (IFN-γ-inducible T-cell α chemoattractant), EPO (erythropoietin), HP (haptoglobin),
ICAM1 (intercellular adhesion molecule-1), IFNG (IFN-γ), IL1RN (interleukin (IL)-1ra), IL2RA (IL-2 receptor-α), IL6 (IL-6), IL12RB1 (IL12p40), BGLAP
(osteocalcin), KITLG (stem cell factor), LEP (leptin), MMP3 (matrix metalloproteinase-3), SAA1 (serum amyloid A), SERPINA1 (α1-antitrypsin),
SERPINE1 (plasminogen activator inhibitor-1), SPARC (osteonectin), TGFB1 (latency-associated peptide of transforming growth factor-β1), TIMP1
(tissue inhibitor of metalloproteinases-1), TNFRSF11B (osteoprotegerin), TNFRSF1A (tumour necrosis factor receptor (TNFR)I), TNFRSF1B (TNFR2),
VEGFA (vascular endothelial growth factor), VCAM1 (vascular cell adhesion molecule-1).
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significant degrees of protein–protein interactions (p<3.5×10−11; figure 1). Interestingly, when we enriched
for pathways associated with these protein networks, the most significant were common between clusters 1, 3
and 4, namely the Oncostatin M (OSM) and receptor for advanced glycation end products (RAGE) pathways
(supplementary tables S2, S4 and S5). In cluster 2, cytokine–cytokine receptor interactions and IL-1 regulation
of extracellular matrix were the two most significantly enriched pathways (supplementary table S3).

Discussion
This is the first study to cluster a sample of well-characterised patients with COPD based on a set of
biomarkers. This resulted in four clusters with distinct biomarker patterns. Although the clusters had a
similar degree of airflow limitation, distinct patient profiles could, to a certain extent, be attributed to the
different biomarker clusters. Additionally, those clusters appeared connected and enriched for numerous
signalling pathways.

A large heterogeneity in the levels of the different biomarkers was observed in this study, which
corroborates previous findings [3, 25–27]. The current clustering resulted in two lower-level clusters (1 and 2)
and two higher-level clusters (3 and 4). Interestingly, only three biomarkers in clusters 1 and 2 and only
four biomarkers in clusters 3 and 4 overlapped in the same direction. In contrast, four biomarkers in the
low-level and three in the high-level clusters exhibited opposing expression patterns. These findings
illustrate that different biological processes can be involved in patients with a high inflammatory state, as
well as in patients with a low inflammatory state. 15 biomarkers were not significantly altered in any of the
four clusters; however, multiple biomarkers have been found to be altered in COPD and/or shown to play a
role in the pathogenesis, and could thus point to common pathogenic mechanisms. (e.g. α2-macroglobulin [42],
factor VII [21], ferritin [32, 43, 44], fetuin A [23], IL-1β [6], IL-8 [1], monocyte chemotactic protein-4 [7],
macrophage migration inhibitory factor [8], matrix metalloproteinase-9 [17], thymus and activation-regulated
chemokine [9] and vitamin D-binding protein [24]).

The degree of airflow limitation was comparable between clusters, indicating the limited value of the
degree of airflow limitation in predicting systemic levels of the biomarkers and vice versa. Interestingly,
there were some significant differences in clinical characteristics between the clusters. Overall, the
lower-level biomarker clusters have less disease manifestations compared to the high-level clusters. This is
in line with PINTO-PLATA et al. [26], who reported that patients in the highest quartile of a broader set of
inflammatory biomarkers were more clinically compromised and had higher mortality. Cluster 1 could be
considered as metabolically healthier with fewer comorbidities compared to the whole study population.
Moreover, this cluster showed one of the smallest protein interaction networks, suggesting limited systemic
alterations. Clinically, cluster 2 relates in some way to the cachectic or implosive cluster or phenotype [29].
This finding might be in contrast with previous data suggesting that cachectic patients have increased
levels of systemic inflammation [45], as the majority of the systemic biomarkers were decreased.

