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Abstract

Functional connectivity (FC) of blood-oxygen-level-dependent (BOLD) fMRI time series can be
estimated using methods that differ in sensitivity to the temporal order of time points (static vs.
dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multi-
variate). Previous research suggests that dynamic FC explains variability in FC fluctuations and
behavior beyond static FC. Our aim was to systematically compare methods on both dimensions.
We compared five FC methods: Pearson’s/full correlation (static, bivariate), lagged correlation
(dynamic, bivariate), partial correlation (static, multivariate) and multivariate AR model with
and without self-connections (dynamic, multivariate). We compared these methods by (i) as-
sessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii)
by comparing the patterns of brain-behavior associations. Although FC estimates did not differ
as a function of sensitivity to temporal order, we observed differences between the multivariate
and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC
estimates, especially when comparing group-level FC matrices. Similarly, there were high corre-
lations between the patterns of brain-behavior associations obtained using the dynamic and static
FC methods. We conclude that the dynamic FC estimates represent information largely similar
to that of the static FC.

1. Introduction1

Brain functional connectivity (FC) is estimated by calculating statistical associations between2

time series of brain signal [1], which reflect functional relationships between brain regions [2].3

The investigation of FC has improved our understanding of brain function in health and disease4

and has been shown to be useful as a tool to predict interindividual differences, such as cognition,5

personality, or the presence of mental or neurological disorders [3, 4]. In functional magnetic res-6

onance imaging (fMRI) studies, FC is most commonly estimated using the Pearson’s correlation7

coefficient between time series of pairs of regions. Although correlation is simple to understand8

and compute, it is insensitive to the temporal order of time points. Measures or models that are9
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sensitive to the temporal order of time points are called dynamic, while measures that are insen-10

sitive to temporal order are measures of static FC. Given that the information flow in the brain11

is causally organized in time [5, 6], dynamic connectivity models could be more informative in12

terms of understanding brain function and investigating brain-behavior associations.13

In FC temporal information can be represented in two ways. First, the temporal order of14

the time points can be taken into account when computing the FC estimates. Models that are15

sensitive to temporal order are called dynamic models, whereas models that do not take temporal16

order into account are called static FC models. Second, the methods can investigate, whether17

and how FC estimates change over time. A time series model is stationary (in a weak sense)18

if its first- and second-order statistics (mean and variance) do not vary as a function of time19

[7, 8]. Importantly, the distinction between dynamic and static FC should not be confused with20

the distinction between stationary and non-stationary FC.21

Nonstationarities are commonly estimated using measures of time-varying functional connec-22

tivity (TVFC), such as sliding window correlation (SWC) [9, 10]. In this method, we calculate23

connectivity (e.g. using correlation) in a time window of selected length around a given time24

point; this window is continuously being moved from the start to the end of the recording.25

Procedures such as autoregressive (AR) randomization or phase randomization can be used to26

construct surrogate time series, which can then be used to perform a statistical test of the null27

hypothesis that a time series is stationary, linear, and Gaussian [11]. Using these procedures28

Liégeois et al. [7] and Hindriks et al. [12] have shown that the hypothesis that FC is stationary29

cannot be rejected for most participants. Similarly, Laumann et al. [13] concluded that variation30

in FC over time within a single session can be largely explained by sampling variability, head31

motion, and fluctuating sleep state. Furthermore, EEG FC has been shown to be largely stable32

during resting state [14], during sleep [15], and even before, during, and after epileptic seizures33

[16]. On the other hand, several studies rejected the stationarity hypothesis for certain connec-34

tions [17, 18, 19]. However, do note that Zalesky et al. [19] found that on average only 4% of the35

connections are nonstationary.36

The inability to reject the stationarity hypothesis does not imply the absence of brain states37

[7], nor does it preclude finding (behaviorally) relevant information using models of TVFC [11].38

However, if a simpler model (i.e., a more interpretable model with fewer parameters) can be used39

to describe FC dynamics, it should be preferred to a complex model (such as SWC) unless the40

simpler model cannot model some important aspect of the time series a researcher is interested41

in [7, 20]. Indeed, recent work on resting state fMRI FC in humans has shown that many of42

the properties of TVFC can be predicted from a static and stationary FC model [20, 21, 13, 22].43

Similarly, Liégeois et al. [7] showed that SWC fluctuations can be explained with a model of44

dynamic (and stationary) FC. Since many studies have shown that FC is largely stationary, we45

focused on the relationship between dynamic (as defined above) and static connectivity.46

Dynamic FC can be estimated using measures of lag-based connectivity, such as lagged corre-47

lation or multivariate autoregressive (AR) model. In contrast to static FC, dynamic FC methods48

can be used to estimate the directionality of information flow based on temporal precedence49

[23]. Although these methods have been commonly used, some studies [23, 24, 25, 26, 27] have50

warned that the ability of these methods to accurately estimate the presence and directionality of51

connections is compromised due to the convolution of the neural signal with the hemodynamic52

response function (HRF) and the resulting blurring of the signal, due to interregional variabil-53

ity of HRF [26, 24, 25], noise [23, 24, 26], and/or downsampling of the neural signal in fMRI54

[27]. Other studies [28, 29, 30, 31] have shown that the measures of dynamic FC complement55

the measures of static FC. For example, lagged FC measures can improve discrimination be-56
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tween individuals and between tasks [28, 29], have better predictive value for PTSD compared57

to static FC [31], and can be used to improve effective connectivity estimates [30]. Furthermore,58

Liégeois et al. [7] have shown that the multivariate AR model explains temporal FC fluctuations59

better than Pearson correlations.60

In subsequent research Liégeois et al. [32] showed that static FC and dynamic FC exhibit61

different patterns of brain-behavior associations. They concluded that dynamic FC explains ad-62

ditional variance in behavior beyond variance that can be explained by static FC. However, this63

comparison confounds two orthogonal properties of FC methods. Although Pearson’s correla-64

tion and multivariate AR models differ in their sensitivity to temporal reordering (i.e., static vs.65

dynamic), they also differ in terms of how many variables (brain regions) are taken into account66

during the estimation of a single edge (bivariate vs. multivariate). Hence, a more valid compar-67

ison between static and dynamic FC methods should consider both dimensions: the number of68

variables and the sensitivity to temporal reordering. Combining these two factors enabled us to69

differentiate between four basic classes of FC methods (see Figure 1B).70

Our aim was to systematically compare the FC estimated by both dimensions, that is, the71

sensitivity to temporal reordering (static vs. dynamic) and the number of independent variables72

(bivariate vs. multivariate). We focused on five mathematically related methods: full/Pearson’s73

correlation, partial correlation, lagged correlation, and multivariate AR model with and without74

self-connections, where self-connections refer to autocorrelation of the region with itself [33, 34].75

We were interested in similarities of the FC estimates and patterns of brain-behavior associations.76

We compared FC methods (i) by assessing similarities between FC matrices, (ii) by comparing77

node centrality measures, and (iii) by comparing brain-behavior associations. In addition, to78

better understand the results obtained using different methods and the relationship between them,79

we generated and analyzed synthetic data in which we systematically varied the length of time80

series and the amount of noise.81

We used empirical and simulated data to test several hypotheses. First, we predicted that82

dynamic and static FC methods will provide similar FC estimates due to autocorrelation of the83

fMRI time series. Autocorrelation is inherent to the fMRI signal and originates from two main84

sources: physiological noise and convolution of neural activity with HRF [35]. We expected the85

degree of similarity between static and dynamic FC estimates to be similar to or greater than86

the average autocorrelation of the fMRI time series. Furthermore, we expected the similarity87

between dynamic and static FC to be lower when the fMRI time series is pre-whitened (i.e.,88

when autocorrelation is removed before computation of FC).89

Second, we predicted that multivariate methods can improve inferences about causal rela-90

tionships between regions, as they estimate direct connections by removing the confounding91

influence of indirect associations [2] as opposed to bivariate methods, which cannot separate in-92

direct and direct connections [34]. By providing more direct information on causal relationships93

between brain regions [36], multivariate methods could improve brain-behavior associations in94

terms of explained variance and/or brain-behavior correlation estimates. Existing research has95

shown inconsistent differences in behavior predictive accuracy between partial and full/Pearson’s96

correlations, favoring either partial [37, 38] or full correlation [39] or showing negligible differ-97

ences between them [40].98

Finally, the choice of FC method can affect the measures of network topology [e.g. 41, 42]. To99

address this problem, we compared FC estimates using common node centrality measures, in-100

cluding strength, eigenvector centrality, PageRank centrality, and participation coefficient. Using101

centrality measures also allowed us to compare incoming and outgoing connections in dynamic102

FC estimates. Based on previous research showing that nodes are either receptors or feeders (i.e.,103
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they have predominantly incoming or outgoing connections), but not both [30], we expected a104

negative correlation between in-degree and out-degree. We had no specific hypotheses regarding105

the similarity of node centrality measures between multivariate and bivariate methods or between106

static and dynamic FC methods.107

2. Method108

2.1. Participants109

To address the research questions, the analyzes were performed on publicly available deidenti-110

fied data from 1096 participants (Mage = 28.8, S Dage = 3.7, 596 women) included in the Human111

Connectome Project, 1200 Subjects Release [43]. Each participant took part in two imaging ses-112

sions over two consecutive days that included the acquisition of structural, functional (rest and113

task), and diffusion-weighted MR images. The study was approved by the Washington University114

institutional review board and informed consent was signed by each participant.115

2.2. fMRI data acquisition and preprocessing116

Data were acquired in two sessions using the Siemens 3T Connectome Skyra tomograph.117

Structural MPRAGE T1w image (TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, voxel size = 0.7118

mm isotropic, SENSE factor = 2, flip angle = 8◦) and T2w image (TR = 3200 ms, TE = 565 ms,119

voxel size = 0.7 mm isotropic) were acquired in the first session. The participants underwent120

four resting state fMRI runs, two in each session (gradient echo EPI sequence, multiband factor:121

8, acquisition time: 14 min 24 s, TR = 720 ms, TE = 33.1 ms, flip angle = 52◦).122

Initial preprocessing was performed by the HCP team and included minimal preprocessing123

[44], ICA-FIX denoising [45] and MSMAll registration [46]. The data was then further processed124

using QuNex [47] to prepare them for functional connectivity analyzes. First, we identified125

frames with excessive movement and/or frame-to-frame signal changes. We marked any frame126

that was characterized by frame displacement greater than 0.3 mm or for which the frame-to-127

frame change in signal, computed as intensity normalized root mean squared difference (DVARS)128

across all voxels, exceeded 1.2 times the DVARS median across the time series, as well as one129

frame before and two frames after them. Marked frames were used for motion censoring, which130

is described in detail below. Next, we used linear regression to remove multiple nuisance signals,131

including six movement correction parameters and their squared values, signals from the ventri-132

cles, white matter and the whole brain, as well as the first derivatives of the listed signals. The133

previously marked frames were excluded from the regression and all subsequent analysis steps134

were performed on the residual signal. No temporal filtering was applied to the data, except a135

very gentle high-pass filter at the cutoff of 2000 s applied by the HCP team [44], since temporal136

filtering could introduce additional autocorrelation [48] and inflate correlation estimates [35, 49].137

