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Abstract

Functional connectivity (FC) of blood-oxygen-level-dependent (BOLD) fMRI time series can be
estimated using methods that differ in sensitivity to the temporal order of time points (static vs.
dynamic) and the number of regions considered in estimating a single edge (bivariate vs. multi-
variate). Previous research suggests that dynamic FC explains variability in FC fluctuations and
behavior beyond static FC. Our aim was to systematically compare methods on both dimensions.
We compared five FC methods: Pearson’s/full correlation (static, bivariate), lagged correlation
(dynamic, bivariate), partial correlation (static, multivariate) and multivariate AR model with
and without self-connections (dynamic, multivariate). We compared these methods by (i) as-
sessing similarities between FC matrices, (ii) by comparing node centrality measures, and (iii)
by comparing the patterns of brain-behavior associations. Although FC estimates did not differ
as a function of sensitivity to temporal order, we observed differences between the multivariate
and bivariate FC methods. The dynamic FC estimates were highly correlated with the static FC
estimates, especially when comparing group-level FC matrices. Similarly, there were high corre-
lations between the patterns of brain-behavior associations obtained using the dynamic and static
FC methods. We conclude that the dynamic FC estimates represent information largely similar
to that of the static FC.

1 1. Introduction

2 Brain functional connectivity (FC) is estimated by calculating statistical associations between
s time series of brain signal [1]], which reflect functional relationships between brain regions [2].
4 The investigation of FC has improved our understanding of brain function in health and disease
s and has been shown to be useful as a tool to predict interindividual differences, such as cognition,
s personality, or the presence of mental or neurological disorders [3}14]. In functional magnetic res-
7 onance imaging (fMRI) studies, FC is most commonly estimated using the Pearson’s correlation
s coefficient between time series of pairs of regions. Although correlation is simple to understand
s and compute, it is insensitive to the temporal order of time points. Measures or models that are
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10 sensitive to the temporal order of time points are called dynamic, while measures that are insen-
1 sitive to temporal order are measures of static FC. Given that the information flow in the brain
12 is causally organized in time [5} 6], dynamic connectivity models could be more informative in
13 terms of understanding brain function and investigating brain-behavior associations.
14 In FC temporal information can be represented in two ways. First, the temporal order of
15 the time points can be taken into account when computing the FC estimates. Models that are
16 sensitive to temporal order are called dynamic models, whereas models that do not take temporal
17 order into account are called static FC models. Second, the methods can investigate, whether
1¢and how FC estimates change over time. A time series model is stationary (in a weak sense)
19 if its first- and second-order statistics (mean and variance) do not vary as a function of time
20 [7,18]. Importantly, the distinction between dynamic and static FC should not be confused with
21 the distinction between stationary and non-stationary FC.
2 Nonstationarities are commonly estimated using measures of time-varying functional connec-
2 tivity (TVFC), such as sliding window correlation (SWC) [9} [10]. In this method, we calculate
2+ connectivity (e.g. using correlation) in a time window of selected length around a given time
25 point; this window is continuously being moved from the start to the end of the recording.
26 Procedures such as autoregressive (AR) randomization or phase randomization can be used to
27 construct surrogate time series, which can then be used to perform a statistical test of the null
2s hypothesis that a time series is stationary, linear, and Gaussian [11]. Using these procedures
2 Liégeois et al. [7] and Hindriks et al. [[12] have shown that the hypothesis that FC is stationary
a0 cannot be rejected for most participants. Similarly, Laumann et al. [13]] concluded that variation
st in FC over time within a single session can be largely explained by sampling variability, head
32 motion, and fluctuating sleep state. Furthermore, EEG FC has been shown to be largely stable
s during resting state [14], during sleep [15], and even before, during, and after epileptic seizures
s [16]. On the other hand, several studies rejected the stationarity hypothesis for certain connec-
s tions [17,[18}[19]. However, do note that Zalesky et al. [19] found that on average only 4% of the
3 connections are nonstationary.
a7 The inability to reject the stationarity hypothesis does not imply the absence of brain states
s [7], nor does it preclude finding (behaviorally) relevant information using models of TVFC [11].
3 However, if a simpler model (i.e., a more interpretable model with fewer parameters) can be used
40 to describe FC dynamics, it should be preferred to a complex model (such as SWC) unless the
41 simpler model cannot model some important aspect of the time series a researcher is interested
«2 in [7, 20]]. Indeed, recent work on resting state fMRI FC in humans has shown that many of
«  the properties of TVFC can be predicted from a static and stationary FC model [20} 21} [13] 22].
4« Similarly, Liégeois et al. [[7] showed that SWC fluctuations can be explained with a model of
ss dynamic (and stationary) FC. Since many studies have shown that FC is largely stationary, we
4 focused on the relationship between dynamic (as defined above) and static connectivity.
47 Dynamic FC can be estimated using measures of lag-based connectivity, such as lagged corre-
s lation or multivariate autoregressive (AR) model. In contrast to static FC, dynamic FC methods
4« can be used to estimate the directionality of information flow based on temporal precedence
so  [23]. Although these methods have been commonly used, some studies [23| 24} 25126, 127]] have
st warned that the ability of these methods to accurately estimate the presence and directionality of
s2connections is compromised due to the convolution of the neural signal with the hemodynamic
ss  response function (HRF) and the resulting blurring of the signal, due to interregional variabil-
s« ity of HRF [26} 24} [25]], noise [23], 24} 26]], and/or downsampling of the neural signal in fMRI
ss  [27]. Other studies [28 29, 30, 31]] have shown that the measures of dynamic FC complement
s the measures of static FC. For example, lagged FC measures can improve discrimination be-
2
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s7 tween individuals and between tasks [28, 29], have better predictive value for PTSD compared
ss  to static FC [31]], and can be used to improve effective connectivity estimates [30]. Furthermore,
s Liégeois et al. [7]] have shown that the multivariate AR model explains temporal FC fluctuations
s better than Pearson correlations.
61 In subsequent research Liégeois et al. [32] showed that static FC and dynamic FC exhibit
e different patterns of brain-behavior associations. They concluded that dynamic FC explains ad-
&s ditional variance in behavior beyond variance that can be explained by static FC. However, this
s« comparison confounds two orthogonal properties of FC methods. Although Pearson’s correla-
s tion and multivariate AR models differ in their sensitivity to temporal reordering (i.e., static vs.
e dynamic), they also differ in terms of how many variables (brain regions) are taken into account
&7 during the estimation of a single edge (bivariate vs. multivariate). Hence, a more valid compar-
s 1son between static and dynamic FC methods should consider both dimensions: the number of
o variables and the sensitivity to temporal reordering. Combining these two factors enabled us to
7 differentiate between four basic classes of FC methods (see[Figure IB).
7 Our aim was to systematically compare the FC estimated by both dimensions, that is, the
72 sensitivity to temporal reordering (static vs. dynamic) and the number of independent variables
73 (bivariate vs. multivariate). We focused on five mathematically related methods: full/Pearson’s
7« correlation, partial correlation, lagged correlation, and multivariate AR model with and without
75 self-connections, where self-connections refer to autocorrelation of the region with itself [33}34].
76 We were interested in similarities of the FC estimates and patterns of brain-behavior associations.
77 We compared FC methods (i) by assessing similarities between FC matrices, (ii) by comparing
72 node centrality measures, and (iii) by comparing brain-behavior associations. In addition, to
79 better understand the results obtained using different methods and the relationship between them,
s we generated and analyzed synthetic data in which we systematically varied the length of time
a1 series and the amount of noise.
82 We used empirical and simulated data to test several hypotheses. First, we predicted that
s dynamic and static FC methods will provide similar FC estimates due to autocorrelation of the
s fMRI time series. Autocorrelation is inherent to the fMRI signal and originates from two main
s sources: physiological noise and convolution of neural activity with HRF [35]. We expected the
s degree of similarity between static and dynamic FC estimates to be similar to or greater than
ez the average autocorrelation of the fMRI time series. Furthermore, we expected the similarity
s between dynamic and static FC to be lower when the fMRI time series is pre-whitened (i.e.,
s when autocorrelation is removed before computation of FC).
9 Second, we predicted that multivariate methods can improve inferences about causal rela-
o1 tionships between regions, as they estimate direct connections by removing the confounding
e influence of indirect associations [2] as opposed to bivariate methods, which cannot separate in-
e direct and direct connections [34]. By providing more direct information on causal relationships
e between brain regions [36], multivariate methods could improve brain-behavior associations in
o5 terms of explained variance and/or brain-behavior correlation estimates. Existing research has
9 shown inconsistent differences in behavior predictive accuracy between partial and full/Pearson’s
o7 correlations, favoring either partial [37, 38]] or full correlation [39] or showing negligible differ-
s ences between them [40].
99 Finally, the choice of FC method can affect the measures of network topology [e.g.41,42]. To
10 address this problem, we compared FC estimates using common node centrality measures, in-
w1 cluding strength, eigenvector centrality, PageRank centrality, and participation coefficient. Using
12 centrality measures also allowed us to compare incoming and outgoing connections in dynamic
w3 FC estimates. Based on previous research showing that nodes are either receptors or feeders (i.e.,
3
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14 they have predominantly incoming or outgoing connections), but not both [30], we expected a
105 negative correlation between in-degree and out-degree. We had no specific hypotheses regarding
16 the similarity of node centrality measures between multivariate and bivariate methods or between
17 static and dynamic FC methods.