The clear differences in body composition between clusters 1 and 2 may help to explain some biomarker
differences between the groups, such as the low leptin, high adiponectin and brain-derived neurotrophic
factor (BDNF) levels in cluster 2. The higher levels of the selective competitive inhibitor of IL-1, IL-1Ra,
in cluster 1 confirms a robust low inflammatory status. Indeed, the lack of upregulation of IL-1Ra in
cluster 2 may be underlying the implosive phenotype rather than upregulation of other pro-inflammatory
mediators as seen in the high clusters. Conversely, cluster 2 exhibited decreased levels of IL-23, which is
involved in the proliferation and maintenance of T-helper 17 cells and, thus, proper mucosal defences via,
for example, the induction and production of secretory immunoglobulin (sIg)A. Importantly, sIgA levels
were also lower in cluster 2, which could indicate a specific defect in mucosal immunity [46].

Cluster 4 is clearly the most inflamed cluster in terms of the number of significantly altered biomarkers (27
out of 57 increased). Perhaps this high level of inflammation is unsurprising due to the clinical
characteristics of this cluster (table 2), as age, smoking and cardiovascular risk have indeed been
repeatedly associated with increased inflammatory status [1].

Cluster 3, the other “high-level” biomarker cluster is clearly different from cluster 4 in terms of number
(12 versus 27) and type of increased markers. On the clinical level, this cluster was mainly characterised
by metabolic dysregulation. It is likely that the biomarker pattern in this cluster is partly driven by
increased fat mass. The adipokine leptin was slightly increased in this cluster. The adipokines BDNF and
insulin-like growth factor-binding protein 2, which have been implicated in the pathogenesis of metabolic
syndrome [47], were bidirectionally different between clusters 3 and 4. Increased levels of IL12p40 have
been found in the serum of obese adolescents compared to normal-weight controls [48]. Additionally,
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plasminogen activator inhibitor (PAI)-1, a major inhibitor of fibrinolysis, which was elevated in cluster 3,
but not in cluster 4, has been shown to significantly correlate with components of metabolic syndrome [22].

Through examination of protein–protein interactions and pathway analysis we can begin to shed light on
the underlying molecular mechanisms that may be partially responsible for aspects of disease in the
different clusters. Interestingly, we found that three out of the four clusters were enriched in the OSM and
RAGE pathways. Ample evidence has already implicated the RAGE pathway in the pathogenesis of
COPD. This evidence includes protection from experimental emphysema in RAGE-deficient mice and the
identification of the AGER, the gene encoding RAGE protein, as a susceptibility gene in genome-wide
association studies [49]. Due to the direction of alterations of key molecules associated with the RAGE
pathway (supplementary tables S2, S4 and S5), we would predict that the RAGE pathway is downregulated
in cluster 1 and upregulated in clusters 3 and 4, which fits the role of RAGE as a major contributor to
inflammation and the data obtained in animal studies. Additionally, RAGE-deficient mice were not prone
to weight gain, even when fed a high-fat diet [50]. We see that our COPD patients in cluster 1 show
clinical characteristics of lower cholesterol and normal body weight, suggesting that these clinical
manifestations may be due to systemic downregulation of the RAGE pathway. Conversely, we find that
where the RAGE pathway is predicted to be increased, significantly higher body weight and higher
cholesterol are observed (cluster 3). Furthermore, an increase in RAGE is reported to be associated with
platelet activation and, in agreement, we find a significant increase in thrombocytes and PAI-1 in cluster 3
and a significant decrease in cluster 1 [51]. The enrichment of the RAGE pathway in cluster 4 only
partially overlaps with cluster 3, with additional effects on inflammatory mediators such as IL-6 and
soluble vascular adhesion molecule 1. Important to note is that our dataset included mostly inflammatory
mediators downstream of RAGE, whereas ligands activating the pathway are underrepresented. It is likely
that levels of the various ligands identified for RAGE also differ between clusters, which could be a reason
for the observed discriminatory downstream effects between clusters 3 and 4 in particular. As the RAGE
signalling pathway is furthermore inhibited by soluble RAGE (of which levels are in general lower in
COPD patients), this is yet another unexplored mechanism through which the pathway could be
differentially regulated between clusters and contributing to the pathogenesis and clinical characteristics
between patients and clusters. Due to the prevalence of RAGE components and enrichment of the
pathway, it would be interesting to determine these additional aspects, as well as genetic variations of
AGER in our identified COPD clusters in future studies.