Motion scrubbing is usually performed by removing frames thought to be affected by move-138

ment (i.e. bad frames) before calculating the correlation or related measure of static FC. This is139

not appropriate in the case of dynamic FC or autocorrelation, since removing time points disrupts140

the autocorrelation structure of time series. To overcome this limitation, a frame was considered141

bad if it was bad in either original or lagged time series. Frames at transition between concate-142

nated time series (last frame in the first time series and first frame in the next time series) were143

also marked as bad in this case.144

Only sessions with at least 50% useful frames after motion censoring were used in the further145

analysis, except where noted otherwise. This resulted in 1003 participants with at least one ses-146

sion. Before FC analyzes, all resting-state BOLD runs from available sessions were concatenated147
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Figure 1: A schematic of analysis steps. A. BOLD fMRI data was preprocessed, parcellated, and individual parcel
timeseries were extracted. B. Functional connectivity (FC) was estimated with five methods that differed along two
dimensions: static vs. dynamic and bivariate vs. multivariate. Static FC refers to measures that are insensitive to temporal
order and can be estimated using full/Pearson’s correlation or partial correlation, whereas measures of dynamic FC are
sensitive to temporal order of time points. Dynamic FC can be estimated using measures of lag-based connectivity, such
as lagged correlation, or using the linear multivariate autoregressive (AR) model. The lagged correlation between two
time series is calculated by shifting one time series by p time points. Similarly, a p-th order multivariate (or vector)
autoregressive model predicts the activity of a particular brain region at time point t based on the activity of all regions at
time point(s) from t − p to t − 1. Bivariate and multivariate FC methods differ in terms of number of variables (regions)
taken into account when estimating connectivity at a single edge: bivariate connectivity between two regions depends
only on the two regions, whereas multivariate connectivity between two regions includes all other regions as covariates.
C. FC matrices were vectorized. D. FC estimates were compared (i) by calculating correlations between FC estimates,
(ii) by calculating correlations between node centrality measures, and (iii) by comparing estimates of brain-behavior
associations across FC methods. E. Additionally, we performed simulation to assess the influence of random noise and
signal length on the similarity between FC estimates obtained using different methods.
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and parcellated using a multimodal cortical parcellation (MMP1.0) containing 360 regions [50].148

Each parcel was represented by a mean signal across all the parcel grayordinates.149

2.3. Functional connectivity estimation150

Functional connectivity was estimated using five methods: full (Pearson’s) correlation, partial151

correlation, lagged correlation, multivariate AR model (also called vector AR model), and multi-152

variate AR model without self-connections. The listed methods differ in terms of the number of153

regions used to estimate the connectivity of a single edge (bivariate vs. multivariate) and in terms154

of sensitivity to temporal reordering of time points (static vs. dynamic) (see Figure 1B). A multi-155

variate AR model without self-connections was included to test how much similarity between the156

multivariate AR model and partial correlation depends on self-connections (the diagonal terms157

in the autocovariance matrix).158

The bivariate static FC was estimated using full correlation. Let xi be a demeaned T ×1 vector159

of region i time series (T is the number of time points) and let X = [x1, . . . , xN]′ be a N×T matrix160

of the demeaned region time series (N is the number of regions). Then the sample covariance161

matrix C can be estimated with162

C =
XX′

T − 1
(1)

A correlation matrix can be obtained by standardizing the time series to zero mean and unit163

standard deviation (i.e., z-scores) beforehand.164

Multivariate static FC was estimated using partial correlation. Partial correlations were com-165

puted by taking an inverse of a covariance matrix (i.e., the precision matrix) and then standard-166

izing and sign-flipping according to the equation:167

ρi j = −
wij
√wiiwjj

(2)

where ρ is an element of a partial correlation matrix, w is an element of a precision matrix, and i168

and j are the indices of rows and columns, respectively [51].169

Dynamic bivariate connectivity was estimated using lagged correlation (also known as auto-170

covariance matrix). Autocovariance is defined as the covariance of time series with lagged time171

series. Let Xt be an N × (T − p) matrix of shortened time series with time points from 1 to T − p172

(p is the lag/model order) and Xt+p be a similar matrix with time points from p + 1 to T . Then,173

Cp =
Xt+pX′t
T − p

(3)

is p-th order autocovariance or lagged covariance matrix. Diagonal entries are called autocovari-174

ances or, sometimes, self-connections or self-loops [34, 33]. Off-diagonal entries of autocovari-175

ance matrix are also called cross-covariances. Note that the autocovariance matrix of lag 0 is176

equal to the ordinary covariance matrix. The autocorrelation matrix was obtained by standardiz-177

ing time series before computing autocovariance.178

Correlations, autocorrelations, and partial correlations were Fisher z-transformed for subse-179

quent analyzes.180

Multivariate dynamic connectivity was estimated using the Gaussian multivariate AR model.181

Let Z be an N p × (T − p) matrix of stacked matrices of shortened time series, Z =182

[X′t+p−1, . . . , X
′
t+1, X

′
t ]
′. The multivariate AR model can be written in matrix notation as:183
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Xt+p = AZ + E (4)

where A is an N × N p matrix of AR coefficients of the p-th order model and E is an N × (T − p)184

matrix of zero-mean, independent, normally distributed residuals. The matrix A can be estimated185

using the ordinary least squares (OLS) estimator:186

Â = Xt+pZ′(ZZ′)−1 (5)

For p = 1 Â equals:187

Â = Xt+pX′t (XtX′t )
−1 (6)

The equation shows that the coefficients of the multivariate AR model are a product of the lagged188

covariance and (non-lagged) precision matrix. Therefore, the multivariate AR model encodes189

both static and dynamic FC. The same can be inferred from the Yule-Walker equations [see 7, 8].190

Moreover, for lag 0, the coefficients of the multivariate AR model are equal to the covariance191

matrix [see 7].192

To estimate the coefficients of the multivariate AR model without self-connections, we fitted193

the model194

xi,t+p = X′t ai + ei (7)

for each region i separately, such that we set i-th row of matrix Xt to zero (the equation above195

applies for p = 1 only, but the model could be extended to include higher lags as in Equation 4).196

Vectors xi,t+p were taken from rows of the matrix Xt+p and included time points from p + 1 to197

T . Vectors ei represent normally distributed, zero-mean, independent residuals. FC matrix was198

constructed by organizing N × 1 vectors ai into the N × N matrix A1 = [ai, . . . , aN]′. This matrix199

is asymmetric with zeros on the diagonal. The coefficients of both multivariate AR models200

were estimated using the coordinate descent algorithm implemented in the GLMnet package for201

MATLAB [52].202

All AR models were estimated for lag 1 only. This order was shown to be optimal for the203

multivariate AR model for resting state fMRI data with a high number of regions [53, 54], and204

also in a study using HCP data [55]. There were no differences between the variance of order 1205

and the higher-order models explained by the first principal component of the null data generated206

from the multivariate AR model in a previous study [7]; therefore, we did not consider higher-207

order autoregressive models.208

2.4. Prewhitening209

We expected that FC estimates based on AR models would be similar to static FC estimates210

due to autocorrelation present in the fMRI time series. To test the similarity between static211

and dynamic FC in the absence of autocorrelation, we computed connectivity from from non-212

prewhitened time series and prewhitened time series. The exception was the multivariate AR213

model, where the diagonal terms (self-connections) effectively act as prewhitening. The dif-214

ference between the multivariate AR model with and without prewhitening is essentially the215

difference between the multivariate AR model with and without self-connections. We performed216

the prewhitening by taking the residuals of the regression of the ”raw” time series on the lagged217

time series.218
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To retain frame sequence after prewhitening, frames that were marked as bad in any of the219

original or lagged time series were set to zero before computing residuals. For this reason, frames220

that were preceded by a bad frame in any of the 1 to l previous frames were not prewhitened. At221

higher orders, this resulted in fewer total prewhitened frames.222

Prewhitening was performed on orders 1 to 3 (abbreviated AR1/2/3 prewhitened). Autocorre-223

lations were already significantly reduced at order 1 and were additionally reduced at lags 2 and224

3 (Figure 2B). Since the results were similar regardless of the prewhitening order, only the results225

for the prewhitening on order 1 are shown in the main text, and the results for higher orders are226

shown in the supplement.227

2.5. Similarities between FC estimates obtained using different methods228

We estimated similarities between the FC estimates by computing the correlation between vec-229

torized FC matrices. We adjusted the vectorization for each pair of methods so that only unique230

elements were taken into account. For example, correlation and partial correlation matrices are231

symmetric; therefore, only the upper or lower triangular part of the matrix (without the diagonal)232

should be considered. On the other hand, the FC matrices derived from the AR models are not233

symmetric; therefore, the whole matrix must be vectorized. The exception is the multivariate AR234

model without self-connections, which does not contain any information on the diagonal, so in235

this case matrix without the diagonal needs to be vectorized. When comparing asymmetric and236

symmetric matrices, we computed and used the average of the upper and lower triangular parts237

of the matrix (using equation (X + X′)/2) .238

We estimated similarities in two ways: first, by computing correlations between connectivity239

estimates for each subject separately and then averaging the resulting correlations (mean corre-240

lations between individual-level FC matrices), and second, by averaging FC matrices over par-241

ticipants and then computing correlation between methods on group FC matrices (correlations242

between group-level FC matrices).243

To test how similarity between FC estimates depends on data quality, we repeated analyses on244

a subset of 200 participants with the largest number of retained frames.245

2.5.1. Correlation between edge similarity and test-retest reliability246

To better understand the origin of the similarities between the FC methods, we examined the247

relationship between the edge similarity of the FC estimates obtained using different methods248

and test-retest reliability at the edge level. If similarities between FC estimates depend on the249

signal-to-noise ratio (SNR), more reliable edges will be more similar across methods.250

We computed the edge similarity as correlation at every edge for each pair of FC methods. We251

estimated the test-retest reliability using the intraclass coefficient (ICC) for each method sepa-252

rately. We estimated the variance components within the linear mixed model framework using253

the restricted maximum likelihood (REML) procedure [56, 57]. We defined variance components254

as follows:255

var(ypdr) = σ2
p + σ

2
d + σ

2
r + σ

2
p×r + σ

2
p×d + σ

2
d×r + σ

2
e (8)

where y is an estimate of an edge, p indicates participant, d day, r run and e residual.256

We computed the ICC as a ratio between between-subject variance (which included interaction257

terms pertaining to participants) and the total variance [58]. For this analysis, the runs were not258

concatenated.259
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Finally, we applied Fisher’s z-transformation to both edge similarity and ICC and computed the260

correlation between them. To reduce the number of comparisons, we only investigated the most261

relevant comparisons: full correlation vs. lagged correlation, partial correlation vs. multivariate262

AR1, and partial correlation vs. multivariate AR1 without self-connections. Since we estimated263

test-retest reliability separately for each method in a pair, there were two correlations for each264

pair of methods. We averaged both correlations for each comparison.265

2.6. Node centrality measures266

In the second part, we compared FC estimates using four different centrality measures: mean267

strength, eigenvector centrality, PageRank centrality, and participation coefficient. It is important268

to note that we did not use path-based methods, such as betweenness centrality or closeness cen-269

trality, because their interpretation is not clear for correlation-based networks. In such networks,270

a statistical association between two nodes does not necessarily indicate a path of information271

flow [1, 59]. Moreover, the correlation coefficient already captures the shortest path between two272

nodes [1].273

The mean strength was computed as a mean of the edge weights for each region and it is274

analogous to a degree (number of connections) in binary networks. The shortcoming of strength275

is that it gives equal weight to all connections – it gives equal importance to nodes that are276

connected to other important nodes and to nodes that are connected to unimportant nodes.277

In contrast, eigenvector centrality also considers the importance of a node’s neighbors. We278

computed the eigenvector centrality of a node i as the i-th entry of a principal eigenvector of the279

network’s adjacency matrix [60, 1]. Using a recursive formula, the eigenvector centrality can be280

expressed as:281

282

xi =
1
λ1

∑
j

Ai jx j (9)

where, xi is the centrality of the i-th node, λ1 is the principal eigenvalue, and Ai j are the elements283

of the adjacency matrix.284

Eigenvector centrality has some drawbacks. For example, a node will be assigned zero central-285

ity, if all of its neighbors have zero centrality. Additonally, a node with high centrality will give286

all of its neighbors a high centrality score, even if this is not intuitively meaningful. Consider287

a network of websites – if a website is indexed by Google, it will be assigned a high centrality,288

even if it has no other (incoming) connections. PageRank centrality was developed to address289

these limitations:290

291

xi = α
∑

j

Ai j
x j

kout
j
+ β (10)