10s 2. Method

we  2.1. Participants

110 To address the research questions, the analyzes were performed on publicly available deidenti-
w1 fied data from 1096 participants (Mg, = 28.8, S Dyge = 3.7, 596 women) included in the Human
112 Connectome Project, 1200 Subjects Release [43]. Each participant took part in two imaging ses-
13 sions over two consecutive days that included the acquisition of structural, functional (rest and
14 task), and diffusion-weighted MR images. The study was approved by the Washington University
15 institutional review board and informed consent was signed by each participant.

we  2.2. fMRI data acquisition and preprocessing
17 Data were acquired in two sessions using the Siemens 3T Connectome Skyra tomograph.
1s  Structural MPRAGE T1w image (TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, voxel size = 0.7
19 mm isotropic, SENSE factor = 2, flip angle = 8°) and T2w image (TR = 3200 ms, TE = 565 ms,
120 voxel size = 0.7 mm isotropic) were acquired in the first session. The participants underwent
121 four resting state fMRI runs, two in each session (gradient echo EPI sequence, multiband factor:
122 8, acquisition time: 14 min 24 s, TR = 720 ms, TE = 33.1 ms, flip angle = 52°).
123 Initial preprocessing was performed by the HCP team and included minimal preprocessing
12¢  [44], ICA-FIX denoising [45] and MSMAII registration [46]. The data was then further processed
125 using QuNex [47] to prepare them for functional connectivity analyzes. First, we identified
126 frames with excessive movement and/or frame-to-frame signal changes. We marked any frame
127 that was characterized by frame displacement greater than 0.3 mm or for which the frame-to-
12s  frame change in signal, computed as intensity normalized root mean squared difference (DVARS)
120 across all voxels, exceeded 1.2 times the DVARS median across the time series, as well as one
10 frame before and two frames after them. Marked frames were used for motion censoring, which
131 1s described in detail below. Next, we used linear regression to remove multiple nuisance signals,
122 including six movement correction parameters and their squared values, signals from the ventri-
133 cles, white matter and the whole brain, as well as the first derivatives of the listed signals. The
13« previously marked frames were excluded from the regression and all subsequent analysis steps
135 were performed on the residual signal. No temporal filtering was applied to the data, except a
136 very gentle high-pass filter at the cutoff of 2000 s applied by the HCP team [44]], since temporal
17 filtering could introduce additional autocorrelation [48] and inflate correlation estimates [35}49].
138 Motion scrubbing is usually performed by removing frames thought to be affected by move-
13s  ment (i.e. bad frames) before calculating the correlation or related measure of static FC. This is
140 not appropriate in the case of dynamic FC or autocorrelation, since removing time points disrupts
141 the autocorrelation structure of time series. To overcome this limitation, a frame was considered
142 bad if it was bad in either original or lagged time series. Frames at transition between concate-
113 nated time series (last frame in the first time series and first frame in the next time series) were
144 also marked as bad in this case.
145 Only sessions with at least 50% useful frames after motion censoring were used in the further
1s  analysis, except where noted otherwise. This resulted in 1003 participants with at least one ses-
147 sion. Before FC analyzes, all resting-state BOLD runs from available sessions were concatenated
4


https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525348; this version posted May 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A BOLD fMRI time series B Functional connectivity estimation C Outputs

static dynamic
full/Pearson correlation  lagged correlation

multimodal
parcellation . connectivity matrices
E ——» directed connection
(Glasser et al., 2016) 0
: ® - vectoriza
—_—

A W partial correlation  autoregressive model  model w/o self-connections

)
4 o
: : -5 =8 o s

D Comparison of functional connectivity methods

bivariate

regions
subjects

brain regions
o W
multivariate

(ii) Similarity of node centrality measures
(i) Similarity of functional connectivity estimates

strength
method A method B Pearson's correlation between .
mean edge connectivities estimate  €igenvector €. compare
< scross subjects —_— -

methods B
regions
methods B

& 2
8 8 PageRank c.
- ko) & -
2 2 Mean Pearson’s correlation - \of participation coef.
between edge connectivities regions <
odges edges for each subject methods A methods A
(ii) Similarity of brain-behavior associations patterns E Simulation
Variance component model (VCM) Canonical correlation analysis (CCA) empirical covariance matrices

[
Principal least squares (PLS) [

FC method

X

subjects
regions

Y

subjects
subjects

¢
tegions &0®

behavior edges
. =
8 ) l

calculate §
< ?
3

2 2 generate neural time series
3 o ivari
2 o X(PCA) = Y(PCA) !safnplg from multivariate norma\
% “h\'a?:y Fi 3 distribution without autocorrelation)
similar
@|  matrix ° components components. l
subjects & behavior £
£ 3
B o5 convolve with HRF
é g
behavioral variance  residual variance canonical canonical

variate for
behavior

variate for
connectivity

l behavior

variance
explained for
each trait

behavior

behavior

AN
B8 W *
. C\/—\/\/V/\/\/\/\/
canonical

correlation l

estimate connectivity

calculate

behavioral measures

8
g
v ccompare canonical §
varance expaned loadings obtained E compare with compare FC estimates
compare patterns of w‘m,s;?z:jr: ez ground truth obtained using different
variance explained loadings methods

Figure 1: A schematic of analysis steps. A. BOLD fMRI data was preprocessed, parcellated, and individual parcel
timeseries were extracted. B. Functional connectivity (FC) was estimated with five methods that differed along two
dimensions: static vs. dynamic and bivariate vs. multivariate. Static FC refers to measures that are insensitive to temporal
order and can be estimated using full/Pearson’s correlation or partial correlation, whereas measures of dynamic FC are
sensitive to temporal order of time points. Dynamic FC can be estimated using measures of lag-based connectivity, such
as lagged correlation, or using the linear multivariate autoregressive (AR) model. The lagged correlation between two
time series is calculated by shifting one time series by p time points. Similarly, a p-th order multivariate (or vector)
autoregressive model predicts the activity of a particular brain region at time point ¢ based on the activity of all regions at
time point(s) from ¢ — p to ¢ — 1. Bivariate and multivariate FC methods differ in terms of number of variables (regions)
taken into account when estimating connectivity at a single edge: bivariate connectivity between two regions depends
only on the two regions, whereas multivariate connectivity between two regions includes all other regions as covariates.
C. FC matrices were vectorized. D. FC estimates were compared (i) by calculating correlations between FC estimates,
(ii) by calculating correlations between node centrality measures, and (iii) by comparing estimates of brain-behavior
associations across FC methods. E. Additionally, we performed simulation to assess the influence of random noise and
signal length on the similarity between FC estimates obtained using different methods.
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14s and parcellated using a multimodal cortical parcellation (MMP1.0) containing 360 regions [S0].
19 Each parcel was represented by a mean signal across all the parcel grayordinates.

10 2.3. Functional connectivity estimation

151 Functional connectivity was estimated using five methods: full (Pearson’s) correlation, partial
152 correlation, lagged correlation, multivariate AR model (also called vector AR model), and multi-
13 variate AR model without self-connections. The listed methods differ in terms of the number of
1.4 regions used to estimate the connectivity of a single edge (bivariate vs. multivariate) and in terms
155 of sensitivity to temporal reordering of time points (static vs. dynamic) (see[Figure IB). A multi-
16 variate AR model without self-connections was included to test how much similarity between the
17 multivariate AR model and partial correlation depends on self-connections (the diagonal terms
158 1n the autocovariance matrix).

159 The bivariate static FC was estimated using full correlation. Let x; be a demeaned T X 1 vector
w0 of region i time series (7 is the number of time points) and let X = [xy, ..., xy] be a N X T matrix
11 of the demeaned region time series (/N is the number of regions). Then the sample covariance
12 matrix C can be estimated with

’

XX 0

T-1
163 A correlation matrix can be obtained by standardizing the time series to zero mean and unit
14 standard deviation (i.e., z-scores) beforehand.
165 Multivariate static FC was estimated using partial correlation. Partial correlations were com-
16 puted by taking an inverse of a covariance matrix (i.e., the precision matrix) and then standard-
167 izing and sign-flipping according to the equation:

C=

Wij
s Where p is an element of a partial correlation matrix, w is an element of a precision matrix, and i
19 and j are the indices of rows and columns, respectively [51].
170 Dynamic bivariate connectivity was estimated using lagged correlation (also known as auto-
171 covariance matrix). Autocovariance is defined as the covariance of time series with lagged time
172 series. Let X; be an N X (T — p) matrix of shortened time series with time points from 1 to T — p
173 (p is the lag/model order) and X, , be a similar matrix with time points from p + 1 to T'. Then,

pij =~ 2)

X pX{
Cp=—" 3)
r-p
174 18 p-th order autocovariance or lagged covariance matrix. Diagonal entries are called autocovari-
175 ances or, sometimes, self-connections or self-loops [34,|33]. Off-diagonal entries of autocovari-
76 ance matrix are also called cross-covariances. Note that the autocovariance matrix of lag O is
177 equal to the ordinary covariance matrix. The autocorrelation matrix was obtained by standardiz-
78 ing time series before computing autocovariance.

179 Correlations, autocorrelations, and partial correlations were Fisher z-transformed for subse-
10 quent analyzes.
181 Multivariate dynamic connectivity was estimated using the Gaussian multivariate AR model.

122 Let Z be an Np X (T — p) matrix of stacked matrices of shortened time series, Z =

e [X] petr , X7, ,»X{]". The multivariate AR model can be written in matrix notation as:
6
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Xiwp =AZ+E “4)

18« where A is an N X Np matrix of AR coeflicients of the p-th order model and E is an N X (T — p)
15 matrix of zero-mean, independent, normally distributed residuals. The matrix A can be estimated
16 using the ordinary least squares (OLS) estimator:

A=X,,222)" ®)
187 For p = 1 A equals:

A =X X/(XX)™! (6)

18s The equation shows that the coefficients of the multivariate AR model are a product of the lagged
189 covariance and (non-lagged) precision matrix. Therefore, the multivariate AR model encodes
190 both static and dynamic FC. The same can be inferred from the Yule-Walker equations [see[7, 8]
191 Moreover, for lag 0, the coefficients of the multivariate AR model are equal to the covariance
12 matrix [seel7].

193 To estimate the coefficients of the multivariate AR model without self-connections, we fitted
19+ the model

Xigep = Xja; + €; @)

15 for each region i separately, such that we set i-th row of matrix X, to zero (the equation above
ws applies for p = 1 only, but the model could be extended to include higher lags as in[Equation 4).
197 Vectors x;,,, were taken from rows of the matrix X;,, and included time points from p + 1 to
18 T'. Vectors e; represent normally distributed, zero-mean, independent residuals. FC matrix was
199 constructed by organizing N X 1 vectors a; into the N X N matrix A; = [a;, . .., ay]’. This matrix
200 1S asymmetric with zeros on the diagonal. The coefficients of both multivariate AR models
201 were estimated using the coordinate descent algorithm implemented in the GLMnet package for
22 MATLAB [52].