OSM pathways were highly significant in the same direction and in the same clusters as RAGE. This is
not entirely surprising, since a number of biomarkers are indeed shared between both pathways
(supplementary tables S1, S2 and S4). OSM is a pleiotropic cytokine of the IL-6 family of cytokines,
which like RAGE, contains multiple positive feedback loops to enhance its pro-inflammatory actions.
Moreover, it has previously been shown to be increased in COPD and is involved in airway remodelling
[52, 53]. Interestingly, it was also demonstrated using RAGE-deficient mice that RAGE mediates
hypomethylation in the promoter of OSM and that the resulting elevated expression of OSM is likely to
contribute to the observed effects of RAGE in cigarette-induced airway inflammation and emphysema
development [54].

Previously, a subanalysis of the TESRA study was the first to use proteomics to subtype stable ex-smoking
COPD patients [28]. The authors included 87 biomarkers measured in 396 COPD patients and identified
three different clusters. They report that 18 biomarkers were different between the three clusters, but do not
report the distribution of markers among the three clusters. Similar to our results, BDNF, fibrinogen,
osteoprotegerin, stem cell factor and vascular endothelial growth factor had discriminating power in
differentiating the clusters. The authors specifically pointed out a smaller cluster of participants with
increased inflammatory biomarkers, impaired quality of life yet less emphysema, which could be
reminiscent of cluster 4 in the current study, as this cluster was also characterised by increased markers of
α1-antitrypsin, C-reactive protein, haptoglobin and tumour necrosis factor receptor I. Although diffusion
capacity was lower in cluster 4, which commonly relates to the degree of emphysema. In TESRA, subjects
were characterised with less detail; for example, no information on comorbidities and functional
performance is provided. Most COPD patients have multiple chronic conditions which are strongly
interconnected. Previously, five different comorbidity clusters have been identified in COPD patients of the
CIROCO cohort [29]. The present study highlights the complexity of the pathophysiology, as the clinical
characteristics of patients in the four observed clusters of circulating biomarkers did not seem to
correspond well with the previously described comorbidity clusters [29]. This probably reflects the
heterogeneity of patients with COPD, where different clinical traits and diseases coexist to varying degrees
within the same individual, and there is an inability to delineate mutually exclusive clusters of
(mechanisms of) disease(s) [55].
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The current results are hypothesis-generating rather than definitive and there are several limitations to the
current study. Indeed, our findings need to be corroborated, using additional cohorts of individuals to
determine the robustness of our clustering approach. We have thus far only examined patients with
moderate-to-severe COPD, but not those in early stages of the disease. Including early-stage individuals
and following them over time might gain additional insight into systemic changes in inflammation and
how they may mirror the development of clinical characteristics. Although a large set of biomarkers was
used, this still does not reflect the complexity of biological interactions in the human body. Moreover,
there is considerable debate over how reflective systemic inflammation is of local inflammation in the
airways. However, using a relatively noninvasive sampling method, such as whole-blood sampling,
numerous biomarkers can be examined relatively easily without causing unnecessary stress to the patient.
Recognising the fact that the discussion is valid only for the biomarkers we have explored, our findings
may help to shed light on the underlying pathogenic processes involved in COPD.

Biomarker-based clustering in patients with COPD resulted in four clusters, illustrating the heterogeneity of
biomarkers in patients with COPD. A dichotomy in clusters was seen based on mainly lower/higher levels
of biomarkers, which in turn resulted in a unique biomarker composition for each cluster. Although the
degree of airflow limitation was similar among the clusters, differences in clinical characterisation were seen.
Pathway analysis revealed components of the RAGE pathway to be enriched in three of the four clusters,
suggesting a systemic role for this pathway in COPD. These new insights may help to understand the
functionally relevant inflammatory interactions in the pathophysiology of COPD as a heterogeneous disease.

Provenance: Submitted article, peer reviewed.

Author contributions: L.E.G.W. Vanfleteren, E.F.M. Wouters and M.A. Spruit contributed to conception and design;
L.E.G.W. Vanfleteren, J. Weidner, F.M.E. Franssen, S. Gaffron, N.L. Reynaert and M.A. Spruit contributed to
acquisition, analysis or interpretation of the data; L.E.G.W. Vanfleteren, J. Weidner and M.A. Spruit drafted the
manuscript; all authors critically revised the manuscript, gave final approval, and agree to be accountable for all
aspects of work ensuring integrity and accuracy.