A positive constant β (usually set to 1) is added to ensure that no node has zero centrality and292

x j is divided by the out-degree of node j (kout
j ) to prevent high-degree nodes from having a293

disproportionate influence on other nodes [60, 1]. The balance between the eigenvector and the294

constant term is controlled by the parameter α, which is usually set to 0.85.295

We computed both eigenvector and PageRank centrality using the implementations available296

in the Brain Connectivity Toolbox [59].297

The degree-based or strength-based measures may be biased in correlation networks based on298

Pearson correlation, as node strength tends to correlate with community size [61, 62]. To miti-299

gate this bias, we additionally used the participation coefficient to characterize node importance.300
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The participation coefficient measures the distribution of a node’s connections across different301

modules [63]. If the node’s connections are evenly distributed across modules, the participa-302

tion coefficient approaches 1, while a participation coefficient of zero indicates that the node’s303

connections are completely restricted to its module.304

The original formulation of the participation coefficient [63] does not take into account the size305

of the module [64, 62]. In particular, nodes from small modules tend to have high participation306

coefficients, while nodes from large modules tend to have low values. Therefore, we used the307

normalized participation coefficient [62]:308

309

PCnorm i = 1 −

√√
B0

∑
m∈M

(
ki(m) − ki(m)rand

ki

)2

(11)

310

Here, M is a set of modules (communities), ki is the total degree of node i, ki(m) is the in-311

tramodular degree for node i in module m. ki(m)rand represents a median intramodular degree for312

node i, obtained by generating randomized networks using the Maslov-Sneppen rewiring algo-313

rithm [65]. B0 is a multiplicative term used to constrain the range of PCnorm between 0 and 1 and314

was set to 0.5. The number of randomizations was set to 100 at the individual level and to 1000315

at the group level. The module definitions were taken from Ji et al. [66].316

We calculated centrality measures at the level of individual FC matrices and at the level of317

the group-averaged FC matrix. We then compared centrality measures based on different FC318

methods by computing Pearson’s correlation between the obtained centrality measures. For the319

comparison at the individual level, we averaged the obtained correlations. Additionally, to better320

understand the relationship between different centrality measures, we computed correlations be-321

tween different centrality measures for selected FC methods (full correlation, partial correlation,322

and multivariate AR model).323

In the case of dynamic FC estimates, all centrality measures were estimated separately for324

incoming and outgoing connections. The matrix of outgoing connections was obtained by trans-325

posing the original FC matrix. In addition, all centrality measures were estimated separately for326

positive and negative connections. For the sake of brevity, only the results for positive connec-327

tions are presented in the main text; other results can be found in the Supplement. We refer to328

the strength of nodes based on incoming or outgoing connections as in-strength and out-strength,329

respectively.330

2.7. Brain-behavior associations331

To compare the brain-behavior associations obtained by different FC measures, we used 58332

behavioral measures (see Table S1) that included cognitive, emotion and personality measures333

and were previously used in other studies [32, 67, 68].334

2.7.1. Variance component model335

We computed brain-behavior associations using the multivariate variance component model336

(VCM), developed by Ge et al. [69] to estimate heritability. The use of the variance component337

model to estimate associations between the brain and behavior was introduced by Liégeois et al.338

[32]. We adopted the same approach to allow direct comparison with the results reported by339

Liégeois et al. [32]. Furthermore, the use of VCM allows an easy calculation of the explained340

variance for single traits. The model has the form341
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Y = C + E (12)

where Y represents the N × P matrix (number of subjects × number of traits) of behavioral mea-342

sures, C represents shared effects and E represents unique effects. The model has the following343

assumptions:344

Vec(C) ∼ N (Σc ⊗ F)

Vec(E) ∼ N (Σe ⊗ I)
(13)

where Vec(·) is the matrix vectorization operator, ⊗ is the Kronecker product operator, and I is345

the identity matrix. F represents N × N matrix of similarities between participants, which were346

estimated with the Pearson’s correlation coefficient. Σc and Σe are P × P matrices, which are347

being estimated. The total variance explained is computed as:348

M =
Tr (Σc)

Tr (Σc) + Tr (Σe)
(14)

where Tr(·) represents the trace operator, and:349

Mi =
Σc(i, i)

Σc(i, i) + Σe(i, i)
(15)

for single traits. M is analogous to the concept of heritability and can be interpreted as the amount350

of variance in behavior that can be explained with the variance in the connectome.351

Before computing VCM, we imputed missing behavioral data using the R package missForest352

[70]. There were 0.59% missing data points overall. Following the procedure of Liégeois et al.353

[32], we applied quantile normalization to behavioral data. To remove potential confounding354

factors, we regressed age, gender, race, education, and movement (mean FD) using the procedure355

described in Ge et al. [71, 69].356

We estimated M for each connectivity method separately. We compared patterns of explained357

variances by correlating the variance explained at the trait level between all methods.358

Since the results of VCM are based on similarities between participants (matrix F), we tested359

the extent to which the similarities between participants, and thus the results of VCM, depend360

on the levels of noise in the data. To this end, we performed a simulation in which we added361

random Gaussian noise (mean 0, standard deviation 0–1 in steps of 0.1) to the standardized time362

series. To reduce complexity, we performed this analysis only for static FC methods.363

2.7.2. Canonical correlation analysis364

Since VCM is rarely used to study brain-behavior associations, we repeated the analysis using365

canonical correlation (CCA). CCA is used to reveal the low-dimensional structure of the shared366

variability between two sets of variables (in our case, connectivity and behavior).367

Let X and Y be N × P and N × Q matrices (N is the number of observations, P and Q are the368

number of variables), respectively.369

The goal of CCA is to solve the following system of equations:370

U = XA

V = YB
(16)
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Here, UN×K and VN×K represent matrices of canonical scores (or variables), and AP×K and371

BQ×K represent matrices of canonical weights. The objective is to maximize the correlation372

between pairs of columns from U and V with the same index. These correlations are known as373

canonical correlations. The solution to the above set of equations is found under the constraint374

U′U = V ′V = I. The columns of the U and V matrices tell us the relative position of each375

observation in the canonical variables. Columns of the A and B matrices contain information on376

the relative contribution of each variable to each of the canonical variables. Additionally, one377

can calculate canonical loadings - the correlations between original data matrices and canonical378

scores. Canonical variables are ordered in descending order according to the size of canonical379

correlations. Usually, only the first or first few canonical components are of interest, as these380

explain most of the shared variance. Mathematical details on CCA can be found elsewhere [e.g.381

72, 73, 74, 75, 76].382

We performed the CCA using the GEMMR package [73]. To prepare the data for CCA, we383

followed the procedure by Smith et al. [77], including deconfouding using the same variables384

as for VCM. Prior to CCA, we reduced the dimensionality of both sets of variables to 20 com-385

ponents using principal component analysis (PCA). This number was chosen to optimize the386

number of samples per feature based on the recommendation by Helmer et al. [73] under the as-387

sumption of a real first canonical correlation r = .30. We performed a 5-fold cross-validation to388

assess the generalizability of the model. We only examined the first canonical correlation since389

it was shown that the first canonical variable explains the most shared variance, and it was the390

only statistically significant canonical variable in a previous study [77].391

We repeated the CCA for all FC methods. The similarities between the methods were assessed392

by comparing the first canonical correlation obtained in the training and the test set. Next, we393

correlated the canonical weights and loadings related to behavior.394

2.7.3. Principal least squares395

Finally, we used principal least squares (PLS) to estimate brain-behavior associations. PLS396

is similar to CCA, with the goal to maximize covariance rather than correlation between sets397

[73, 78]. When the columns of X and Y are standardized, PLS gives the same results as CCA.398

It has been shown that the first PLS component is biased toward the first principal component399

(PC) axis [73]. To assess the degree of bias in our data, we estimated the similarity between the400

PLS/CCA weights or loadings for behavior and the weights for the first behavioral PC.401

2.7.4. Control analyses402

Participants in the HCP dataset are genetically and environmentally related, which can in-403

flate between-subject similarities and influence the results related to interindividual differences.404

Therefore, we repeated all analyses related to brain-behavior associations on two subsamples of405

genetically unrelated participants (sample sizes 384 and 339).406

2.8. Simulation407

We hypothesized that dynamic and static FC estimates would be similar due to autocorrelation408

of fMRI time series, which is partly the result of convolution of neural time series with HRF.409

In addition, an important source of similarities (or differences) between FC results obtained by410

different methods could be due to similar (or different) effects of the amount of noise and the411

amount of available data on the resulting FC matrices. To evaluate the impact of convolution412

with HRF, signal quality, and the amount of data on estimated similarities between results using413
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different FC measures, we used numerical simulations of data with known covariance structure.414

We generated multivariate time series of events for 1000 ”participants.” Events were sampled415

from a multivariate normal distribution with a mean of zero. The covariances differed for each416

participant and were taken from experimental data parcellated using Schaefer’s local-global par-417

cellation with 100 regions [79]. We used this parcellation instead of MMP to reduce the compu-418

tational burden and the size of the generated data. Events were not autocorrelated. The generated419

events were then convolved with HRF using the SimTB toolbox [80]. TR was set to 0.72 s (the420

same as in HCP data), and HRF parameters were set equal for all participants and regions (delay421

of response: 6, delay of the undershoot: 15, dispersion of the response: 1, dispersion of the un-422

dershoot: 1, the ratio of response to the undershoot: 3, onset in seconds: 0, length of the kernel423

in seconds: 32). The resulting time series were standardized.424

To estimate the effects of signal quality on FC estimates and on similarities between FC meth-425

ods, we added Gaussian noise with zero mean and standard deviation ranging from 0 to 1 stan-426

dard deviation in steps of 0.1. This translates to SNR from 10 to 1 (excluding time series without427

noise, which has infinite SNR). We varied the time-series durations from 500 to 10000 data428

points in steps of 500.429

The first step in the analysis was to establish the ground truth for each method, that is, the re-430

sults that would be obtained in an ideal situation. We defined the ground truth as FC at maximum431

length and without noise in the event time series. Note that because events were not autocorre-432

lated, the ground truth for all autoregressive FC methods was a matrix with all zero entries.433

Next, we compared results using different FC methods in the same manner as for experimental434

data for all noise level and signal length combinations on prewhitened and non-prewhitened data.435

We computed (1) correlations between ground truth FC matrices and simulated FC matrices for436

all FC methods and (2) correlations between FC estimates obtained using different methods. To437

reduce the number of comparisons, we only investigated the most relevant comparisons: full438

correlation vs. lagged correlation, partial correlation vs. multivariate AR, and partial correlation439

vs. multivariate AR without self-connections.440

3. Results441

3.1. Similarities between FC estimates obtained using different methods442

To address our research questions, we first focused on estimating similarities between the443

results obtained with different FC methods using empirical data. Comparison of group-level444

FC matrices showed very high correlations between FC results obtained using bivariate methods445

(r ⩾ .87, Figure 2A), as well as between results obtained using multivariate methods (correlation446

between partial correlation [AR1 prewhitened] and multivariate AR model: r = .80). In contrast,447

the correlations between the bivariate and multivariate FC estimates were lower and ranged from448