203 All AR models were estimated for lag 1 only. This order was shown to be optimal for the
20« multivariate AR model for resting state fMRI data with a high number of regions [53} [54], and
205 also in a study using HCP data [55]]. There were no differences between the variance of order 1
206 and the higher-order models explained by the first principal component of the null data generated
207 from the multivariate AR model in a previous study [7]; therefore, we did not consider higher-
208 order autoregressive models.

200 2.4. Prewhitening

210 We expected that FC estimates based on AR models would be similar to static FC estimates
211 due to autocorrelation present in the fMRI time series. To test the similarity between static
22 and dynamic FC in the absence of autocorrelation, we computed connectivity from from non-
213 prewhitened time series and prewhitened time series. The exception was the multivariate AR
214 model, where the diagonal terms (self-connections) effectively act as prewhitening. The dif-
25 ference between the multivariate AR model with and without prewhitening is essentially the
216 difference between the multivariate AR model with and without self-connections. We performed
217 the prewhitening by taking the residuals of the regression of the “raw” time series on the lagged
218 time series.
7
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219 To retain frame sequence after prewhitening, frames that were marked as bad in any of the
220 original or lagged time series were set to zero before computing residuals. For this reason, frames
221 that were preceded by a bad frame in any of the 1 to / previous frames were not prewhitened. At
222 higher orders, this resulted in fewer total prewhitened frames.

223 Prewhitening was performed on orders 1 to 3 (abbreviated AR1/2/3 prewhitened). Autocorre-
24 lations were already significantly reduced at order 1 and were additionally reduced at lags 2 and
2s 3 (Figure 2B). Since the results were similar regardless of the prewhitening order, only the results
226 for the prewhitening on order 1 are shown in the main text, and the results for higher orders are
22z shown in the supplement.

228 2.5. Similarities between FC estimates obtained using different methods

229 We estimated similarities between the FC estimates by computing the correlation between vec-
20 torized FC matrices. We adjusted the vectorization for each pair of methods so that only unique
21 elements were taken into account. For example, correlation and partial correlation matrices are
22 symmetric; therefore, only the upper or lower triangular part of the matrix (without the diagonal)
233 should be considered. On the other hand, the FC matrices derived from the AR models are not
24 symmetric; therefore, the whole matrix must be vectorized. The exception is the multivariate AR
25 model without self-connections, which does not contain any information on the diagonal, so in
25 this case matrix without the diagonal needs to be vectorized. When comparing asymmetric and
27 Symmetric matrices, we computed and used the average of the upper and lower triangular parts
2 of the matrix (using equation (X + X)/2) .

239 We estimated similarities in two ways: first, by computing correlations between connectivity
20 estimates for each subject separately and then averaging the resulting correlations (mean corre-
21 lations between individual-level FC matrices), and second, by averaging FC matrices over par-
22 ticipants and then computing correlation between methods on group FC matrices (correlations
23 between group-level FC matrices).

244 To test how similarity between FC estimates depends on data quality, we repeated analyses on
25 a subset of 200 participants with the largest number of retained frames.

25 2.5.1. Correlation between edge similarity and test-retest reliability

247 To better understand the origin of the similarities between the FC methods, we examined the
22 relationship between the edge similarity of the FC estimates obtained using different methods
29 and test-retest reliability at the edge level. If similarities between FC estimates depend on the
20  signal-to-noise ratio (SNR), more reliable edges will be more similar across methods.

251 We computed the edge similarity as correlation at every edge for each pair of FC methods. We
22 estimated the test-retest reliability using the intraclass coefficient (ICC) for each method sepa-
2 rately. We estimated the variance components within the linear mixed model framework using
24 the restricted maximum likelihood (REML) procedure [56,57]. We defined variance components
25 as follows:

_ 2 2 2 2 2 2 2
var(ypqr) = Op+ 0+ 0+ 0+ 0+ Oy + 0, (8)

25 where y is an estimate of an edge, p indicates participant, d day, r run and e residual.
257 We computed the ICC as a ratio between between-subject variance (which included interaction
28 terms pertaining to participants) and the total variance [38]]. For this analysis, the runs were not
259 concatenated.

8
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260 Finally, we applied Fisher’s z-transformation to both edge similarity and ICC and computed the
21 correlation between them. To reduce the number of comparisons, we only investigated the most
22 relevant comparisons: full correlation vs. lagged correlation, partial correlation vs. multivariate
23 ARI, and partial correlation vs. multivariate AR1 without self-connections. Since we estimated
264 test-retest reliability separately for each method in a pair, there were two correlations for each
265 pair of methods. We averaged both correlations for each comparison.

%6 2.6. Node centrality measures

267 In the second part, we compared FC estimates using four different centrality measures: mean
268 strength, eigenvector centrality, PageRank centrality, and participation coefficient. It is important
29 to note that we did not use path-based methods, such as betweenness centrality or closeness cen-
270 trality, because their interpretation is not clear for correlation-based networks. In such networks,
271 a statistical association between two nodes does not necessarily indicate a path of information
222 flow [1L159]. Moreover, the correlation coefficient already captures the shortest path between two
273 nodes [[1].

274 The mean strength was computed as a mean of the edge weights for each region and it is
275 analogous to a degree (number of connections) in binary networks. The shortcoming of strength
276 1s that it gives equal weight to all connections — it gives equal importance to nodes that are
277 connected to other important nodes and to nodes that are connected to unimportant nodes.

278 In contrast, eigenvector centrality also considers the importance of a node’s neighbors. We
279 computed the eigenvector centrality of a node i as the i-th entry of a principal eigenvector of the
20 network’s adjacency matrix [60, [1]]. Using a recursive formula, the eigenvector centrality can be
21 expressed as:

282

Xi=— ) Aijx; ©)

23 where, x; is the centrality of the i-th node, 4 is the principal eigenvalue, and A;; are the elements
2« of the adjacency matrix.

285 Eigenvector centrality has some drawbacks. For example, a node will be assigned zero central-
26 ity, if all of its neighbors have zero centrality. Additonally, a node with high centrality will give
257 all of its neighbors a high centrality score, even if this is not intuitively meaningful. Consider
258 a network of websites — if a website is indexed by Google, it will be assigned a high centrality,
250 even if it has no other (incoming) connections. PageRank centrality was developed to address
20 these limitations:

291

Xi:aZAij% +p (10)
j J

202 A positive constant S (usually set to 1) is added to ensure that no node has zero centrality and
23 X; is divided by the out-degree of node j (k;’.‘”) to prevent high-degree nodes from having a
204 disproportionate influence on other nodes [[60, [1]]. The balance between the eigenvector and the
205 constant term is controlled by the parameter «, which is usually set to 0.85.

296 We computed both eigenvector and PageRank centrality using the implementations available
207 in the Brain Connectivity Toolbox [39].

208 The degree-based or strength-based measures may be biased in correlation networks based on
20s Pearson correlation, as node strength tends to correlate with community size [61 62]. To miti-
a0 gate this bias, we additionally used the participation coefficient to characterize node importance.

9
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a1 The participation coefficient measures the distribution of a node’s connections across different
sz modules [63]. If the node’s connections are evenly distributed across modules, the participa-
as  tion coefficient approaches 1, while a participation coefficient of zero indicates that the node’s
s« connections are completely restricted to its module.

a0 The original formulation of the participation coefficient [63] does not take into account the size
as  of the module [64,162]]. In particular, nodes from small modules tend to have high participation
a7 coefficients, while nodes from large modules tend to have low values. Therefore, we used the
ae normalized participation coefficient [62]:

309

ki(m) = ki :
PCnorm,» -1- By Z ( (m) - (m)rand) (11
meM t
310
311 Here, M is a set of modules (communities), k; is the total degree of node i, k;(m) is the in-

a1z tramodular degree for node i in module m. k;(1m),nq represents a median intramodular degree for
a3 node i, obtained by generating randomized networks using the Maslov-Sneppen rewiring algo-
s1a - rithm [65]. By is a multiplicative term used to constrain the range of PCpom between O and 1 and
a5 was set to 0.5. The number of randomizations was set to 100 at the individual level and to 1000
ais  at the group level. The module definitions were taken from Ji et al. [66].

317 We calculated centrality measures at the level of individual FC matrices and at the level of
aie  the group-averaged FC matrix. We then compared centrality measures based on different FC
a9 methods by computing Pearson’s correlation between the obtained centrality measures. For the
a0 comparison at the individual level, we averaged the obtained correlations. Additionally, to better
a1 understand the relationship between different centrality measures, we computed correlations be-
a2 tween different centrality measures for selected FC methods (full correlation, partial correlation,
s2s and multivariate AR model).

324 In the case of dynamic FC estimates, all centrality measures were estimated separately for
325 incoming and outgoing connections. The matrix of outgoing connections was obtained by trans-
as  posing the original FC matrix. In addition, all centrality measures were estimated separately for
327 positive and negative connections. For the sake of brevity, only the results for positive connec-
a2 tions are presented in the main text; other results can be found in the Supplement. We refer to
a9 the strength of nodes based on incoming or outgoing connections as in-strength and out-strength,
s respectively.

st 2.7. Brain-behavior associations

a2 To compare the brain-behavior associations obtained by different FC measures, we used 58
s behavioral measures (see that included cognitive, emotion and personality measures
ss  and were previously used in other studies [32} 167, |68]].

ss  2.7.1. Variance component model
3% We computed brain-behavior associations using the multivariate variance component model
a7 (VCM), developed by Ge et al. [69] to estimate heritability. The use of the variance component
ss  model to estimate associations between the brain and behavior was introduced by Liégeois et al.
s [32]. We adopted the same approach to allow direct comparison with the results reported by
a0 Liégeois et al. [32]. Furthermore, the use of VCM allows an easy calculation of the explained
a1 variance for single traits. The model has the form

10
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Y=C+E (12)

a2 where Y represents the N X P matrix (number of subjects X number of traits) of behavioral mea-
sz sures, C represents shared effects and E represents unique effects. The model has the following
a4 assumptions:

Vec(C) ~NE.®F)

(13)
Vec(E) ~NEZ.®1)

aus  where Vec(+) is the matrix vectorization operator, ® is the Kronecker product operator, and / is
us the identity matrix. F represents N X N matrix of similarities between participants, which were
a7 estimated with the Pearson’s correlation coefficient. X. and X, are P X P matrices, which are
s being estimated. The total variance explained is computed as:

_ Tr(Z.)
T Tr(E) + Tr (%)

as  where Tr(-) represents the trace operator, and:

(14)

- >.(i, i)
T, 0) + 2ol 0)

so for single traits. M is analogous to the concept of heritability and can be interpreted as the amount
a1 of variance in behavior that can be explained with the variance in the connectome.