Conflict of interest: L.E.G.W. Vanfleteren has received grants and personal fees from AstraZeneca, and personal fees
from Novartis, GSK, Resmed, Boehringer and Verona Pharma; and is an associate editor of this journal. J. Weidner
is an employee of AstraZeneca. F.M.E. Franssen has received grants and personal fees from AstraZeneca, and
personal fees from Boehringer Ingelheim, Chiesi, GSK and Novartis. S. Gaffron has nothing to disclose. N.L. Reynaert
has nothing to disclose. E.F.M. Wouters has nothing to disclose. M.A. Spruit received a grant for the present study
from AstraZeneca, paid to Ciro.

Support statement: This study was supported by AstraZeneca. Funding information for this article has been
deposited with the Crossref Funder Registry.

References
1 Agusti A, Edwards LD, Rennard SI, et al. Persistent systemic inflammation is associated with poor clinical

outcomes in COPD: a novel phenotype. PLoS One 2012; 7: e37483.
2 Núñez B, Sauleda J, Garcia-Aymerich J, et al. Lack of correlation between pulmonary and systemic

inflammation markers in patients with chronic obstructive pulmonary disease: a simultaneous,
two-compartmental analysis. Arch Bronconeumol 2016; 52: 361–367.

3 Arellano-Orden E, Calero-Acuña C, Cordero JA, et al. Specific networks of plasma acute phase reactants are
associated with the severity of chronic obstructive pulmonary disease: a case-control study. Int J Med Sci
2017; 14: 67–74.

4 Westwood JP, Mackay AJ, Donaldson G, et al. The role of complement activation in COPD exacerbation
recovery. ERJ Open Res 2016; 2: 00027-2016.

5 Zhao D, Abbasi A, Rossiter HB, et al. Serum amyloid A in stable COPD patients is associated with the
frequent exacerbator phenotype. Int J Chron Obstruct Pulmon Dis 2020; 15: 2379–2388.

6 Pauwels NS, Bracke KR, Dupont LL, et al. Role of IL-1α and the Nlrp3/caspase-1/IL-1β axis in cigarette
smoke-induced pulmonary inflammation and COPD. Eur Respir J 2011; 38: 1019–1028.

7 Eagan TM, Ueland T, Wagner PD, et al. Systemic inflammatory markers in COPD: results from the Bergen
COPD Cohort Study. Eur Respir J 2010; 35: 540–548.

8 Husebø GR, Bakke PS, Grønseth R, et al. Macrophage migration inhibitory factor, a role in COPD. Am J Physiol
Lung Cell Mol Physiol 2016; 311: L1–L7.

https://doi.org/10.1183/23120541.00301-2022 11

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | L.E.G.W. VANFLETEREN ET AL.

https://www.crossref.org/services/funder-registry/


9 Machida H, Inoue S, Shibata Y, et al. Thymus and activation-regulated chemokine (TARC/CCL17) predicts
decline of pulmonary function in patients with chronic obstructive pulmonary disease. Allergol Int 2021; 70:
81–88.

10 Bade G, Khan MA, Srivastava AK, et al. Serum cytokine profiling and enrichment analysis reveal the
involvement of immunological and inflammatory pathways in stable patients with chronic obstructive
pulmonary disease. Int J Chron Obstruct Pulmon Dis 2014; 9: 759–773.

11 Sapey E, Ahmad A, Bayley D, et al. Imbalances between interleukin-1 and tumor necrosis factor agonists and
antagonists in stable COPD. J Clin Immunol 2009; 29: 508–516.

12 Blidberg K, Palmberg L, James A, et al. Adhesion molecules in subjects with COPD and healthy non-smokers:
a cross sectional parallel group study. Respir Res 2013; 14: 47.

13 Aaron CP, Schwartz JE, Bielinski SJ, et al. Intercellular adhesion molecule 1 and progression of percent
emphysema: the MESA Lung Study. Respir Med 2015; 109: 255–264.

14 Ladjemi MZ, Lecocq M, Weynand B, et al. Increased IgA production by B-cells in COPD via lung epithelial
interleukin-6 and TACI pathways. Eur Respir J 2015; 45: 980–993.