.36 to .65.449

When comparing and pooling results based on individual-level FC matrices, the mean corre-450

lation between FC matrices obtained using different methods was lower. The correlations be-451

tween the bivariate methods were still very high (correlation between lagged and full correlation:452

r = .99, correlation between prewhitened lagged and prewhitened full correlation: r = .83), while453

the correlations between the multivariate methods were lower on average. In particular, the cor-454

relation between the partial correlation (AR1 prewhitened) and the multivariate AR model was455

.05, compared to .80 between the group-level FC matrices.456

The correlations between the results obtained using static and dynamic FC methods were457

smaller after prewhitening, with the greatest differences when comparing individual-level FC458
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Figure 2: A. Correlations between FC estimates obtained using different FC methods. We calculated the similarities
between FC estimates obtained using different FC methods (i) by averaging connectivity matrices across participants
and then computing correlations between them (correlation between group-level FC, bottom right triangle), and (ii) by
computing correlations between the FC estimates for each participant separately and then averaging across participants
(correlation between individual-level FC, top left triangle). B. Autocorrelation function of experimental data as a function
of prewhitening order. The mean autocorrelation function was computed over all participants and regions; the ribbons
represent the standard deviation.
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Figure 3: Correlations between edge similarity and test-retest reliability for selected pair of FC methods.

matrices obtained using multivariate methods. Specifically, the correlation between the coef-459

ficients of the multivariate AR model and the partial correlation decreased from .40 to .05 in460

the individual-level FC and from .86 to .80 in the group-level FC. The order of prewhitening461

had minimal effect on the correlations between the methods (Figure S2A), except for the com-462

parison of the results obtained using the multivariate AR model and the partial correlation at463

the individual-level FC, where the correlations increased from .05 to .12 (r = .15–.22 for the464

multivariate AR model without self-connections).465

The correlations between the FC results obtained using different methods were slightly higher466

when the analysis was repeated on 200 participants with the highest data quality (Figure S3).467

3.1.1. Autocorrelations of fMRI time series468

To test the prediction that the similarities between the dynamic and static FC estimates would469

be similar to or greater than the mean autocorrelation of the fMRI time series, the mean autocor-470

relation function was computed across all participants and regions. The autocorrelation before471

prewhitening was .40 at lag 1 (Figure 2B). This autocorrelation decreased to −.10 after AR1472

prewhitening, and was essentially zero after AR2 and AR3 prewhitening. Thus, the similari-473

ties between the dynamic and static FC were always higher than the autocorrelation at lag 1.474

Interestingly, prewhitening at orders 1 and 2 reversed the sign of the autocorrelation at low lags.475

3.1.2. Correlation between edge similarity and test-retest reliability476

We computed edge similarity between FC methods as a correlation over subjects at every edge477

for selected pairs of FC methods. We estimated test-retest reliability at every edge for each478

method separately. Next, we computed the correlation between edge similarity and test-retest479

reliability for each of selected pairs of FC methods. The correlation was moderate to high for480

pairs of multivariate methods (r = .47–.66) and high for pairs of bivariate methods (r = .55–.79,481

Figure 3). Prewhitening lowered the correlations.482
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3.2. Similarity of node centrality measures483

In the second part, we compared methods for estimating FC by comparing four node central-484

ity measures: strength, eigenvector centrality, PageRank centrality, and participation coefficient485

(Figure 4, Figure S4, Figure S5). Unless otherwise noted, we focus on the positive connections.486

As before, we observed a clear distinction between bivariate and multivariate methods for487

computing FC matrices. Correlations between centrality measures based on bivariate FC meth-488

ods were consistently high, regardless of the centrality measure (above .97 at the group level and489

above .96 at the individual level). In contrast, the correlations between multivariate FC methods490

were lower, ranging from .59 to .99 for strength, eigenvector centrality, and normalized partici-491

pation coefficient at the group level. Correlations for PageRank centrality were generally lower492

for multivariate methods, ranging from −.21 to 1.00.493

Similarities between multivariate and bivariate FC methods were moderately high for strength,494

PageRank centrality, and normalized participation coefficient, ranging from .32 to .79, except for495

PageRank centrality based on outgoing connections of the multivariate AR model, where the496

correlations were around .10. However, for eigenvector centrality, we found low similarities497

between multivariate and bivariate FC methods at the group level (ranging from −.15 to .25) and498

moderate similarities at the individual level (ranging from −.27 to .45).499

Notably, we observed positive correlations between incoming and outgoing connections for500

strength-based centrality measures at the group level, but negative correlations at the individual501

level. This pattern was present only for multivariate dynamic methods. Additionally, when com-502

paring partial correlation and multivariate AR models, we found that the correlations between503

strength-based centrality measures were positive for incoming connections and negative for out-504

going connections. In contrast, all correlations were positive for the normalized participation505

coefficient.506

We also found that our results were generally consistent when analyzing centralities computed507

on negative connections (Figure S5). More specifically, similarities between multivariate FC508

methods were smaller for normalized participation coefficient, and similarities between multi-509

variate and bivariate methods were larger for eigenvector centrality.510

Prewhitening reduced similarities between methods, especially for outgoing connections (Fig-511

ure S4, Figure S5). This was evident for both positive and negative connections.512

To better understand the similarities and differences between the FC methods, we plotted the513

distributions of the centrality measures on the cortical surface (Figure 5, Figure S8). For both514

static FC methods, the strength was highest in the parietal regions (Figure 5A). For partial cor-515

relation, eigenvector centrality was distributed similarly to strength, whereas for full correlation,516

the highest eigenvector centrality values were in visual and somatomotor cortex (Figure 5B). For517

partial correlation, participation coefficient values were lowest in visual and somatomotor cor-518

tex, and highest in frontal and parietal regions belonging to parts of the cingulo-opercular, dorsal519

attention and multimodal networks (Figure 5C). For the full correlation, similar to the partial520

correlation, the participation coefficient values were lowest in medial frontal regions and parts of521

visual cortex, and highest in parts of parietal cortex.522

We also plotted the distributions of centrality measures based on incoming and outgoing con-523

nections of a multivariate AR model (Figure 6, Figure S9). In-strength was highest in the pari-524

etal lobe, while out-strength was highest in the parts of the temporal lobe and in the medial525

parietal lobe (Figure 6A). Eigenvector centrality was similarly distributed for incoming and out-526

going connections, with highest values in the frontal and parietal regions, mainly in parts of the527

frontoparietal network (Figure 6B). Similar to partial correlation, participation coefficient val-528

ues were lowest in the somatomotor and visual cortex and highest in medial frontal and medial529
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Figure 4: Similarities between node centrality measures based on positive connections. Similarities were estimated
by (i) computing node measures on group-averaged connectivity matrices (group-level comparison; below diagonal),
(ii) by computing node measures for each individual separately, correlating within participants and averaging these
correlations across participants (individual-level comparison; above diagonal).
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temporal cortex (Figure 6C). For incoming connections, the PageRank centrality was distributed530

similarly to the eigenvector centrality, while for outgoing connections, the values were highest in531

the medial parietal and medial temporal lobes, and lowest in the somatomotor and frontal regions532

(Figure 6D).533

Since in the case of the multivariate AR model the results of group-averaged connectomes534

differ from individual connectomes, we also plotted the distributions of the centrality measures535

for a representative subject (Figure S10, Figure S11). In the individual case, the distribution of536

strength-based centralities for outgoing connections is the opposite of that for incoming connec-537

tions, with the lowest values in the parietal and occipital cortex.538

Next, we analyzed the correlations between the centrality measures for full and partial corre-539

lation (Figure 5D, Figure S6). The correlations between the strength-based centrality measures540

were generally very high (r ⩾ .90) within positive and within negative connections. Exceptions541

were the correlation between eigenvector centrality and strength (r = .80) and the correlation be-542

tween eigenvector centrality and PageRank centrality (r = .64) for positive connections on con-543

nectomes based on full correlation. In both cases, examination of the scatter plots (Figure 5D)544

revealed two groups of nodes – one group of nodes had higher similarity between centrality545

measures, while the other had a lower similarity. This pattern was also observed for negative546

connections, but with a smaller difference between the two groups.547

3.3. Brain-behavior associations548

Next, we compared patterns of brain-behavior associations derived from different FC methods.549

3.3.1. Variance component model550

The results of the VCM show that bivariate methods explain about 30 percentage points less551

variance in behavior than multivariate methods (Figure 7A,B). Furthermore, the similarity of552

patterns of variance explained over behavioral measures was high between static and dynamic553

FC methods using the same number of variables, i.e., between full correlation and lagged cor-554

relation (r = 1.00), and between partial correlation and multivariate AR models (r = .83–.86,555

Figure 7A,C). The pattern of similarities in behavioral variance explained between the FC meth-556

ods was comparable to the direct comparison of the FC matrices (Figure 7C, cf. Figure 2A).557

Patterns of similarities between the FC methods were similar when the analysis was performed558

on subsamples of unrelated participants (Figure S12A,C); however, the differences in total vari-559

ance explained between the bivariate and multivariate methods were smaller (Figure S12B).560

Simulation of the effects of noise in which we added various levels of noise to the fMRI time561

series showed that noise affects estimates of the behavioral variance explained by the connec-562

tome. In particular, the mean of the variance explained increased with increasing noise for both563

the full correlation and the partial correlation, but the increase was more pronounced in the case564

of partial correlations (Figure 8B). This pattern was not equal for all behavioral variables – for565

some, the variance explained decreased and for others, it increased (Figure 8A). On the other566

hand, the similarity between the participants decreased with increasing noise (Figure 8C). This567

effect was more pronounced for partial correlation compared to full correlation.568

3.3.2. Canonical correlation analysis569

The results of the similarity between the FC methods when investigating brain-behavior as-570

sociations using CCA were comparable to those obtained using VCM. In particular, the corre-571

lations between the weights or loadings on behavioral measures between the FC methods were572
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Figure 5: Cortical distribution of centrality measures based on static FC methods for positive connections. PageR-
ank centrality is omitted, because its correlation with strength is close to 1. For visualization, the values have been
transformed into z-values. D. Correlation between node strength and eigenvector centrality. E. Functional networks
as defined in Ji et al. [66]. CON – cingulo-opercular network, DAN – dorsal attention network, DMN – default mode
network, FPN – frontoparietal network, LAN – language network, VMM – ventral multimodal network, PMM – multi-
modal network, ORA – orbito-affective network, AUD – auditory network, SMN – somatomotor network, VIS – visual
network.
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A node strength

multivariate AR model
(incoming connections)

multivariate AR model
(outgoing connections)

B eigenvector centrality

C normalized participation coefficient

D PageRank centrality

Figure 6: Cortical distribution of centrality measures based on multivariate autoregressive model for positive
connections. For visualization, the values have been transformed into z-values.
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high when comparing the methods that use the same number of variables for the estimation of a573

single edge (r > .80) (Figure 9C). On the other hand, there was no discernible difference between574

dynamic and static FC estimates.575

The first canonical correlation was around .35 in the training sample for the bivariate methods576

and around .30 for the multivariate methods (Figure 9B). Cross-validated R was much lower,577

around .25 for bivariate methods and around 0.05 for multivariate methods. Although these578

results differ from VCM (where multivariate methods explained more variance), the pattern of579

similarity between FC methods is the same.580

The pattern of results was similar for the subsamples of unrelated participants (Fig-581

ure S13B,D), but the differences between the training and test sets were larger (Figure S13A,C).582

The large difference between the performance of the model in training and test sets is indicative583

of overfitting, which is characteristic of CCA with a small number of samples per feature [73].584