352 Before computing VCM, we imputed missing behavioral data using the R package missForest
sss [70]. There were 0.59% missing data points overall. Following the procedure of Liégeois et al.
s [32], we applied quantile normalization to behavioral data. To remove potential confounding
s factors, we regressed age, gender, race, education, and movement (mean FD) using the procedure
a6 described in Ge et al. [[71}169].

15)

357 We estimated M for each connectivity method separately. We compared patterns of explained
s variances by correlating the variance explained at the trait level between all methods.
359 Since the results of VCM are based on similarities between participants (matrix F), we tested

a0 the extent to which the similarities between participants, and thus the results of VCM, depend
a1 on the levels of noise in the data. To this end, we performed a simulation in which we added
32 random Gaussian noise (mean 0, standard deviation 0—1 in steps of 0.1) to the standardized time
s series. To reduce complexity, we performed this analysis only for static FC methods.

s 2.7.2. Canonical correlation analysis

ass Since VCM is rarely used to study brain-behavior associations, we repeated the analysis using
a6 canonical correlation (CCA). CCA is used to reveal the low-dimensional structure of the shared
37 variability between two sets of variables (in our case, connectivity and behavior).

368 Let X and Y be N X P and N X Q matrices (N is the number of observations, P and Q are the
s number of variables), respectively.

370 The goal of CCA is to solve the following system of equations:

U=XA

V=YB
11

(16)
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371 Here, Uyxx and Vyxk represent matrices of canonical scores (or variables), and Apxx and
sz Boxk represent matrices of canonical weights. The objective is to maximize the correlation
ars between pairs of columns from U and V with the same index. These correlations are known as
sz canonical correlations. The solution to the above set of equations is found under the constraint
s U'U = V'V = I. The columns of the U and V matrices tell us the relative position of each
ars  observation in the canonical variables. Columns of the A and B matrices contain information on
a7 the relative contribution of each variable to each of the canonical variables. Additionally, one
ars  can calculate canonical loadings - the correlations between original data matrices and canonical
are  scores. Canonical variables are ordered in descending order according to the size of canonical
s correlations. Usually, only the first or first few canonical components are of interest, as these
ss1  explain most of the shared variance. Mathematical details on CCA can be found elsewhere [e.g.
a2 [120[73,74,175)176].

383 We performed the CCA using the GEMMR package [73]. To prepare the data for CCA, we
sss  followed the procedure by Smith et al. [77]], including deconfouding using the same variables
sss  as for VCM. Prior to CCA, we reduced the dimensionality of both sets of variables to 20 com-
s ponents using principal component analysis (PCA). This number was chosen to optimize the
37 number of samples per feature based on the recommendation by Helmer et al. [[73] under the as-
ss  sumption of a real first canonical correlation » = .30. We performed a 5-fold cross-validation to
ase  assess the generalizability of the model. We only examined the first canonical correlation since
a0 it was shown that the first canonical variable explains the most shared variance, and it was the
so1  only statistically significant canonical variable in a previous study [77].

392 We repeated the CCA for all FC methods. The similarities between the methods were assessed
as by comparing the first canonical correlation obtained in the training and the test set. Next, we
s correlated the canonical weights and loadings related to behavior.

a5 2.7.3. Principal least squares

396 Finally, we used principal least squares (PLS) to estimate brain-behavior associations. PLS
s7 18 similar to CCA, with the goal to maximize covariance rather than correlation between sets
ase  [73L[78]. When the columns of X and Y are standardized, PLS gives the same results as CCA.
399 It has been shown that the first PLS component is biased toward the first principal component
w0 (PC) axis [73]]. To assess the degree of bias in our data, we estimated the similarity between the
a1 PLS/CCA weights or loadings for behavior and the weights for the first behavioral PC.

w2 2.7.4. Control analyses

403 Participants in the HCP dataset are genetically and environmentally related, which can in-
«0s flate between-subject similarities and influence the results related to interindividual differences.
s0s Therefore, we repeated all analyses related to brain-behavior associations on two subsamples of
w06 genetically unrelated participants (sample sizes 384 and 339).

w 2.8, Simulation

408 We hypothesized that dynamic and static FC estimates would be similar due to autocorrelation

100 of fMRI time series, which is partly the result of convolution of neural time series with HRF.

40 In addition, an important source of similarities (or differences) between FC results obtained by

41 different methods could be due to similar (or different) effects of the amount of noise and the

4z amount of available data on the resulting FC matrices. To evaluate the impact of convolution

s with HRF, signal quality, and the amount of data on estimated similarities between results using
12
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44 different FC measures, we used numerical simulations of data with known covariance structure.
a5 We generated multivariate time series of events for 1000 “participants.” Events were sampled
ss  from a multivariate normal distribution with a mean of zero. The covariances differed for each
417 participant and were taken from experimental data parcellated using Schaefer’s local-global par-
w8 cellation with 100 regions [79]. We used this parcellation instead of MMP to reduce the compu-
419 tational burden and the size of the generated data. Events were not autocorrelated. The generated
420 events were then convolved with HRF using the SimTB toolbox [80]. TR was set to 0.72 s (the
«1 same as in HCP data), and HRF parameters were set equal for all participants and regions (delay
w22 of response: 6, delay of the undershoot: 15, dispersion of the response: 1, dispersion of the un-
w23 dershoot: 1, the ratio of response to the undershoot: 3, onset in seconds: 0, length of the kernel
«2¢ 1n seconds: 32). The resulting time series were standardized.

425 To estimate the effects of signal quality on FC estimates and on similarities between FC meth-
w25 0ods, we added Gaussian noise with zero mean and standard deviation ranging from O to 1 stan-
4«27 dard deviation in steps of 0.1. This translates to SNR from 10 to 1 (excluding time series without
48 noise, which has infinite SNR). We varied the time-series durations from 500 to 10000 data
29 points in steps of 500.

430 The first step in the analysis was to establish the ground truth for each method, that is, the re-
w1 sults that would be obtained in an ideal situation. We defined the ground truth as FC at maximum
w2 length and without noise in the event time series. Note that because events were not autocorre-
s lated, the ground truth for all autoregressive FC methods was a matrix with all zero entries.

434 Next, we compared results using different FC methods in the same manner as for experimental
s data for all noise level and signal length combinations on prewhitened and non-prewhitened data.
«s  We computed (1) correlations between ground truth FC matrices and simulated FC matrices for
4«7 all FC methods and (2) correlations between FC estimates obtained using different methods. To
ws  reduce the number of comparisons, we only investigated the most relevant comparisons: full
w9 correlation vs. lagged correlation, partial correlation vs. multivariate AR, and partial correlation
w0 vs. multivariate AR without self-connections.

41 3. Results

w2 3.1. Similarities between FC estimates obtained using different methods
443 To address our research questions, we first focused on estimating similarities between the
«a  results obtained with different FC methods using empirical data. Comparison of group-level
«s  FC matrices showed very high correlations between FC results obtained using bivariate methods
ws  (r > .87,[Figure 2]A), as well as between results obtained using multivariate methods (correlation
w7 between partial correlation [AR1 prewhitened] and multivariate AR model: r = .80). In contrast,
«s  the correlations between the bivariate and multivariate FC estimates were lower and ranged from
49 3610 .65.
450 When comparing and pooling results based on individual-level FC matrices, the mean corre-
st lation between FC matrices obtained using different methods was lower. The correlations be-
w2 tween the bivariate methods were still very high (correlation between lagged and full correlation:
w3 =.99, correlation between prewhitened lagged and prewhitened full correlation: » = .83), while
s the correlations between the multivariate methods were lower on average. In particular, the cor-
4«5 relation between the partial correlation (AR1 prewhitened) and the multivariate AR model was
sss .05, compared to .80 between the group-level FC matrices.
457 The correlations between the results obtained using static and dynamic FC methods were
«ss  smaller after prewhitening, with the greatest differences when comparing individual-level FC
13
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Figure 2: A. Correlations between FC estimates obtained using different FC methods. We calculated the similarities
between FC estimates obtained using different FC methods (i) by averaging connectivity matrices across participants
and then computing correlations between them (correlation between group-level FC, bottom right triangle), and (ii) by
computing correlations between the FC estimates for each participant separately and then averaging across participants
(correlation between individual-level FC, top left triangle). B. Autocorrelation function of experimental data as a function
of prewhitening order. The mean autocorrelation function was computed over all participants and regions; the ribbons
represent the standard deviation.
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Figure 3: Correlations between edge similarity and test-retest reliability for selected pair of FC methods.

459 matrices obtained using multivariate methods. Specifically, the correlation between the coef-
w0 ficients of the multivariate AR model and the partial correlation decreased from .40 to .05 in
st the individual-level FC and from .86 to .80 in the group-level FC. The order of prewhitening
2 had minimal effect on the correlations between the methods (Figure S2JA), except for the com-
w3 parison of the results obtained using the multivariate AR model and the partial correlation at
44 the individual-level FC, where the correlations increased from .05 to .12 (r = .15-.22 for the
s multivariate AR model without self-connections).