15 Stoll P, Wuertemberger U, Bratke K, et al. Stage-dependent association of BDNF and TGF-β1 with lung
function in stable COPD. Respir Res 2012; 13: 116.

16 Kranenburg AR, de Boer WI, Alagappan VK, et al. Enhanced bronchial expression of vascular endothelial
growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease. Thorax
2005; 60: 106–113.

17 Wells JM, Parker MM, Oster RA, et al. Elevated circulating MMP-9 is linked to increased COPD exacerbation
risk in SPIROMICS and COPDGene. JCI Insight 2018; 3: e123614.

18 Atkinson JJ, Lutey BA, Suzuki Y, et al. The role of matrix metalloproteinase-9 in cigarette smoke-induced
emphysema. Am J Respir Crit Care Med 2011; 183: 876–884.

19 Carolan BJ, Kim YI, Williams AA, et al. The association of adiponectin with computed tomography
phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 188: 561–566.

20 Oh YM, Jeong BH, Woo SY, et al. Association of plasma adipokines with chronic obstructive pulmonary
disease severity and progression. Ann Am Thorac Soc 2015; 12: 1005–1012.

21 Undas A, Jankowski M, Kaczmarek P, et al. Thrombin generation in chronic obstructive pulmonary disease:
dependence on plasma factor composition. Thromb Res 2011; 128: e24–e28.

22 Waschki B, Watz H, Holz O, et al. Plasminogen activator inhibitor-1 is elevated in patients with COPD
independent of metabolic and cardiovascular function. Int J Chron Obstruct Pulmon Dis 2017; 12: 981–987.

23 Minas M, Mystridou P, Georgoulias P, et al. Fetuin-A is associated with disease severity and exacerbation
frequency in patients with COPD. COPD 2013; 10: 28–34.

24 Gao J, Törölä T, Li CX, et al. Sputum vitamin D binding protein (VDBP) GC1S/1S genotype predicts airway
obstruction: a prospective study in smokers with COPD. Int J Chron Obstruct Pulmon Dis 2020; 15: 1049–1059.

25 Pinto-Plata V, Toso J, Lee K, et al. Profiling serum biomarkers in patients with COPD: associations with
clinical parameters. Thorax 2007; 62: 595–601.

26 Pinto-Plata V, Casanova C, Müllerova H, et al. Inflammatory and repair serum biomarker pattern: association
to clinical outcomes in COPD. Respir Res 2012; 13: 71.

27 Zemans RL, Jacobson S, Keene J, et al. Multiple biomarkers predict disease severity, progression and
mortality in COPD. Respir Res 2017; 18: 117.

28 Zarei S, Mirtar A, Morrow JD, et al. Subtyping chronic obstructive pulmonary disease using peripheral blood
proteomics. Chronic Obstr Pulm Dis 2017; 4: 97–108.

29 Vanfleteren LE, Spruit MA, Groenen M, et al. Clusters of comorbidities based on validated objective
measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J
Respir Crit Care Med 2013; 187: 728–735.

30 Vestbo J, Hurd SS, Agustí AG, et al. Global strategy for the diagnosis, management and prevention of chronic
obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013; 187: 347–365.

31 Spruit MA, Vanderhoven-Augustin I, Janssen PP, et al. Integration of pulmonary rehabilitation in COPD.
Lancet 2008; 371: 12–13.

32 Cloonan SM, Mumby S, Adcock IM, et al. The ‘iron’-y of iron overload and iron deficiency in chronic
obstructive pulmonary disease. Am J Respir Crit Care Med 2017; 196: 1103–1112.

33 Gao N, Wang Y, Zheng CM, et al. β2-Microglobulin participates in development of lung emphysema by
inducing lung epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol 2017; 312: L669–L677.

34 Loza MJ, Watt R, Baribaud F, et al. Systemic inflammatory profile and response to anti-tumor necrosis factor
therapy in chronic obstructive pulmonary disease. Respir Res 2012; 13: 12.

35 Delgado-Eckert E, James A, Meier-Girard D, et al. Lung function fluctuation patterns unveil asthma and COPD
phenotypes unrelated to type 2 inflammation. J Allergy Clin Immunol 2021; 148: 407–419.

