Skip to main content
. 2023 Jan 13;26(2):105959. doi: 10.1016/j.isci.2023.105959

Table 1.

Gut bacteria and the metabolites they contribute

Metabolite Pathway Genera or species Reference
Butyrate Classical pathway via butyrate kinase Coprococcus comes, Coprococcus eutactus Macfarlane and Macfarlane, 2003, Cummings et al., 1987, den Besten et al., 2013, Smith and Macfarlane, 199716,17,18,19
Alternate pathway using exogenous acetate Anaerostipes spp., C. catus, E. hallii, Eubacterium rectale, Faecalibacterium prausnitzii, Roseburia spp. Macfarlane and Macfarlane, 2003, den Besten et al., 2013, Smith and Macfarlane, 1997, Cummings and Macfarlane, 199116,18,19,20
Propionate Acrylate pathway Coprococcus catus, Eubacterium hallii, Megasphaera elsdenii, Veillonella spp. Macfarlane and Macfarlane, 2003, Cummings et al., 1987, den Besten et al., 2013, Smith and Macfarlane, 199716,17,18,19
Succinate pathway Bacteroides spp., Dialister spp., Phascolarctobacterium succinatutens, Veillonella spp. Macfarlane and Macfarlane, 2003, Cummings et al., 1987, den Besten et al., 2013, Smith and Macfarlane, 199716,17,18,19
Propanediol pathway Roseburia inulinivorans, Ruminococcus obeum, Salmonella enterica Macfarlane and Macfarlane, 2003, Cummings et al., 1987, den Besten et al., 2013, Smith and Macfarlane, 199716,17,18,19
Acetate Pyruvate decarboxylation to acetyl-CoA Akkermansia muciniphila, Bacteroides spp., Bifidobacterium spp., Prevotella spp., Ruminococcus spp Macfarlane and Macfarlane, 2003, Cummings et al., 1987, den Besten et al., 2013, Smith and Macfarlane, 199716,17,18,19
Wood–Ljungdahl pathway Blautia hydrogenotrophica, Clostridium spp., Streptococcus spp. Macfarlane and Macfarlane, 2003, Cummings et al., 1987, den Besten et al., 2013, Smith and Macfarlane, 199716,17,18,19
Branched-chain fatty acids Amino acid fermentation through various dissimilatory proteolytic reactions Acidaminococcus spp., Acidaminobacter spp., Campylobacter spp., Clostridia spp., Eubacterium spp., Fusobacterium spp., Peptostreptococcus spp. Macfarlane and Macfarlane, 2003, Cummings et al., 1987, den Besten et al., 2013, Smith and Macfarlane, 1997, Deehan et al., 202016,17,18,19,21
Imidazole propionate Non-oxidative deamination of histidine to urocanate followed by reduction of urocanate to ImP by urocanate reductase Aerococcus urinae, Adlercreutziae equolifaciens, Anaerococcus prevotii, Brevibacillus laterosporus, Eggerthella lenta, Lactobacillus paraplantarum, Shewanella oneidensis, Streptococcus mutans Koh et al., 201822
Indole Hydrolytic β-elimination of tryptophan to indole (tryptophanase) Achromobacter liquefaciens, Bacteroides ovatus, Bacteroides thetaiotamicron, Escherichia coli, Paracolobactrum coliforme, Proteus vulgaris Devlin et al., 2016, Agus et al., 201823,24
Indole derivatives Multiple Bacteroides spp., Clostridium spp. (Clostridium sporogenes, Clostridium cadaveris, Clostridium bartlettii), E. coli, Lactobacillus spp., E. halli, Parabacteroides distasonis, Peptostreptococcus spp. (Peptostreptococcus anaerobius) Devlin et al., 2016, Agus et al., 2018, Dodd et al., 201723,24,25
Trimethylamine N-oxide Intestinal bacteria metabolize choline, choline-containing compounds, betaine, and L-carnitine ingested in the diet or recycled in the gut Desulfovibrio desulfuricans, Acinetobacter, Serratia, Klebsiella pneumoniae, E. coli, Citrobacter, Providencia, Shigella, Achromobacter, Sporosarcina, Actinobacteria, Edwardsiella tarda Craciun and Balskus, 2012, Thibodeaux and van der Donk, 2012, Falony et al., 2012, Romano et al., 201226,27,28,29

Bile acids

Primary bile acids Synthesized in the liver from cholesterol via classical or alternative pathways and bound to taurine or glycine Host (mouse and human) Wahlström et al., 2016, Jia et al., 201630,31
Secondary bile acids Deconjugation of primary and secondary bile acids through bile salt hydrolases Bacteroides, Bifidobacterium, Clostridium, Eubacterium, Lactobacillus Wahlström et al., 2016, Jia et al., 201630,31
Conjugation to phenylalanine, tyrosine or leucine Clostridium bolteae Quinn et al., 201732
7α/β-dehydroxylation; 3α/β-epimerization; 5β/α-epimerization; 6β-epimerization of β-MCA; 7α/β-epimerization of CDCA and β-MCA; oxidation of primary or secondary bile acids at C3, C7, and C12 Bacteroides, Clostridium, Escherichia, Eubacterium, Lactobacillus; Eubacterium lentum, Clostridium perfringens, Ruminococcus gnavus; Eubacterium; Eubacterium, Fusobacterium, Unidentified Gram-positive rod; Clostridium, Unidentified Gram-positive rod; Bacteroides, Clostridium, Eggerthella, Escherichia, Eubacterium, Peptostreptococcus, Ruminococcus Wahlström et al., 2016, Jia et al., 2016, Funabashi et al., 2020, Eyssen et al., 1983, Demarne et al., 198230,31,33,34,35