3.3.3. Principal least squares585

Analysis of brain-behavior associations using PLS revealed higher similarities between FC586

methods compared to CCA (Figure S14A,C). Specifically, the correlations between loadings587

were consistently greater than .91 for all methods compared, and the correlations between588

weights were greater than .51. Consistent with all previous results, we observed a clear sepa-589

ration between multivariate and bivariate methods when comparing weights, and no difference590

between static and dynamic FC methods based on the same number of variables. PLS was less591

generalizable compared to CCA, with canonical correlations on the training sample around .15–592

.20 and canonical correlations on the test sample around 0–.05.593

However, our results also suggest that the high similarities between FC methods in PLS may594

be due to the strong similarity between the first behavioral canonical component and the first595

behavioral principal component, as reported in a previous study [73] (Figure 10). The correla-596

tions between loadings and the first behavioral principal component were around 1.00, while the597

correlations between weights and the first behavioral principal component were around .80. In598

contrast, for CCA, these correlations were about .60–.75 and .10–.25, respectively.599

3.4. Evaluation of similarities between methods on simulated data600

3.4.1. Relationship between FC estimates and ground truth601

Correlations of FC estimates with ground truth were greater than 0.8 for full correlation and602

between 0.25 and 0.9 for partial correlation (Figure 11B). Prewhitening decreased the correlation603

with ground truth. This effect was more pronounced for partial correlations. Longer time series604

also had higher correlations with ground truth (the difference was up to .5 for partial correlation605

and up to .3 for full correlation). The correlation with ground truth generally decreased with606

decreasing SNR (increasing noise), but in the case of partial correlation, these effects were not607

monotonic. In particular, for short time series, correlation with ground truth increased with low608

to moderate noise. Also in the case of partial correlation, prewhitening increased the correlation609

with ground truth at low noise. In contrast, prewhitening decreased the correlation with ground610

truth in the presence of high noise compared to the case without prewhitening.611

3.4.2. Similarity between FC estimates612

The connectivity matrices computed on the simulated data were compared in the same manner613

as for the experimental data. For brevity, we focus only on the three most relevant comparisons614

(lagged correlation vs. full correlation, multivariate AR model vs. partial correlation, multivariate615

AR model without self-connections vs. partial correlation).616
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Estimates based on lagged and full correlation were highly similar (r ≈ 1 in the case without617

prewhitening) for all levels of noise and signal length (Figure 11C). The correlation between FC618

estimates was reduced for prewhitened data, especially for low signal lengths (< 1000 frames).619

The FC estimates of the multivariate AR model did not correlate with the FC estimates based620

on partial correlation when the noise was low (r = 0 for zero noise). However, with increasing621

noise and increasing signal length, FC estimates became very similar (up to r = .95), especially622

in the case without prewhitening and for long signal lengths.623

Conversely, FC estimates based on a multivariate AR model without self-connections showed624

a high similarity to the FC estimates based on partial correlation at a low noise level (r > .95). For625

prewhitened data, there was a nonmonotonic relationship between FC estimates with increasing626

noise, but overall correlations remained high in conditions with high signal length.627

For both multivariate AR models, the similarities to the partial correlation were negative for628

very short time series. This effect was more pronounced for higher levels of noise, but the629

relationship with noise was not monotonic.630

To better understand the relationship between the multivariate FC methods we plotted the dis-631

tribution of edge values as a function of noise separately for diagonal and off-diagonal terms632

(Figure S18). For brevity we did this only for the longest signal (10000 frames). For the multi-633

variate AR model, the diagonal terms (self-connections) were close to 1 at very high SNR and634

decreased with decreasing SNR. Conversely, the mean of the off-diagonal terms remained close635

to zero, regardless of the SNR, but the variability increased with increasing SNR. The opposite636

pattern was observed when the data were prewhitened. At maximum SNR (i.e., when no noise637

was added to the data), the diagonal terms were essentially equal to one and the off-diagonal638

terms were essentially zero, with very low variability compared to all other distributions. The639

distribution of values at maximum SNR was not affected by prewhitening. For the multivari-640

ate AR1 model without self-connections and partial correlations, the variability of the edges641

decreased with increasing SNR. Prewhitening reduced the variability of the edges.642

3.4.3. Autocorrelation on the simulated data643

We computed the average autocorrelation function over all participants and regions (Fig-644

ure 11D, Figure S1). In general, noise and prewhitening reduced the absolute autocorrelation.645

The shape of the autocorrelation function varied as a function of noise and prewhitening. In646

the case without prewhitening, the autocorrelation decreased monotonically, reaching 0 at lag 8.647

With AR1 prewhitening, the autocorrelation decreased to negative values after lag 4.648

4. Discussion649

In this study, we addressed the question of whether the temporal order of the BOLD fMRI time650

series contains information important for the study of the fMRI brain functional connectivity. To651

this end, we compared FC estimates between methods that differ in their sensitivity to temporal652

order, i.e., static and dynamic measures of FC. We also compared methods that differed in the653

number of variables considered in estimating the connectivity of individual edges, i.e., bivariate654

and multivariate. Our results suggest that dynamic FC connectivity methods provide similar655

connectivity estimates as static FC methods of the same type (bivariate or multivariate), whereas656

bivariate and multivariate methods differ in terms of the explanation of individual differences in657

behavior.658
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4.1. Dynamic functional connectomes represent information similar to static functional connec-659

tomes660

By directly comparing the FC matrices, we have shown that the estimates of the dynamic FC661

represent information similar to the estimates of the static FC. The similarity between estimates662

of FC, obtained by different methods, depended on several factors. First, there were high correla-663

tions between the FC estimates when the same number of variables was considered (Figure 2A).664

Second, similarities between connectomes were greater when averages were compared at the665

group level than when correlations were aggregated across individual-level FC matrices. We666

believe that the differences between the group- and individual-level cases are mainly due to667

better SNR in the case of the group-level data. Two observations support this conclusion: first,668

similarities in FC estimates between methods were greater for participants with the highest data669

quality, and this effect was more pronounced when comparing individual-level matrices than at670

the group level. Second, edges with higher test-retest reliability (an indicator of SNR) were more671

similar between FC estimates obtained by different methods. Thus, we can conclude that SNR672

influences the similarity between FC estimates.673

Using simulation, we tested the similarities between FC as a function of noise and signal674

length (Figure 11C). We have shown that the dynamic FC estimates resemble static FC estimates675

even in the absence of true lagged correlation. The similarity between the multivariate AR1676

model and partial correlations can be partially explained by the fact that the multivariate AR1677

coefficients are a product of the inverse covariance and the lagged covariance matrix. In the case678

of the multivariate AR model, the similarity to the partial correlation was actually higher when679

more noise was added to the data. This occurs because the self-connections (the diagonal term680

in the AR matrix) act as a prewhitening term. When the SNR was maximal, the self-connections681

were close to 1 and the off-diagonal terms were close to zero (Figure S18). In other words, the682

self-connections explained all the variance in the time series and there was no variability left to683

be explained by the off-diagonal terms. When noise was added to the data, the autocorrelations684

were reduced (Figure 11D) and the self-connections shrank (Figure S18). Consequently there685

was less prewhitening due to the self-connections and the off-diagonal elements became more686

similar to the partial correlations. For the same reason, estimates based on a multivariate AR1687

model without self-connections were highly correlated with estimates based on partial correlation688

regardless of the noise level – there were no self-connections to explain the autocorrelation.689

We also found a high similarity between the full and the lagged correlation. Therefore, the690

similarity between the multivariate AR1 model and the partial correlation cannot be explained691

solely by the inclusion of the precision matrix in the estimation of the coefficients of the multi-692

variate AR model. Rather, the lagged covariance matrix also contributes to this effect.693

We hypothesized that the similarities between the dynamic and static FC estimates originate694

from autocorrelation of the fMRI time series. We predicted that the similarities between the695

dynamic and static FC estimates would be at least as large as the average autocorrelation of the696

fMRI time series and that this similarity would be reduced after prewhitening. Both predictions697

were confirmed in experimental and simulated data. However, even when autocorrelation was698

reduced to virtually zero at all lags (this occurred at prewhitening order 3), similarities between699

estimates based on dynamic and static FC models remained high for group-level matrices and700

simulated data. This suggests that prewhitening (or even the presence of noise that reduces701

autocorrelation) does not completely eliminate the influence of convolution with HRF on the702

estimation of dynamic FC.703

We conclude that even if AR models represent information that goes beyond the static FC,704

this cannot be claimed on the basis of a direct comparison of dynamic and static FC estimates.705
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One of the main differences between static and dynamic FC methods is the ability of dynamic706

FC methods to estimate the directionality of connections [23]. FC matrices based on dynamic707

FC methods are therefore asymmetric. To allow comparisons between static and dynamic FC708

matrices, the former were symmetrized and the information about the directionality of the con-709

nections was lost. To test the possibility that there is specific information in the dynamic FC710

estimates that could not be detected in a direct comparison of the FC matrices, we additionally711

compared the node centrality measures and the patterns of brain-behavior associations between712

the FC methods.713

4.2. Network topology is affected by the functional connectivity estimation method714

Examining node centrality measures allowed us to investigate how different FC methods affect715

network topology. First, we analyzed the similarity between FC estimates based on different FC716

methods for each centrality measure separately. Overall, the results were consistent with direct717

comparisons of FC matrices. We found a clear distinction between multivariate and bivariate FC718

methods, while the difference between static and dynamic FC estimates was rather small (with719

an important caveat regarding the difference between incoming and outgoing connections, see720

below). The similarities were also influenced by the choice of the node centrality measure. In721

particular, the similarities between multivariate and bivariate FC methods were relatively low722

for eigenvector centrality (from −.15 to .25 for the group-level comparison), while for other723

centrality measures the similarity between multivariate and bivariate methods was higher (e.g.724

around .70 for strength).725

We explored this finding further by examining the similarities between the centrality mea-726

sures. While the correlations between the centrality measures were predominantly positive, and727

in some cases close to 1, there were some exceptions, suggesting that the centrality measures728

are not redundant. Specifically, for the correlation between eigenvector centrality and strength729

computed on full correlation connectomes, we observed two groups of nodes, one with higher730

similarity between the two centrality measures and one with lower similarity (Figure 5D). This731

pattern has been observed before [81] and suggests that one group of nodes is connected to other732

important nodes, while the other is mainly connected to less connected nodes. In other words,733

these two groups of nodes can be distinguished by jointly considering both eigenvector centrality,734

which measures how well a node is connected to other important nodes (i.e., nodes with many or735

strong connections), and strength, which is affected only by the number or strength of a node’s736

connections. Notably, however, we observed this pattern for full correlation, but not for partial737

correlation. This suggests that indirect connections have an important influence on the global738

position of nodes in functional connectomes estimated using full correlation. When indirect739

connections are removed (i.e., when partial correlation is used to estimate FC), the topological740

position (importance) of a node is the same regardless of the centrality measure. In summary, the741

choice of FC method has a different impact on the network topology depending on the centrality742

measure used.743

Second, we were interested in the relationship between incoming and outgoing connections.744

For multivariate AR model estimates, we found a negative correlation between in-strength and745

out-strength when comparing at the individual level. However, when comparing group-averaged746

FC matrices, the correlations between in-strength and out-strength were positive. Interestingly,747

when comparing the partial correlation with the multivariate AR model, the correlations of748

strength from the partial correlation connectomes were positive with in-strength from the multi-749

variate AR model, but negative with out-strength. The individual-level results confirm previous750

findings [30], suggesting that brain regions are either feeders or receivers, but not both. However,751
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this information is lost when FC matrices are averaged across subjects. In addition, there was a752

positive correlation between the in-strength and out-strength of bivariate dynamic FC estimates,753

regardless of the level of comparison. In FC analyses, individual-level matrices are often av-754

eraged, concatenated [e.g. 34], or estimated using a group prior [e.g. 82]. Because group-level755