466 The correlations between the FC results obtained using different methods were slightly higher
w7 when the analysis was repeated on 200 participants with the highest data quality (Figure S3).

aws  3.1.1. Autocorrelations of fMRI time series

469 To test the prediction that the similarities between the dynamic and static FC estimates would
40 be similar to or greater than the mean autocorrelation of the fMRI time series, the mean autocor-
41 relation function was computed across all participants and regions. The autocorrelation before
a2 prewhitening was .40 at lag 1 (Figure 2B). This autocorrelation decreased to —.10 after ARI
a7z prewhitening, and was essentially zero after AR2 and AR3 prewhitening. Thus, the similari-
4« ties between the dynamic and static FC were always higher than the autocorrelation at lag 1.
a5 Interestingly, prewhitening at orders 1 and 2 reversed the sign of the autocorrelation at low lags.

a  3.1.2. Correlation between edge similarity and test-retest reliability

477 We computed edge similarity between FC methods as a correlation over subjects at every edge
a8 for selected pairs of FC methods. We estimated test-retest reliability at every edge for each
49 method separately. Next, we computed the correlation between edge similarity and test-retest
a0 reliability for each of selected pairs of FC methods. The correlation was moderate to high for
w1 pairs of multivariate methods (r = .47-.66) and high for pairs of bivariate methods (r = .55-.79,

w2 [Figure 3)). Prewhitening lowered the correlations.
15
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sws  3.2. Similarity of node centrality measures
a8 In the second part, we compared methods for estimating FC by comparing four node central-
w5 ity measures: strength, eigenvector centrality, PageRank centrality, and participation coefficient
s (Figure 4] [Figure S4] [Figure S3)). Unless otherwise noted, we focus on the positive connections.
487 As before, we observed a clear distinction between bivariate and multivariate methods for
48 computing FC matrices. Correlations between centrality measures based on bivariate FC meth-
w9 0ods were consistently high, regardless of the centrality measure (above .97 at the group level and
a0 above .96 at the individual level). In contrast, the correlations between multivariate FC methods
w1 were lower, ranging from .59 to .99 for strength, eigenvector centrality, and normalized partici-
42 pation coefficient at the group level. Correlations for PageRank centrality were generally lower
493 for multivariate methods, ranging from —.21 to 1.00.
494 Similarities between multivariate and bivariate FC methods were moderately high for strength,
w5 PageRank centrality, and normalized participation coefficient, ranging from .32 to .79, except for
s PageRank centrality based on outgoing connections of the multivariate AR model, where the
47 correlations were around .10. However, for eigenvector centrality, we found low similarities
s between multivariate and bivariate FC methods at the group level (ranging from —.15 to .25) and
ss  moderate similarities at the individual level (ranging from —.27 to .45).
500 Notably, we observed positive correlations between incoming and outgoing connections for
sor  strength-based centrality measures at the group level, but negative correlations at the individual
sz level. This pattern was present only for multivariate dynamic methods. Additionally, when com-
ss  paring partial correlation and multivariate AR models, we found that the correlations between
sa  strength-based centrality measures were positive for incoming connections and negative for out-
ss going connections. In contrast, all correlations were positive for the normalized participation
sos  coefficient.
507 We also found that our results were generally consistent when analyzing centralities computed
ss  on negative connections (Figure S3). More specifically, similarities between multivariate FC
so0  methods were smaller for normalized participation coeflicient, and similarities between multi-
sto  variate and bivariate methods were larger for eigenvector centrality.
st , Prewhitening reduced similarities between methods, especially for outgoing connections
512 [Figure S5). This was evident for both positive and negative connections.
513 To better understand the similarities and differences between the FC methods, we plotted the
s14  distributions of the centrality measures on the cortical surface (Figure 5| [Figure S8)). For both
sis static FC methods, the strength was highest in the parietal regions (Figure 5A). For partial cor-
sie  relation, eigenvector centrality was distributed similarly to strength, whereas for full correlation,
s the highest eigenvector centrality values were in visual and somatomotor cortex (Figure 5B). For
sie  partial correlation, participation coefficient values were lowest in visual and somatomotor cor-
st9  tex, and highest in frontal and parietal regions belonging to parts of the cingulo-opercular, dorsal
s attention and multimodal networks (Figure 5|C). For the full correlation, similar to the partial
sz1  correlation, the participation coefficient values were lowest in medial frontal regions and parts of
sz visual cortex, and highest in parts of parietal cortex.
523 We also plotted the distributions of centrality measures based on incoming and outgoing con-
s2« nections of a multivariate AR model (Figure 6] [Figure S9). In-strength was highest in the pari-
s»s  etal lobe, while out-strength was highest in the parts of the temporal lobe and in the medial
s parietal lobe (Figure 6]A). Eigenvector centrality was similarly distributed for incoming and out-
sz going connections, with highest values in the frontal and parietal regions, mainly in parts of the
s frontoparietal network (Figure 6B). Similar to partial correlation, participation coefficient val-
s20  ues were lowest in the somatomotor and visual cortex and highest in medial frontal and medial
16
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Figure 4: Similarities between node centrality measures based on positive connections. Similarities were estimated
by (i) computing node measures on group-averaged connectivity matrices (group-level comparison; below diagonal),
(ii) by computing node measures for each individual separately, correlating within participants and averaging these
correlations across participants (individual-level comparison; above diagonal).
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so0  temporal cortex (Figure 6C). For incoming connections, the PageRank centrality was distributed
ssn  similarly to the eigenvector centrality, while for outgoing connections, the values were highest in
sz the medial parietal and medial temporal lobes, and lowest in the somatomotor and frontal regions

s (Eigure 6D).

534 Since in the case of the multivariate AR model the results of group-averaged connectomes
sss  differ from individual connectomes, we also plotted the distributions of the centrality measures
s for a representative subject (Figure S10} [Figure ST1)). In the individual case, the distribution of

se7 - strength-based centralities for outgoing connections is the opposite of that for incoming connec-
s tions, with the lowest values in the parietal and occipital cortex.

539 Next, we analyzed the correlations between the centrality measures for full and partial corre-
s« lation (Figure 5D, [Figure S6). The correlations between the strength-based centrality measures
s«t  were generally very high (» > .90) within positive and within negative connections. Exceptions
sz were the correlation between eigenvector centrality and strength (» = .80) and the correlation be-
ss tween eigenvector centrality and PageRank centrality (» = .64) for positive connections on con-
s nectomes based on full correlation. In both cases, examination of the scatter plots (Figure 5D)
sss  revealed two groups of nodes — one group of nodes had higher similarity between centrality
s measures, while the other had a lower similarity. This pattern was also observed for negative
se7  connections, but with a smaller difference between the two groups.

se  3.3. Brain-behavior associations

549 Next, we compared patterns of brain-behavior associations derived from different FC methods.

sso  3.3.1. Variance component model

551 The results of the VCM show that bivariate methods explain about 30 percentage points less
ss2 variance in behavior than multivariate methods (Figure 7A,B). Furthermore, the similarity of
ss3  patterns of variance explained over behavioral measures was high between static and dynamic
ss«  FC methods using the same number of variables, i.e., between full correlation and lagged cor-
sss  relation (r = 1.00), and between partial correlation and multivariate AR models (r = .83-.86,
sss  [Figure 7)A,C). The pattern of similarities in behavioral variance explained between the FC meth-
ss7 0ds was comparable to the direct comparison of the FC matrices (Figure 7C, cf. [Figure 2JA).
sss Patterns of similarities between the FC methods were similar when the analysis was performed
sso  on subsamples of unrelated participants (Figure ST2JA,C); however, the differences in total vari-

s ance explained between the bivariate and multivariate methods were smaller (Figure ST2B).
561 Simulation of the effects of noise in which we added various levels of noise to the fMRI time

sz series showed that noise affects estimates of the behavioral variance explained by the connec-
sss  tome. In particular, the mean of the variance explained increased with increasing noise for both
ss«  the full correlation and the partial correlation, but the increase was more pronounced in the case
ss  Of partial correlations (Figure 8B). This pattern was not equal for all behavioral variables — for
s some, the variance explained decreased and for others, it increased (Figure 8A). On the other
s» hand, the similarity between the participants decreased with increasing noise (Figure 8C). This
ss  effect was more pronounced for partial correlation compared to full correlation.

seo  3.3.2. Canonical correlation analysis

570 The results of the similarity between the FC methods when investigating brain-behavior as-

s sociations using CCA were comparable to those obtained using VCM. In particular, the corre-

sz lations between the weights or loadings on behavioral measures between the FC methods were
18
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Figure 5: Cortical distribution of centrality measures based on static FC methods for positive connections. PageR-
ank centrality is omitted, because its correlation with strength is close to 1. For visualization, the values have been
transformed into z-values. D. Correlation between node strength and eigenvector centrality. E. Functional networks
as defined in Ji et al. [66]]. CON - cingulo-opercular network, DAN — dorsal attention network, DMN — default mode
network, FPN — frontoparietal network, LAN — language network, VMM - ventral multimodal network, PMM — multi-
modal network, ORA — orbito-affective network, AUD — auditory network, SMN — somatomotor network, VIS — visual
network.
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A node strength

multivariate AR model multivariate AR model
(incoming connections) (outgoing connections)

B eigenvector centrality

C normalized participation coefficient

D PageRank centrality

Figure 6: Cortical distribution of centrality measures based on multivariate autoregressive model for positive
connections. For visualization, the values have been transformed into z-values.
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s high when comparing the methods that use the same number of variables for the estimation of a
s single edge (r > .80) (Figure 9C). On the other hand, there was no discernible difference between
s dynamic and static FC estimates.