36 Papaporfyriou A, Loukides S, Kostikas K, et al. Increased levels of osteopontin in sputum supernatant in
patients with COPD. Chest 2014; 146: 951–958.

https://doi.org/10.1183/23120541.00301-2022 12

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | L.E.G.W. VANFLETEREN ET AL.



37 Apperley S, Park HY, Holmes DT, et al. Serum bilirubin and disease progression in mild COPD. Chest 2015;
148: 169–175.

38 Xuan L, Han F, Gong L, et al. Association between chronic obstructive pulmonary disease and serum lipid
levels: a meta-analysis. Lipids Health Dis 2018; 17: 263.

39 Kohonen T. Essentials of the self-organizing map. Neural Netw 2013; 37: 52–65.
40 Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein–protein association networks with increased

coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47:
D607–D613.

41 Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web
server 2016 update. Nucleic Acids Res 2016; 44: W90–W97.

42 Verrills NM, Irwin JA, He XY, et al. Identification of novel diagnostic biomarkers for asthma and chronic
obstructive pulmonary disease. Am J Respir Crit Care Med 2011; 183: 1633–1643.

43 Zhang YH, Hoopmann MR, Castaldi PJ, et al. Lung proteomic biomarkers associated with chronic obstructive
pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2021; 321: L1119–L1130.

44 Ghio AJ, Hilborn ED, Stonehuerner JG, et al. Particulate matter in cigarette smoke alters iron homeostasis to
produce a biological effect. Am J Respir Crit Care Med 2008; 178: 1130–1138.

45 Remels AH, Gosker HR, Langen RC, et al. The mechanisms of cachexia underlying muscle dysfunction in
COPD. J Appl Physiol 2013; 114: 1253–1262.

46 Jaffar Z, Ferrini ME, Herritt LA, et al. Cutting edge: lung mucosal Th17-mediated responses induce polymeric
Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J Immunol 2009; 182:
4507–4511.

47 Motamedi S, Karimi I, Jafari F. The interrelationship of metabolic syndrome and neurodegenerative diseases
with focus on brain-derived neurotrophic factor (BDNF): kill two birds with one stone. Metab Brain Dis 2017;
32: 651–665.

48 Lichtenauer M, Franz M, Fritzenwanger M, et al. Elevated plasma levels of interleukin-12p40 and
interleukin-16 in overweight adolescents. Biomed Res Int 2015; 2015: 940910.

49 Reynaert NL, Gopal P, Rutten EPA, et al. Advanced glycation end products and their receptor in age-related,
non-communicable chronic inflammatory diseases; overview of clinical evidence and potential contributions
to disease. Int J Biochem Cell Biol 2016; 81: 403–418.

50 Song F, Hurtado del Pozo C, Rosario R, et al. RAGE regulates the metabolic and inflammatory response to
high-fat feeding in mice. Diabetes 2014; 63: 1948–1965.

51 Fuentes E, Rojas A, Palomo I. Role of multiligand/RAGE axis in platelet activation. Thromb Res 2014; 133:
308–314.

52 Botelho FM, Rodrigues R, Guerette J, et al. Extracellular matrix and fibrocyte accumulation in BALB/c mouse
lung upon transient overexpression of oncostatin M. Cells 2019; 8: 126.

53 Baines KJ, Simpson JL, Gibson PG. Innate immune responses are increased in chronic obstructive pulmonary
disease. PLoS One 2011; 6: e18426.

54 Li P, Wang T, Chen M, et al. RAGE-mediated functional DNA methylated modification contributes to cigarette
smoke-induced airway inflammation in mice. Biosci Rep 2021; 41: BSR20210308.

55 Castaldi PJ, Benet M, Petersen H, et al. Do COPD subtypes really exist? COPD heterogeneity and clustering in
10 independent cohorts. Thorax 2017; 72: 998–1006.

https://doi.org/10.1183/23120541.00301-2022 13

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | L.E.G.W. VANFLETEREN ET AL.


	Biomarker-based clustering of patients with chronic obstructive pulmonary disease
	Abstract
	Introduction
	Methods
	Study design
	Venous blood sampling and laboratory analysis
	Statistics
	Pathway analysis

	Results
	General patient characteristics
	Clustering based on the systemic levels of the biomarkers
	Clinical characteristics and objectively identified comorbidities related to the different clusters
	A pathway analysis based on the identified clusters of biomarkers

	Discussion
	References