FC matrices may be qualitatively different from individual-level FC matrices, we recommend756

that researchers perform analyses and/or examine results at both the group and individual levels757

whenever possible and/or meaningful.758

4.3. Dynamic FC models do not explain additional variance in behavior over static FC models759

We used the variance component model (VCM), canonical correlation analysis (CCA), and760

principal least squares (PLS) to estimate brain-behavior associations. The results of all methods761

showed that there were no large differences between the dynamic and static FC estimates in the762

patterns of associations with behavior. However, we found large differences between the bivariate763

and multivariate methods. These differences were specific to the method used to estimate brain-764

behavior associations.765

In the case of CCA, the canonical correlations were higher for bivariate methods than for766

multivariate methods. The cross-validated canonical correlations for multivariate methods were767

around 0, indicating that the results were not generalizable. In contrast, the difference between768

the canonical correlations in the training and test sets was relatively small for the bivariate meth-769

ods.770

In the case of PLS, the similarities between the FC methods were extremely high, especially771

when we compared loadings. We showed that these results are most likely due to the high sim-772

ilarity of the behavioral loadings and weights to the first behavioral PC, confirming previous773

observations that the PLS loadings and weights are biased toward the first principal axis, espe-774

cially at low sample-to-feature ratios [73]. Compared to PLS, CCA, on the other hand, shows775

much less bias toward the first principal axis. In addition, the canonical correlations based on776

PLS had negligible generalizability. Therefore, we advise users to be cautious when using PLS.777

We recommend that users perform cross-validation and examine the similarity between canonical778

weights/loadings and PCs.779

In the case of VCM, the multivariate methods explained on average about 30 percentage points780

more variance in behavior than the bivariate methods. To better understand this observation, we781

examined the impact of inter-subject similarities on VCM results. To this end, we added random782

noise to the data, reducing the similarities between subjects. Interestingly, full correlation and783

partial correlation explained more variance in behavior on average when we added random noise784

to the data. This may sound counterintuitive, but keep in mind that VCM was developed to785

estimate heritability [69], that is, the proportion of variance in phenotype that can be explained786

by variance in genotype. Holding the environment constant, higher genetic similarity would787

reduce the estimate of heritability. If all individuals within a sample had the same genotype,788

heritability would be zero because no variance in phenotype could be explained by variance in789

genotype. The input to VCM is a between-subject similarity matrix (usually a genetic similarity790

matrix or, in our case, a connectome similarity matrix). Participants were more similar when791

we used full correlation as an estimate of FC compared to partial correlation. This explains the792

observation that the partial correlation explained more variance in behavior.793

Our second simulation showed that the partial correlation estimates are less stable and more794

affected by noise and signal length. This explains the apparent discrepancy between VCM and795

CCA. Our results show that when we add noise to the experimental data, participants become796

more dissimilar and, in the case of VCM, the proportion of behavioral variance explained by797
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the variance in the connectome becomes larger. In the case of CCA, lower SNR leads to lower798

and less generalizable canonical correlations for multivariate FC methods. For this reason, we799

recommend that great care be taken when estimating brain-behavior associations with measures800

that are sensitive to noise.801

Liégeois et al. [32] have used VCM to compare brain-behavior associations between correla-802

tion and the multivariate AR model. They concluded that the dynamic FC explained variance in803

behavior beyond that explained by static FC. We have shown that these results are confounded804

by the mixing of two orthogonal properties of the FC methods: sensitivity to the temporal order805

of time points and the number of regions used to estimate a single edge. The difference between806

the explanatory value of the multivariate AR model and the full correlation is better explained by807

the difference between the multivariate and bivariate nature of the method than by the sensitivity808

to the temporal order of the time points.809

4.4. Relationship between static, dynamic and time-varying functional connectivity810

As explained in the Introduction, dynamic and time-varying FC encode different aspects of811

temporal information in FC. Based on previous research investigating resting-state fMRI, which812

showed that FC is largely stationary [7] and independent of cognitive content [83], we assumed813

stationarity of FC time series, and chose models of stationary static and dynamic FC as the basis814

of our study (as opposed to models of TVFC). Nevertheless, stationary FC is not incompatible815

with the presence of meaningful FC fluctuations [7, 21].816

Brain states can be estimated using TVFC estimation methods such as hidden Markov models817

(HMM) or clustering of sliding window correlation (SWC) matrices [10, 9]. Brain states derived818

in this way have been studied in the context of tracking ongoing cognition and behavior, and also819

for predicting trait aspects of behavior, such as personality, psychopathology, and performance820

on cognitive tests [see reviews in 10, 9, 84]. Commonly used metrics derived from brain states821

include transition matrix (a matrix that encodes the probabilities of transitioning from one state822

to another), fractional occupancy (proportion of time spent in each state), and switching rate (the823

frequency of switching between states) [85, 86, 87]. In addition, some studies have quantified824

TVFC using edge variability metrics, such as edge variance or standard deviation [88, 89], am-825

plitude of low frequency fluctuations (ALFF) [90], and excursions from a median time-varying826

correlation [19]. Edge variability has been shown repeatedly to be negatively correlated with827

the static FC [19, 90, 88, 89], suggesting that stronger edges have lower variability, and that828

variability of FC is partially redundant with the edge strength derived from static and stationary829

FC.830

Several studies have compared TVFC with static and stationary FC in terms of behavioral831

prediction, showing that TVFC-derived metrics have differential or better predictive power over832

static/stationary FC and/or anatomical brain features [87, 91, 31, 92, 86], and also for the pre-833

diction of psychopathology. Jin et al. [31] compared the predictive value of static, dynamic, and834

time-varying FC, and showed that TVFC had the best predictive value for PTSD. However, con-835

sistent with our findings, dynamic FC was only slightly better than static FC. Note that some of836

these studies suffer from methodological shortcomings, such as small sample sizes [87, 91], and837

thus the results may have low generalizability [73, 93]. Nevertheless, overall, the results suggest838

that TVFC does contain additional information beyond static or dynamic FC. Further studies839

are needed to reconcile these findings with the evidence that resting-state connectivity is largely840

stationary.841
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4.5. Limitations and future directions842

A number of limitations should be considered in drawing conclusions from our study. First, in843

our simulation, we generated noise using a multivariate normal distribution. We could have used844

more advanced noise modeling that incorporated specific noise components such as drift, moving845

average, physiological noise, and system noise [94]. Unlike white noise, these noise sources are846

autocorrelated and therefore could affect the (dynamic) FC estimates. We wanted to keep the847

model simple and interpretable. Even with the simplest noise model without autocorrelation in848

neural time series, we showed that AR models can be affected by convolution of the neural signal849

with HRF and that consequently the dynamic FC estimates resemble the static FC. However,850

more advanced noise modeling could be used for a more realistic assessment of the sources of851

similarities between different FC methods.852

Similarly, we used a very simple procedure, prewhitening, to reduce autocorrelation. Other853

methods could also be used to reduce autocorrelation, such as advanced physiological modeling854

[95, 96] or deconvolution [97]. Deconvolution can improve dynamic [26] and static FC estimates855

[97]. However, Seth et al. [27] have shown that sufficient sampling rate is more important for856

valid dynamic FC estimates. Unlike fMRI, electrophysiological measurements such as EEG and857

MEG have sufficient sampling rates and do not require deconvolution, so they could be used to858

study the relationship between static and dynamic FC [98]. Note that in EEG, volume conduction859

can inflate zero-lag connectivity, so careful consideration is needed to disentangle true zero-phase860

lag connectivity from volume conduction effects [99]. Furthermore, because instantaneous (zero-861

lag) signal transmission is not physiologically plausible, zero-phase lag effects in EEG most862

likely reflect indirect (non-causal) connections, whereas lagged effects are influenced by both863

indirect and direct (causal) connections. Therefore, the comparison of static and dynamic FC864

measures in the EEG can be used to disentangle causal and non-causal effects.865

4.6. Conclusions866

Our results show that the dynamic FC estimates represent information about connectivity that867

is broadly similar to the static FC. Moreover, we have shown that the similarity between dynamic868

and static FC is due, at least in part, to the convolution of neural time series with HRF. In contrast,869

we observed less similarity in the patterns of FC estimates between multivariate and bivariate870

methods. Multivariate FC methods were more sensitive to noise and CCA models based on871

multivariate methods were less generalizable. We also showed that the choice of FC methods872

affects the network topology, with noticable difference between multivariate and bivariate FC873

estimates, and only slight differences between dynamic and static FC estimates. While dynamic874

FC estimates can still provide information about the directionality of the connections, careful875

inspection of the results is required, as this information may change after averaging the FC876

matrices across participants.877

Although dynamic FC models are useful as a model for directed FC or for modeling the evo-878

lution of neural time series over time [7], our results suggest that estimates of the functional879

connectome change very little when temporal information is taken into account. Dynamic FC880

estimates also show strong similarity to static FC in terms of brain-behavior associations.881

5. Data and code availability882

Raw data are available as part of the Human Connectome Project (https://www.883

humanconnectome.org/). The function to compute the variance component model is available884
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in the repository: https://github.com/RaphaelLiegeois/FC-Behavior. For CCA and885

PLS, we used the GEMMR package: https://github.com/murraylab/gemmr. Strength-886

based node centrality measures were computed using the Brain Connectivity Toolbox (https:887

//sites.google.com/site/bctnet/). The code for the normalized participation coeffi-888

cient is available in the repository: https://github.com/omidvarnia/Dynamic_brain_889

connectivity_analysis. All other relevant code is available in the Open Science Framework890

repository: https://dx.doi.org/10.17605/OSF.IO/XFTDH.891
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Figure 7: Results of variance component model for brain-behavior associations. A. Variance explained for individual
traits estimated with different connectivity methods – traits are ordered according to the mean variance explained across
connectivity methods. B. Mean variance explained. C. Similarities of explained variance patterns between connectivity
methods.
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Figure 8: Results of variance component model for brain-behavior associations on data with added noise. FC was
estimated using Pearsons’/full correlation and partial correlation after adding various levels of random Gaussian noise
to experimental time series. A. Variance explained for individual traits estimated with different connectivity methods.
Traits are ordered according to the mean variance explained across connectivity methods. B. Mean variance explained.
Error bars represent jackknife standard deviation. C. Mean similarity between participants. Error bars represent standard
deviation.
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Figure 9: Results of canonical correlation analysis for brain-behavior associations. A. CCA weights. B. First
canonical correlation on test and training set, C. Correlations between canonical loadings and weights across functional
connectivity methods for first canonical components.