576 The first canonical correlation was around .35 in the training sample for the bivariate methods
s7 and around .30 for the multivariate methods (Figure 9B). Cross-validated R was much lower,
s7s  around .25 for bivariate methods and around 0.05 for multivariate methods. Although these
sr9 - results differ from VCM (where multivariate methods explained more variance), the pattern of
sso  similarity between FC methods is the same.

sst , The pattern of results was similar for the subsamples of unrelated participants
s [ure SI3B,D), but the differences between the training and test sets were larger (Figure ST3A,C).
sss  The large difference between the performance of the model in training and test sets is indicative
se«  of overfitting, which is characteristic of CCA with a small number of samples per feature [[73].

sss  3.3.3. Principal least squares

586 Analysis of brain-behavior associations using PLS revealed higher similarities between FC
v methods compared to CCA (Figure ST4A,C). Specifically, the correlations between loadings
sss  were consistently greater than .91 for all methods compared, and the correlations between
sss  weights were greater than .51. Consistent with all previous results, we observed a clear sepa-
s ration between multivariate and bivariate methods when comparing weights, and no difference
so1  between static and dynamic FC methods based on the same number of variables. PLS was less
se2  generalizable compared to CCA, with canonical correlations on the training sample around .15—
ses .20 and canonical correlations on the test sample around 0-.05.

594 However, our results also suggest that the high similarities between FC methods in PLS may
ss  be due to the strong similarity between the first behavioral canonical component and the first
s behavioral principal component, as reported in a previous study [73]] (Figure 10). The correla-
so7  tions between loadings and the first behavioral principal component were around 1.00, while the
ses  correlations between weights and the first behavioral principal component were around .80. In
seo  contrast, for CCA, these correlations were about .60-.75 and .10-.25, respectively.

so 3.4. Evaluation of similarities between methods on simulated data

et 3.4.1. Relationship between FC estimates and ground truth

602 Correlations of FC estimates with ground truth were greater than 0.8 for full correlation and
ss  between 0.25 and 0.9 for partial correlation (Figure TTB). Prewhitening decreased the correlation
sa  Wwith ground truth. This effect was more pronounced for partial correlations. Longer time series
eos also had higher correlations with ground truth (the difference was up to .5 for partial correlation
ss and up to .3 for full correlation). The correlation with ground truth generally decreased with
ez decreasing SNR (increasing noise), but in the case of partial correlation, these effects were not
es monotonic. In particular, for short time series, correlation with ground truth increased with low
s to moderate noise. Also in the case of partial correlation, prewhitening increased the correlation
sto  With ground truth at low noise. In contrast, prewhitening decreased the correlation with ground
et truth in the presence of high noise compared to the case without prewhitening.

sz 3.4.2. Similarity between FC estimates
613 The connectivity matrices computed on the simulated data were compared in the same manner
e1«  as for the experimental data. For brevity, we focus only on the three most relevant comparisons
15 (lagged correlation vs. full correlation, multivariate AR model vs. partial correlation, multivariate
sts AR model without self-connections vs. partial correlation).
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617 Estimates based on lagged and full correlation were highly similar (r = 1 in the case without
s1s  prewhitening) for all levels of noise and signal length (Figure TI[C). The correlation between FC
19 estimates was reduced for prewhitened data, especially for low signal lengths (< 1000 frames).
620 The FC estimates of the multivariate AR model did not correlate with the FC estimates based
21 on partial correlation when the noise was low (r = 0 for zero noise). However, with increasing
e22 noise and increasing signal length, FC estimates became very similar (up to r = .95), especially
e2s  in the case without prewhitening and for long signal lengths.

624 Conversely, FC estimates based on a multivariate AR model without self-connections showed
es a high similarity to the FC estimates based on partial correlation at a low noise level (r > .95). For
s prewhitened data, there was a nonmonotonic relationship between FC estimates with increasing
7 noise, but overall correlations remained high in conditions with high signal length.

628 For both multivariate AR models, the similarities to the partial correlation were negative for
e29 very short time series. This effect was more pronounced for higher levels of noise, but the
s relationship with noise was not monotonic.

631 To better understand the relationship between the multivariate FC methods we plotted the dis-
sz tribution of edge values as a function of noise separately for diagonal and off-diagonal terms
s (Figure ST8). For brevity we did this only for the longest signal (10000 frames). For the multi-

s4 variate AR model, the diagonal terms (self-connections) were close to 1 at very high SNR and
es decreased with decreasing SNR. Conversely, the mean of the off-diagonal terms remained close
e  to zero, regardless of the SNR, but the variability increased with increasing SNR. The opposite
s pattern was observed when the data were prewhitened. At maximum SNR (i.e., when no noise
ws was added to the data), the diagonal terms were essentially equal to one and the off-diagonal
s terms were essentially zero, with very low variability compared to all other distributions. The
o distribution of values at maximum SNR was not affected by prewhitening. For the multivari-
sa1 ate AR1 model without self-connections and partial correlations, the variability of the edges
sz decreased with increasing SNR. Prewhitening reduced the variability of the edges.

ss  3.4.3. Autocorrelation on the simulated data

. We computed the average autocorrelation function over all participants and regions
ess Jure 11D, [Figure S1I). In general, noise and prewhitening reduced the absolute autocorrelation.
ss  The shape of the autocorrelation function varied as a function of noise and prewhitening. In
s7  the case without prewhitening, the autocorrelation decreased monotonically, reaching O at lag 8.
s With AR1 prewhitening, the autocorrelation decreased to negative values after lag 4.

644

s 4. Discussion

650 In this study, we addressed the question of whether the temporal order of the BOLD fMRI time
es1  series contains information important for the study of the fMRI brain functional connectivity. To
ez this end, we compared FC estimates between methods that differ in their sensitivity to temporal
e order, i.e., static and dynamic measures of FC. We also compared methods that differed in the
e« number of variables considered in estimating the connectivity of individual edges, i.e., bivariate
s and multivariate. Our results suggest that dynamic FC connectivity methods provide similar
s connectivity estimates as static FC methods of the same type (bivariate or multivariate), whereas
es7  bivariate and multivariate methods differ in terms of the explanation of individual differences in
ess  behavior.
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eo  4.1. Dynamic functional connectomes represent information similar to static functional connec-
660 tomes
661 By directly comparing the FC matrices, we have shown that the estimates of the dynamic FC
2 represent information similar to the estimates of the static FC. The similarity between estimates
ess  of FC, obtained by different methods, depended on several factors. First, there were high correla-
ss tions between the FC estimates when the same number of variables was considered (Figure 2)A).
665 Second, similarities between connectomes were greater when averages were compared at the
es group level than when correlations were aggregated across individual-level FC matrices. We
s7 believe that the differences between the group- and individual-level cases are mainly due to
ess  better SNR in the case of the group-level data. Two observations support this conclusion: first,
eo  similarities in FC estimates between methods were greater for participants with the highest data
e quality, and this effect was more pronounced when comparing individual-level matrices than at
en1  the group level. Second, edges with higher test-retest reliability (an indicator of SNR) were more
ez similar between FC estimates obtained by different methods. Thus, we can conclude that SNR
ea  influences the similarity between FC estimates.
674 Using simulation, we tested the similarities between FC as a function of noise and signal
ers  length (Figure TT[C). We have shown that the dynamic FC estimates resemble static FC estimates
e7s  even in the absence of true lagged correlation. The similarity between the multivariate AR1
ez model and partial correlations can be partially explained by the fact that the multivariate AR1
s coefficients are a product of the inverse covariance and the lagged covariance matrix. In the case
e7s  of the multivariate AR model, the similarity to the partial correlation was actually higher when
0 more noise was added to the data. This occurs because the self-connections (the diagonal term
st in the AR matrix) act as a prewhitening term. When the SNR was maximal, the self-connections
sz were close to 1 and the off-diagonal terms were close to zero (Figure ST§). In other words, the
s self-connections explained all the variance in the time series and there was no variability left to
e be explained by the off-diagonal terms. When noise was added to the data, the autocorrelations
ess  were reduced (Figure TID) and the self-connections shrank (Figure ST8). Consequently there
es  Wwas less prewhitening due to the self-connections and the off-diagonal elements became more
7 similar to the partial correlations. For the same reason, estimates based on a multivariate AR1
e model without self-connections were highly correlated with estimates based on partial correlation
s regardless of the noise level — there were no self-connections to explain the autocorrelation.
6% We also found a high similarity between the full and the lagged correlation. Therefore, the
o1 similarity between the multivariate AR1 model and the partial correlation cannot be explained
sz solely by the inclusion of the precision matrix in the estimation of the coefficients of the multi-
s variate AR model. Rather, the lagged covariance matrix also contributes to this effect.
604 We hypothesized that the similarities between the dynamic and static FC estimates originate
es from autocorrelation of the fMRI time series. We predicted that the similarities between the
ss dynamic and static FC estimates would be at least as large as the average autocorrelation of the
s7  fMRI time series and that this similarity would be reduced after prewhitening. Both predictions
s were confirmed in experimental and simulated data. However, even when autocorrelation was
s reduced to virtually zero at all lags (this occurred at prewhitening order 3), similarities between
700 estimates based on dynamic and static FC models remained high for group-level matrices and
701 simulated data. This suggests that prewhitening (or even the presence of noise that reduces
72 autocorrelation) does not completely eliminate the influence of convolution with HRF on the
703 estimation of dynamic FC.
704 We conclude that even if AR models represent information that goes beyond the static FC,
705 this cannot be claimed on the basis of a direct comparison of dynamic and static FC estimates.
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76 One of the main differences between static and dynamic FC methods is the ability of dynamic
77 FC methods to estimate the directionality of connections [23]. FC matrices based on dynamic
78 FC methods are therefore asymmetric. To allow comparisons between static and dynamic FC
709 matrices, the former were symmetrized and the information about the directionality of the con-
70 nections was lost. To test the possibility that there is specific information in the dynamic FC
711 estimates that could not be detected in a direct comparison of the FC matrices, we additionally
7z compared the node centrality measures and the patterns of brain-behavior associations between
713 the FC methods.

na  4.2. Network topology is affected by the functional connectivity estimation method

715 Examining node centrality measures allowed us to investigate how different FC methods affect
76 network topology. First, we analyzed the similarity between FC estimates based on different FC
77 methods for each centrality measure separately. Overall, the results were consistent with direct
71e comparisons of FC matrices. We found a clear distinction between multivariate and bivariate FC
79 methods, while the difference between static and dynamic FC estimates was rather small (with
720 an important caveat regarding the difference between incoming and outgoing connections, see
721 below). The similarities were also influenced by the choice of the node centrality measure. In
722 particular, the similarities between multivariate and bivariate FC methods were relatively low
722 for eigenvector centrality (from —.15 to .25 for the group-level comparison), while for other
72« centrality measures the similarity between multivariate and bivariate methods was higher (e.g.
725 around .70 for strength).