31

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2023. ; https://doi.org/10.1101/2023.01.24.525348doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/


loadings weights

C
C

A
P

L
S

0 20 40 60 0 20 40 60

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Behavioral principal component

C
o

rr
e

la
tio

n
 b

e
tw

e
e

n
 1

s
t 

c
a

n
o

n
ic

a
l m

o
d

e
a

n
d

 b
e

h
a

v
io

ra
l P

C

full correlation

full correlation
(AR1 prewhitened)

lagged correlation

lagged correlation
(AR1 prewhitened)

multivariate AR1

multivariate AR1
without self-connections

partial correlation

partial correlation
(AR1 prewhitened)
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Figure 11: Results of simulation. A. Ground truth matrices (mean over participants). Note that all ground truth autore-
gressive model coefficients equal zero, since the simulated events were not autocorrelated. B. Correlation between the
ground truth and the simulated data for all FC methods and their relationship to the noise level and signal length. C.
Correlations between selected pairs of FC methods as a function of noise and signal length for simulated data. D. The
autocorrelation function of the simulated data as a function of prewhitening order and noise.
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[56] D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4, Journal of Statistical1066

Software 67 (2015). doi:10/gcrnkw.1067

[57] E. Jolly, Pymer4: Connecting R and Python for linear mixed modeling, Journal of Open Source Software 3 (2018)1068

862. doi:10/gnzggv.1069

[58] L. Li, L. Zeng, Z.-J. Lin, M. Cazzell, H. Liu, Tutorial on use of intraclass correlation coefficients for assessing1070

intertest reliability and its application in functional near-infrared spectroscopy–based brain imaging, Journal of1071

Biomedical Optics 20 (2015) 050801. doi:10/gj7s8x.1072

[59] M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, NeuroImage1073

52 (2010) 1059–1069. doi:10.1016/j.neuroimage.2009.10.003.1074

[60] M. E. J. Newman, Networks, second edition ed., Oxford University Press, Oxford, United Kingdom ; New York,1075

NY, United States of America, 2018.1076

[61] J. D. Power, B. L. Schlaggar, C. N. Lessov-Schlaggar, S. E. Petersen, Evidence for hubs in human functional brain1077

networks, Neuron 79 (2013) 798–813. doi:10.1016/j.neuron.2013.07.035.1078

[62] M. Pedersen, A. Omidvarnia, J. M. Shine, G. D. Jackson, A. Zalesky, Reducing the influence of intramodular1079

connectivity in participation coefficient, Network Neuroscience 4 (2020) 416–431. doi:10.1162/netn_a_00127.1080
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[67] J. Li, R. Kong, R. Liégeois, C. Orban, Y. Tan, N. Sun, A. J. Holmes, M. R. Sabuncu, T. Ge, B. T. Yeo, Global1091

36

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2023. ; https://doi.org/10.1101/2023.01.24.525348doi: bioRxiv preprint 

http://dx.doi.org/10/f46ktq
http://dx.doi.org/10/f46nj4
http://dx.doi.org/10/ggwbcj
http://dx.doi.org/10.1016/j.neuroimage.2014.05.069
http://dx.doi.org/10.3389/fninf.2023.1104508
http://dx.doi.org/10/f6rcdt
http://dx.doi.org/10/f4jgxv
http://dx.doi.org/10/f8z3gb
http://dx.doi.org/10/ggx68f
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10/f7n8qq
http://dx.doi.org/10/fs5xbw
http://dx.doi.org/10/gfx53r
http://dx.doi.org/10/gcrnkw
http://dx.doi.org/10/gnzggv
http://dx.doi.org/10/gj7s8x
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1016/j.neuron.2013.07.035
http://dx.doi.org/10.1162/netn_a_00127
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1088/1367-2630/16/12/125006
http://dx.doi.org/10.1088/1367-2630/16/12/125006
http://dx.doi.org/10.1088/1367-2630/16/12/125006
http://dx.doi.org/10.1126/science.1065103
http://dx.doi.org/10.1016/j.neuroimage.2018.10.006
http://dx.doi.org/10.1016/j.neuroimage.2018.10.006
http://dx.doi.org/10.1016/j.neuroimage.2018.10.006
https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/


signal regression strengthens association between resting-state functional connectivity and behavior, NeuroImage1092

196 (2019) 126–141. doi:10/gj8p69.1093

[68] R. Kashyap, R. Kong, S. Bhattacharjee, J. Li, J. Zhou, B. Thomas Yeo, Individual-specific fMRI-Subspaces1094

improve functional connectivity prediction of behavior, NeuroImage 189 (2019) 804–812. doi:10/gft3tt.1095

[69] T. Ge, M. Reuter, A. M. Winkler, A. J. Holmes, P. H. Lee, L. S. Tirrell, J. L. Roffman, R. L. Buckner, J. W. Smoller,1096

M. R. Sabuncu, Multidimensional heritability analysis of neuroanatomical shape, Nature Communications 7 (2016)1097

13291. doi:10/f9b8cv.1098

[70] D. J. Stekhoven, P. Buhlmann, MissForest–non-parametric missing value imputation for mixed-type data, Bioin-1099

formatics 28 (2012) 112–118. doi:10/dhxth8.1100

[71] T. Ge, T. E. Nichols, P. H. Lee, A. J. Holmes, J. L. Roffman, R. L. Buckner, M. R. Sabuncu, J. W. Smoller, Massively1101

expedited genome-wide heritability analysis (MEGHA), Proceedings of the National Academy of Sciences 1121102

(2015) 2479–2484. doi:10/f63g67.1103

[72] A. C. Rencher, Methods of Multivariate Analysis, Wiley Series in Probability and Mathematical Statistics, 2nd ed1104

ed., J. Wiley, New York, 2002.1105

[73] M. Helmer, S. Warrington, A.-R. Mohammadi-Nejad, J. L. Ji, A. Howell, B. Rosand, A. Anticevic, S. N. Sotiropou-1106

los, J. D. Murray, On stability of Canonical Correlation Analysis and Partial Least Squares with application to1107

brain-behavior associations, 2020. doi:10.1101/2020.08.25.265546.1108

[74] A. M. Winkler, O. Renaud, S. M. Smith, T. E. Nichols, Permutation inference for canonical correlation analysis,1109

NeuroImage 220 (2020) 117065. doi:10.1016/j.neuroimage.2020.117065.1110

[75] H.-T. Wang, J. Smallwood, J. Mourao-Miranda, C. H. Xia, T. D. Satterthwaite, D. S. Bassett, D. Bzdok, Finding1111

the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists, NeuroImage 2161112

(2020) 116745. doi:10.1016/j.neuroimage.2020.116745.1113

[76] X. Zhuang, Z. Yang, D. Cordes, A technical review of canonical correlation analysis for neuroscience applications,1114

Human Brain Mapping 41 (2020) 3807–3833. doi:10.1002/hbm.25090.1115

[77] S. M. Smith, T. E. Nichols, D. Vidaurre, A. M. Winkler, T. E. J. Behrens, M. F. Glasser, K. Ugurbil, D. M.1116

Barch, D. C. Van Essen, K. L. Miller, A positive-negative mode of population covariation links brain connectivity,1117

demographics and behavior, Nature Neuroscience 18 (2015) 1565–1567. doi:10.1038/nn.4125.1118

[78] A. Mihalik, J. Chapman, R. A. Adams, N. R. Winter, F. S. Ferreira, J. Shawe-Taylor, J. Mourão-Miranda, Canon-1119

ical correlation analysis and partial least squares for identifying brain–behavior associations: A tutorial and a1120

comparative study, Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 7 (2022) 1055–1067.1121

doi:10.1016/j.bpsc.2022.07.012.1122

[79] A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X.-N. Zuo, A. J. Holmes, S. B. Eickhoff, B. T. T. Yeo, Local-1123

global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI, Cerebral Cortex 281124

(2018) 3095–3114. doi:10/gd738m.1125

[80] E. B. Erhardt, E. A. Allen, Y. Wei, T. Eichele, V. D. Calhoun, SimTB, a simulation toolbox for fMRI data under a1126

model of spatiotemporal separability, NeuroImage 59 (2012) 4160–4167. doi:10/cr4g9g.1127

[81] X.-N. Zuo, R. Ehmke, M. Mennes, D. Imperati, F. X. Castellanos, O. Sporns, M. P. Milham, Network centrality in1128

the human functional connectome, Cerebral Cortex 22 (2012) 1862–1875. doi:10.1093/cercor/bhr269.1129

[82] M. Chong, C. Bhushan, A. Joshi, S. Choi, J. Haldar, D. Shattuck, R. Spreng, R. Leahy, Individual parcellation1130

of resting fMRI with a group functional connectivity prior, NeuroImage 156 (2017) 87–100. doi:10.1016/j.1131

neuroimage.2017.04.054.1132

[83] T. O. Laumann, A. Z. Snyder, Brain activity is not only for thinking, Current Opinion in Behavioral Sciences 401133

(2021) 130–136. doi:10.1016/j.cobeha.2021.04.002.1134

[84] J. R. Cohen, The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity,1135

NeuroImage 180 (2018) 515–525. doi:10.1016/j.neuroimage.2017.09.036.1136

[85] E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, V. D. Calhoun, Tracking whole-brain connectivity1137

dynamics in the resting state, Cerebral Cortex 24 (2014) 663–676. doi:10.1093/cercor/bhs352.1138

[86] D. Vidaurre, A. Llera, S. Smith, M. Woolrich, Behavioural relevance of spontaneous, transient brain network1139

interactions in fMRI, NeuroImage 229 (2021) 117713. doi:10.1016/j.neuroimage.2020.117713.1140

[87] A. Eichenbaum, I. Pappas, D. Lurie, J. R. Cohen, M. D’Esposito, Differential contributions of static and time-1141

varying functional connectivity to human behavior, Network Neuroscience 5 (2021) 145–165. doi:10.1162/1142

netn_a_00172.1143

[88] A. S. Choe, M. B. Nebel, A. D. Barber, J. R. Cohen, Y. Xu, J. J. Pekar, B. Caffo, M. A. Lindquist, Comparing test-1144

retest reliability of dynamic functional connectivity methods, NeuroImage 158 (2017) 155–175. doi:10.1016/j.1145

neuroimage.2017.07.005.1146

[89] W. H. Thompson, P. Fransson, The mean–variance relationship reveals two possible strategies for dynamic brain1147

connectivity analysis in fMRI, Frontiers in Human Neuroscience 9 (2015). doi:10.3389/fnhum.2015.00398.1148

[90] C. Zhang, S. A. Baum, V. R. Adduru, B. B. Biswal, A. M. Michael, Test-retest reliability of dynamic functional1149

connectivity in resting state fmri, NeuroImage 183 (2018) 907–918. doi:10.1016/j.neuroimage.2018.08.021.1150

37

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2023. ; https://doi.org/10.1101/2023.01.24.525348doi: bioRxiv preprint 

http://dx.doi.org/10/gj8p69
http://dx.doi.org/10/gft3tt
http://dx.doi.org/10/f9b8cv
http://dx.doi.org/10/dhxth8
http://dx.doi.org/10/f63g67
http://dx.doi.org/10.1101/2020.08.25.265546
http://dx.doi.org/10.1016/j.neuroimage.2020.117065
http://dx.doi.org/10.1016/j.neuroimage.2020.116745
http://dx.doi.org/10.1002/hbm.25090
http://dx.doi.org/10.1038/nn.4125
http://dx.doi.org/10.1016/j.bpsc.2022.07.012
http://dx.doi.org/10/gd738m
http://dx.doi.org/10/cr4g9g
http://dx.doi.org/10.1093/cercor/bhr269
http://dx.doi.org/10.1016/j.neuroimage.2017.04.054
http://dx.doi.org/10.1016/j.neuroimage.2017.04.054
http://dx.doi.org/10.1016/j.neuroimage.2017.04.054
http://dx.doi.org/10.1016/j.cobeha.2021.04.002
http://dx.doi.org/10.1016/j.neuroimage.2017.09.036
http://dx.doi.org/10.1093/cercor/bhs352
http://dx.doi.org/10.1016/j.neuroimage.2020.117713
http://dx.doi.org/10.1162/netn_a_00172
http://dx.doi.org/10.1162/netn_a_00172
http://dx.doi.org/10.1162/netn_a_00172
http://dx.doi.org/10.1016/j.neuroimage.2017.07.005
http://dx.doi.org/10.1016/j.neuroimage.2017.07.005
http://dx.doi.org/10.1016/j.neuroimage.2017.07.005
http://dx.doi.org/10.3389/fnhum.2015.00398
http://dx.doi.org/10.1016/j.neuroimage.2018.08.021
https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/


[91] H. Jia, X. Hu, G. Deshpande, Behavioral relevance of the dynamics of the functional brain connectome, Brain1151