726 We explored this finding further by examining the similarities between the centrality mea-
727 sures. While the correlations between the centrality measures were predominantly positive, and
726 in some cases close to 1, there were some exceptions, suggesting that the centrality measures
729 are not redundant. Specifically, for the correlation between eigenvector centrality and strength
70 computed on full correlation connectomes, we observed two groups of nodes, one with higher
7 similarity between the two centrality measures and one with lower similarity (Figure 3D). This
722 pattern has been observed before [81] and suggests that one group of nodes is connected to other
7.s  important nodes, while the other is mainly connected to less connected nodes. In other words,
7.4« these two groups of nodes can be distinguished by jointly considering both eigenvector centrality,
75 which measures how well a node is connected to other important nodes (i.e., nodes with many or
76 strong connections), and strength, which is affected only by the number or strength of a node’s
77 connections. Notably, however, we observed this pattern for full correlation, but not for partial
7e correlation. This suggests that indirect connections have an important influence on the global
79 position of nodes in functional connectomes estimated using full correlation. When indirect
70 connections are removed (i.e., when partial correlation is used to estimate FC), the topological
71 position (importance) of a node is the same regardless of the centrality measure. In summary, the
72 choice of FC method has a different impact on the network topology depending on the centrality
73 measure used.

744 Second, we were interested in the relationship between incoming and outgoing connections.
75 For multivariate AR model estimates, we found a negative correlation between in-strength and
7s out-strength when comparing at the individual level. However, when comparing group-averaged
77 FC matrices, the correlations between in-strength and out-strength were positive. Interestingly,
78 when comparing the partial correlation with the multivariate AR model, the correlations of
79 strength from the partial correlation connectomes were positive with in-strength from the multi-
70 variate AR model, but negative with out-strength. The individual-level results confirm previous
751 findings [30]], suggesting that brain regions are either feeders or receivers, but not both. However,

24


https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525348; this version posted May 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

752 this information is lost when FC matrices are averaged across subjects. In addition, there was a
73 positive correlation between the in-strength and out-strength of bivariate dynamic FC estimates,
74 regardless of the level of comparison. In FC analyses, individual-level matrices are often av-
75 eraged, concatenated [e.g. 34], or estimated using a group prior [e.g.[82]. Because group-level
76 FC matrices may be qualitatively different from individual-level FC matrices, we recommend
77 that researchers perform analyses and/or examine results at both the group and individual levels
75s  whenever possible and/or meaningful.

79 4.3. Dynamic FC models do not explain additional variance in behavior over static FC models

760 We used the variance component model (VCM), canonical correlation analysis (CCA), and
761 principal least squares (PLS) to estimate brain-behavior associations. The results of all methods
72 showed that there were no large differences between the dynamic and static FC estimates in the
763 patterns of associations with behavior. However, we found large differences between the bivariate
76« and multivariate methods. These differences were specific to the method used to estimate brain-
765 behavior associations.
766 In the case of CCA, the canonical correlations were higher for bivariate methods than for
77 multivariate methods. The cross-validated canonical correlations for multivariate methods were
7s around 0, indicating that the results were not generalizable. In contrast, the difference between
769 the canonical correlations in the training and test sets was relatively small for the bivariate meth-
70 ods.
7 In the case of PLS, the similarities between the FC methods were extremely high, especially
72 when we compared loadings. We showed that these results are most likely due to the high sim-
773 ilarity of the behavioral loadings and weights to the first behavioral PC, confirming previous
774 observations that the PLS loadings and weights are biased toward the first principal axis, espe-
775 cially at low sample-to-feature ratios [73]]. Compared to PLS, CCA, on the other hand, shows
77 much less bias toward the first principal axis. In addition, the canonical correlations based on
777 PLS had negligible generalizability. Therefore, we advise users to be cautious when using PLS.
778 We recommend that users perform cross-validation and examine the similarity between canonical
779 weights/loadings and PCs.
780 In the case of VCM, the multivariate methods explained on average about 30 percentage points
781 more variance in behavior than the bivariate methods. To better understand this observation, we
72 examined the impact of inter-subject similarities on VCM results. To this end, we added random
73 noise to the data, reducing the similarities between subjects. Interestingly, full correlation and
78« partial correlation explained more variance in behavior on average when we added random noise
75 to the data. This may sound counterintuitive, but keep in mind that VCM was developed to
76 estimate heritability [69], that is, the proportion of variance in phenotype that can be explained
77 by variance in genotype. Holding the environment constant, higher genetic similarity would
7ss reduce the estimate of heritability. If all individuals within a sample had the same genotype,
780 heritability would be zero because no variance in phenotype could be explained by variance in
70 genotype. The input to VCM is a between-subject similarity matrix (usually a genetic similarity
791 Mmatrix or, in our case, a connectome similarity matrix). Participants were more similar when
72 we used full correlation as an estimate of FC compared to partial correlation. This explains the
705 observation that the partial correlation explained more variance in behavior.
704 Our second simulation showed that the partial correlation estimates are less stable and more
75 affected by noise and signal length. This explains the apparent discrepancy between VCM and
796 CCA. Our results show that when we add noise to the experimental data, participants become
707 more dissimilar and, in the case of VCM, the proportion of behavioral variance explained by
25
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76 the variance in the connectome becomes larger. In the case of CCA, lower SNR leads to lower
79 and less generalizable canonical correlations for multivariate FC methods. For this reason, we
a0 recommend that great care be taken when estimating brain-behavior associations with measures
so1 that are sensitive to noise.

802 Liégeois et al. [32] have used VCM to compare brain-behavior associations between correla-
ss  tion and the multivariate AR model. They concluded that the dynamic FC explained variance in
s« behavior beyond that explained by static FC. We have shown that these results are confounded
as by the mixing of two orthogonal properties of the FC methods: sensitivity to the temporal order
as Of time points and the number of regions used to estimate a single edge. The difference between
s07 the explanatory value of the multivariate AR model and the full correlation is better explained by
a8 the difference between the multivariate and bivariate nature of the method than by the sensitivity
a9 to the temporal order of the time points.

g0 4.4. Relationship between static, dynamic and time-varying functional connectivity

811 As explained in the Introduction, dynamic and time-varying FC encode different aspects of
sz temporal information in FC. Based on previous research investigating resting-state fMRI, which
a3 showed that FC is largely stationary [7] and independent of cognitive content [83]], we assumed
a1« stationarity of FC time series, and chose models of stationary static and dynamic FC as the basis
a5 of our study (as opposed to models of TVFC). Nevertheless, stationary FC is not incompatible
a1s  with the presence of meaningful FC fluctuations [[7, 21]].
817 Brain states can be estimated using TVFC estimation methods such as hidden Markov models
sie (HMM) or clustering of sliding window correlation (SWC) matrices [10} 9]. Brain states derived
a9 1n this way have been studied in the context of tracking ongoing cognition and behavior, and also
a0 for predicting trait aspects of behavior, such as personality, psychopathology, and performance
st on cognitive tests [see reviews in 10} 9} [84]. Commonly used metrics derived from brain states
ez include transition matrix (a matrix that encodes the probabilities of transitioning from one state
e2a  to another), fractional occupancy (proportion of time spent in each state), and switching rate (the
e24 frequency of switching between states) [85, [86, [87]]. In addition, some studies have quantified
es  TVFC using edge variability metrics, such as edge variance or standard deviation [88],|89]], am-
a6 plitude of low frequency fluctuations (ALFF) [90], and excursions from a median time-varying
ez correlation [19]. Edge variability has been shown repeatedly to be negatively correlated with
a8 the static FC [[19] 90, (88 [89], suggesting that stronger edges have lower variability, and that
e20  variability of FC is partially redundant with the edge strength derived from static and stationary
830 FC
81 Several studies have compared TVFC with static and stationary FC in terms of behavioral
sz prediction, showing that TVFC-derived metrics have differential or better predictive power over
s3s  Static/stationary FC and/or anatomical brain features [87, 91 131} 92, [86]], and also for the pre-
s diction of psychopathology. Jin et al. [31] compared the predictive value of static, dynamic, and
a5 time-varying FC, and showed that TVFC had the best predictive value for PTSD. However, con-
a3 sistent with our findings, dynamic FC was only slightly better than static FC. Note that some of
s7  these studies suffer from methodological shortcomings, such as small sample sizes [87,(91], and
s thus the results may have low generalizability [[73}93]]. Nevertheless, overall, the results suggest
a0 that TVFC does contain additional information beyond static or dynamic FC. Further studies
a0 are needed to reconcile these findings with the evidence that resting-state connectivity is largely
a1 Stationary.
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a2 4.5. Limitations and future directions

843 A number of limitations should be considered in drawing conclusions from our study. First, in
s« our simulation, we generated noise using a multivariate normal distribution. We could have used
a5 more advanced noise modeling that incorporated specific noise components such as drift, moving
s average, physiological noise, and system noise [94]. Unlike white noise, these noise sources are
a7 autocorrelated and therefore could affect the (dynamic) FC estimates. We wanted to keep the
as model simple and interpretable. Even with the simplest noise model without autocorrelation in
ao  neural time series, we showed that AR models can be affected by convolution of the neural signal
sso  with HRF and that consequently the dynamic FC estimates resemble the static FC. However,
st more advanced noise modeling could be used for a more realistic assessment of the sources of
sz similarities between different FC methods.