Connectivity 4 (2014) 741–759. doi:10.1089/brain.2014.0300.1152

[92] B. Rashid, E. Damaraju, G. D. Pearlson, V. D. Calhoun, Dynamic connectivity states estimated from resting fMRI1153

Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects, Frontiers in Human1154

Neuroscience 8 (2014). doi:10.3389/fnhum.2014.00897.1155

[93] S. Marek, B. Tervo-Clemmens, F. J. Calabro, D. F. Montez, B. P. Kay, A. S. Hatoum, M. R. Donohue, W. Foran,1156

R. L. Miller, T. J. Hendrickson, S. M. Malone, S. Kandala, E. Feczko, O. Miranda-Dominguez, A. M. Graham,1157

E. A. Earl, A. J. Perrone, M. Cordova, O. Doyle, L. A. Moore, G. M. Conan, J. Uriarte, K. Snider, B. J. Lynch,1158

J. C. Wilgenbusch, T. Pengo, A. Tam, J. Chen, D. J. Newbold, A. Zheng, N. A. Seider, A. N. Van, A. Metoki,1159

R. J. Chauvin, T. O. Laumann, D. J. Greene, S. E. Petersen, H. Garavan, W. K. Thompson, T. E. Nichols, B. T. T.1160

Yeo, D. M. Barch, B. Luna, D. A. Fair, N. U. F. Dosenbach, Reproducible brain-wide association studies require1161

thousands of individuals, Nature 603 (2022) 654–660. doi:10.1038/s41586-022-04492-9.1162

[94] C. T. Ellis, C. Baldassano, A. C. Schapiro, M. B. Cai, J. D. Cohen, Facilitating open-science with realistic fMRI1163

simulation: Validation and application, PeerJ 8 (2020) e8564. doi:10/ght935.1164

[95] J. E. Chen, J. R. Polimeni, S. Bollmann, G. H. Glover, On the analysis of rapidly sampled fMRI data, NeuroImage1165

188 (2019) 807–820. doi:10/gfvhhv.1166

[96] S. Bollmann, A. M. Puckett, R. Cunnington, M. Barth, Serial correlations in single-subject fMRI with sub-second1167

TR, NeuroImage 166 (2018) 152–166. doi:10/gcr9cx.1168

[97] D. Rangaprakash, G.-R. Wu, D. Marinazzo, X. Hu, G. Deshpande, Hemodynamic response function (HRF) vari-1169

ability confounds resting-state fMRI functional connectivity, Magnetic Resonance in Medicine 80 (2018) 1697–1170

1713. doi:10/gkzm4c.1171

[98] E. Tagliazucchi, H. Laufs, Multimodal imaging of dynamic functional connectivity, Frontiers in Neurology 61172

(2015). doi:10.3389/fneur.2015.00010.1173

[99] M. X. Cohen, Analyzing Neural Time Series Data: Theory and Practice, Issues in Clinical and Cognitive Neu-1174

ropsychology, The MIT Press, Cambridge, Massachusetts, 2014.1175

38

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2023. ; https://doi.org/10.1101/2023.01.24.525348doi: bioRxiv preprint 

http://dx.doi.org/10.1089/brain.2014.0300
http://dx.doi.org/10.3389/fnhum.2014.00897
http://dx.doi.org/10.1038/s41586-022-04492-9
http://dx.doi.org/10/ght935
http://dx.doi.org/10/gfvhhv
http://dx.doi.org/10/gcr9cx
http://dx.doi.org/10/gkzm4c
http://dx.doi.org/10.3389/fneur.2015.00010
https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Supplement1176

n
o

 p
re

w
h

ite
n

in
g

A
R

1
 p

re
w

h
ite

n
in

g
A

R
2

 p
re

w
h

ite
n

in
g

A
R

3
 p

re
w

h
ite

n
in

g

1 2 3 4 5 6 7 8 9 10

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0

lag

a
u

to
c
o

rr
e

la
tio

n

∞ 9 7 5 3 1
SNR

Figure S1: The autocorrelation function of simulated data as a function of prewhitening order and noise. The mean
autocorrelation function was computed over all participants and regions. In general, noise and prewhitening reduced
absolute autocorrelation. The shape of the autocorrelation function varied as a function of noise and prewhitening.
In case without prewhitening, autocorrelation monotonically decreased and reached 0 at lag 8. After prewhitening,
autocorrelation varied between positive and negative values, and this was most pronounced in cases without noise. The
autocorrelation function was more similar to the experimental data in cases with low levels of noise.
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Figure S2: Correlations between connectivity methods. Same as in Figure 2A but includes all orders of prewhitening.
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Figure S3: Correlations between connectivity methods on 200 participants with highest quality data.
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Figure S4: Similarities between node centrality measures based on positive connections. Similarities were estimated
by (i) computing node measures on group-average connectivity matrices (group-level comparison; below diagonal), (ii)
by computing node measures for each individual separately, correlating within participant and averaging these correla-
tions across participants (individual-level comparsion; above diagonal). Same as in Figure 4, but includes prewhitened
data.
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Figure S5: Similarities between node centrality measures based on positive connections. Similarities were estimated
by (i) computing node measures on group-averaged connectivity matrices (group-level comparison; below diagonal),
(ii) by computing node measures for each individual separately, correlating within participants and averaging these
correlations across participants (individual-level comparison; above diagonal). Similar to Figure S4, but for negative
connections.
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Figure S6: Correlations between centrality measures for static FC methods at the group level. Correlations were
computed separately for positive and negative connections. We observed a positive correlation between the participation
coefficient of positive connections and strength-based measures of negative connections. This suggests that nodes that
participate in different modules tend to have fewer negative connections. Importantly, this finding highlights the func-
tional importance of negative connections. However, for partial correlation networks, a positive correlation was found
between strength-based measures and the participation coefficient. This suggests that indirect negative connections drive
the negative relationship between participation coefficient and strength. In other words, nodes that participate in dif-
ferent modules tend to have more indirect negative functional connections, compared to nodes with low participation
coefficient.
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Figure S7: Correlations between centrality measures for the multivariate autoregressive model at the group level.
Correlations were computed separately for positive and negative connections. The scatter plots above the diagonal refer
to outgoing connections, while the scatter plots below the diagonal refer to incoming connections.
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A node strength

full correlation partial correlation

B eigenvector centrality

C normalized participation coefficient

Figure S8: Cortical distribution of centrality measures for static FC methods and for negative connections. PageR-
ank centrality is omitted, because its correlation with strength is equal to 1. The values have been transformed to z-values
for visualization.

46

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2023. ; https://doi.org/10.1101/2023.01.24.525348doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/


A node strength

multivariate AR model
(incoming connections)

multivariate AR model
(outgoing connections)

B eigenvector centrality

C normalized participation coefficient

D PageRank centrality

Figure S9: Cortical distribution of centrality measures for multivariate autoregressive model and for negative
connections.

47

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2023. ; https://doi.org/10.1101/2023.01.24.525348doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/


A node strength

multivariate AR model
(incoming connections)

multivariate AR model
(outgoing connections)

B eigenvector centrality

C normalized participation coefficient

D PageRank centrality

Figure S10: Cortical distribution of centrality measures for HCP subject 100307 for multivariate autoregressive
model and for negative connections.
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Figure S11: Cortical distribution of centrality measures for HCP subject 100307 for multivariate autoregressive
model and for negative connections.
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Figure S12: Results of variance component model for brain-behavior associations on subsamples of unrelated
participants. (A) Variance explained for individual traits estimated with different connectivity methods, (B) mean
variance explained, and (C) similarities of explained variance patterns between connectivity methods. The traits are
ordered according to the mean variance explained across connectivity methods. The same as in Figure 7 but in subsamples
of unrelated participants.
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Figure S13: Results of canonical correlation analysis for brain-behavior associations on subsamples of unrelated
participants. (A,C) First canonical correlation on test and training sets in the first (A, n = 384) and second subsample
(C, n = 339). (B,D) Correlations between canonical loadings and weights across FC methods for the first canonical
components on the first (B) and second (D) subsamples.
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Figure S14: Results of principal least squares analysis for brain-behavior associations. A. PLS weights. B. First
canonical correlation on test and training sets. C. Correlations between canonical loadings and weights across functional
connectivity methods for first canonical components.
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Figure S15: Results of principal least squares analysis for brain-behavior associations on subsamples of unrelated
participants. (A,C) First canonical correlation on test and training sets in the first (A, n = 384) and second subsample
(C, n = 339). (B,D) Correlations between canonical loadings and weights across FC methods for the first canonical
components on the first (B) and second (D) subsamples.
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Figure S16: Correlation between ground truth and simulated data for all FC methods in association ith noise and
signal length. Same as in Figure 11B but includes all orders of prewhitening.
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Figure S17: Correlation between selected pairs of FC methods as a function of noise and signal length on simulated
data. Same as in Figure 11C but includes all prewhitening orders.
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Figure S18: Distributions of edge values on simulated data for selected FC methods as a function of noise for the
signals with the longest length (10000 frames). The distributions are based on the average FC matrix across simulated
participants. The boxplot whiskers represent the minimum and maximum values.
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HCP Field Friendly Name HCP Field Friendly Name
PicSeq Unadj Visual Episodic Memory WM Task Acc Working Memory (N-back)
CardSort Unadj Cognitive Flexibility NEOFAC A Agreeableness (NEO)
Flanker Unadj Inhibition (Flanker Task) NEOFAC O Openness (NEO)
PMAT24 A CR Fluid Intelligence NEOFAC C Conscientiousness (NEO)
ReadEng Unadj Vocabulary (Pronunciation) NEOFAC N Neuroticism (NEO)
PicVocab Unadj Vocabulary (Picture Matching) NEOFAC E Extroversion (NEO)
ProcSpeed Unadj Processing Speed ER40 CR Emotion Recog. - Total
DDisc AUC 40K Delay Discounting ER40ANG Emotion Recog. - Anger
VSPLOT TC Spatial Orientation ER40FEAR Emotion Recog. - Fear
SCPT SEN Sustained Attention - Sens. ER40HAP Emotion Recog. - Happiness
SCPT SPEC Sustained Attention - Spec. ER40NOE Emotion Recog. - Neutral
IWRD TOT Verbal Episodic Memory ER40SAD Emotion Recog. - Sadness
ListSort Unadj Working Memory (List Sorting) AngAffect Unadj Anger - Affect
MMSE Score Cognitive Status (MMSE) AngHostil Unadj Anger - Hostility
PSQI Score Sleep Quality AngAggr Unadj Anger - Aggressiveness
Endurance Unadj Walking Endurance FearAffect Unadj Fear - Affect
GaitSpeed Comp Walking Speed FearSomat Unadj Fear - Somatic Arousal
Dexterity Unadj Dexterity Sadness Unadj Sadness
Strength Unadj Grip Strength LifeSatisf Unadj Life Satisfaction
Odor Unadj Odor Identification MeanPurp Unadj Meaning of Life
PainInterf Tscore Pain Interference Survey PosAffect Unadj Positive Affect
Taste Unadj Taste Intensity Friendship Unadj Friendship
Mars Final Contrast Sensitivity Loneliness Unadj Loneliness
Emotion Task Face Acc Emotion Face Matching PercHostil Unadj Perceived Hostility
Language Task Math Avg Difficulty Level Arithmetic PercReject Unadj Perceived Rejection
Language Task Story Avg Difficulty Level Story Comprehension EmotSupp Unadj Emotional Support
Relational Task Acc Relational Processing InstruSupp Unadj Instrumental Support
Social Task Perc Random Social Cognition - Random PercStress Unadj Perceived Stress
Social Task Perc TOM Social Cognition - Interaction SelfEff Unadj Self-Efficacy

Table S1: Behavioral measures.
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