853 Similarly, we used a very simple procedure, prewhitening, to reduce autocorrelation. Other
s« methods could also be used to reduce autocorrelation, such as advanced physiological modeling
a5 [951196] or deconvolution [97]]. Deconvolution can improve dynamic [26] and static FC estimates
ess  [97]. However, Seth et al. [27]] have shown that sufficient sampling rate is more important for
es7  valid dynamic FC estimates. Unlike fMRI, electrophysiological measurements such as EEG and
s  MEG have sufficient sampling rates and do not require deconvolution, so they could be used to
sse  study the relationship between static and dynamic FC [98]]. Note that in EEG, volume conduction
so can inflate zero-lag connectivity, so careful consideration is needed to disentangle true zero-phase
st lag connectivity from volume conduction effects [99]]. Furthermore, because instantaneous (zero-
sz lag) signal transmission is not physiologically plausible, zero-phase lag effects in EEG most
ss  likely reflect indirect (non-causal) connections, whereas lagged effects are influenced by both
s« indirect and direct (causal) connections. Therefore, the comparison of static and dynamic FC
ss measures in the EEG can be used to disentangle causal and non-causal effects.

ss 4.6. Conclusions

867 Our results show that the dynamic FC estimates represent information about connectivity that
ss  1s broadly similar to the static FC. Moreover, we have shown that the similarity between dynamic
so  and static FC is due, at least in part, to the convolution of neural time series with HRF. In contrast,
e0  we observed less similarity in the patterns of FC estimates between multivariate and bivariate
e methods. Multivariate FC methods were more sensitive to noise and CCA models based on
ez multivariate methods were less generalizable. We also showed that the choice of FC methods
a7s  affects the network topology, with noticable difference between multivariate and bivariate FC
a7« estimates, and only slight differences between dynamic and static FC estimates. While dynamic
a5 FC estimates can still provide information about the directionality of the connections, careful
e7s  inspection of the results is required, as this information may change after averaging the FC
&7 Mmatrices across participants.

878 Although dynamic FC models are useful as a model for directed FC or for modeling the evo-
e7o lution of neural time series over time [[7], our results suggest that estimates of the functional
a0 connectome change very little when temporal information is taken into account. Dynamic FC
ss1  estimates also show strong similarity to static FC in terms of brain-behavior associations.

sz 5. Data and code availability

883 Raw data are available as part of the Human Connectome Project (https://www.
s« humanconnectome.org/). The function to compute the variance component model is available
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sss  in the repository: https://github.com/RaphaellLiegeois/FC-Behavior. For CCA and
ss  PLS, we used the GEMMR package: https://github.com/murraylab/gemmr. Strength-
s7  based node centrality measures were computed using the Brain Connectivity Toolbox (https:
ss |//sites.google.com/site/bctnet/). The code for the normalized participation coeffi-
sse cient is available in the repository: https://github.com/omidvarnia/Dynamic_brain_
s0 connectivity_analysis. All other relevant code is available in the Open Science Framework
g1 repository: https://dx.doi.org/10.17605/0SF.I0/XFTDH.
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Figure 7: Results of variance component model for brain-behavior associations. A. Variance explained for individual
traits estimated with different connectivity methods — traits are ordered according to the mean variance explained across
connectivity methods. B. Mean variance explained. C. Similarities of explained variance patterns between connectivity

methods.
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Figure 8: Results of variance component model for brain-behavior associations on data with added noise. FC was
estimated using Pearsons’/full correlation and partial correlation after adding various levels of random Gaussian noise
to experimental time series. A. Variance explained for individual traits estimated with different connectivity methods.
Traits are ordered according to the mean variance explained across connectivity methods. B. Mean variance explained.
Error bars represent jackknife standard deviation. C. Mean similarity between participants. Error bars represent standard
deviation.
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Figure 9: Results of canonical correlation analysis for brain-behavior associations. A. CCA weights. B. First
canonical correlation on test and training set, C. Correlations between canonical loadings and weights across functional
connectivity methods for first canonical components.
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Figure 11: Results of simulation. A. Ground truth matrices (mean over participants). Note that all ground truth autore-
gressive model coeflicients equal zero, since the simulated events were not autocorrelated. B. Correlation between the
ground truth and the simulated data for all FC methods and their relationship to the noise level and signal length. C.
Correlations between selected pairs of FC methods as a function of noise and signal length for simulated data. D. The
autocorrelation function of the simulated data as a function of prewhitening order and noise.

33


https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525348; this version posted May 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

97 References

918 [1] A. Fornito, A. Zalesky, E. T. Bullmore, Fundamentals of Brain Network Analysis, Elsevier/Academic Press, Ams-

919 terdam ; Boston, 2016.

920 [2] A. T. Reid, D. B. Headley, R. D. Mill, R. Sanchez-Romero, L. Q. Uddin, D. Marinazzo, D. J. Lurie, P. A.
921 Valdés-Sosa, S. J. Hanson, B. B. Biswal, V. Calhoun, R. A. Poldrack, M. W. Cole, Advancing functional con-
922 nectivity research from association to causation, Nature Neuroscience 22 (2019) 1751-1760. doi:10.1038/
923 s41593-019-0510-4.

924 [3] C. Wu, F. Ferreira, M. Fox, N. Harel, J. Hattangadi-Gluth, A. Horn, S. Jbabdi, J. Kahan, A. Oswal, S. A. Sheth,
925 Y. Tie, V. Vakharia, L. Zrinzo, H. Akram, Clinical applications of magnetic resonance imaging based functional
926 and structural connectivity, Neurolmage 244 (2021) 118649. doi{10.1016/j .neuroimage.2021.118649.

927 [4] S. H. Tompson, E. B. Falk, J. M. Vettel, D. S. Bassett, Network approaches to understand individual differences
928 in brain connectivity: Opportunities for personality neuroscience, Personality Neuroscience 1 (2018) e5. doi:10.
929 1017/pen.2018.4.

930 [5S] M. W. Cole, T. Ito, D. S. Bassett, D. H. Schultz, Activity flow over resting-state networks shapes cognitive task
931 activations, Nature Neuroscience 19 (2016) 1718-1726. doi:10.1038/nn.4406,

932 [6] T. A. W. Bolton, R. Liegeois, The arrow-of-time in neuroimaging time series identifies causal triggers of brain
933 function, 2022. d0ii10.1101/2022.05.11.491521,

934 [7]1 R. Liégeois, T. O. Laumann, A. Z. Snyder, J. Zhou, B. T. Yeo, Interpreting temporal fluctuations in resting-state
935 functional connectivity MRI, Neurolmage 163 (2017) 437-455. doii10/gcsbkz.

936 [8] C. Chatfield, H. Xing, The Analysis of Time Series: An Introduction with R, Chapman & Hall/CRC Texts in
937 Statistical Science Series, seventh edition ed., CRC Press, Taylor & Francis Group, Boca Raton, 2019.

938 [9] M. G. Preti, T. A. Bolton, D. Van De Ville, The dynamic functional connectome: State-of-the-art and perspectives,
939 Neurolmage 160 (2017) 41-54. doi:10/gcj5q7.

es0  [10] D.J. Lurie, D. Kessler, D. S. Bassett, R. F. Betzel, M. Breakspear, S. Kheilholz, A. Kucyi, R. Liégeois, M. A.
941 Lindquist, A. R. McIntosh, R. A. Poldrack, J. M. Shine, W. H. Thompson, N. Z. Bielczyk, L. Douw, D. Kraft, R. L.
942 Miller, M. Muthuraman, L. Pasquini, A. Razi, D. Vidaurre, H. Xie, V. D. Calhoun, Questions and controversies
943 in the study of time-varying functional connectivity in resting fMRI, Network Neuroscience 4 (2020) 30-69.
944 doii10/ghr3sd.

95 [11] R. Liégeois, B. T. Yeo, D. Van De Ville, Interpreting null models of resting-state functional MRI dynamics: Not
946 throwing the model out with the hypothesis, Neurolmage 243 (2021) 118518. doi{10.1016/j.neuroimage.
947 2021.118518.

o [12] R. Hindriks, M. Adhikari, Y. Murayama, M. Ganzetti, D. Mantini, N. Logothetis, G. Deco, Can sliding-window
949 correlations reveal dynamic functional connectivity in resting-state fMRI?, Neurolmage 127 (2016) 242-256.
950 doi:10/£786fz.

e51  [13] T.O.Laumann, A. Z. Snyder, A. Mitra, E. M. Gordon, C. Gratton, B. Adeyemo, A. W. Gilmore, S. M. Nelson, J. J.
952 Berg, D. J. Greene, J. E. McCarthy, E. Tagliazucchi, H. Laufs, B. L. Schlaggar, N. U. F. Dosenbach, S. E. Petersen,
953 On the stability of bold fmri correlations, Cerebral Cortex (2016) cercor;bhw265v1. doiz10/£9p8v2.

o4 [14] J. Daniel Arzate-Mena, E. Abela, P. V. Olguin-Rodriguez, W. Rios-Herrera, S. Alcauter, K. Schindler, R. Wiest,
955 M. F. Miiller, C. Rummel, Stationary EEG pattern relates to large-scale resting state networks — An EEG-
956 fMRI study connecting brain networks across time-scales, Neurolmage 246 (2022) 118763. doi:10.1016/j.
957 neuroimage.2021.118763.

s [15] P.V.Olguin-Rodriguez, J. D. Arzate-Mena, M. Corsi-Cabrera, H. Gast, A. Marin-Garcia, J. Mathis, J. Ramos Loyo,
959 1. Y. Del Rio-Portilla, C. Rummel, K. Schindler, M. Miiller, Characteristic fluctuations around stable attractor
960 dynamics extracted from highly nonstationary electroencephalographic recordings, Brain Connectivity 8 (2018)
961 457-474. doii10.1089/brain.2018.0609.

92 [16] M. F. Miiller, C. Rummel, M. Goodfellow, K. Schindler, Standing waves as an explanation for generic stationary
963 correlation patterns in noninvasive EEG of focal onset seizures, Brain Connectivity 4 (2014) 131-144. doi:10.
964 1089/brain.2013.0192,

95 [17] D. A. Handwerker, V. Roopchansingh, J. Gonzalez-Castillo, P. A. Bandettini, Periodic changes in fMRI connectiv-
966 ity, NeuroImage 63 (2012) 1712-1719. doii10.1016/j .neuroimage.2012.06.078.

%7 [18] C. Chang, G. H. Glover, Time—frequency dynamics of resting-state brain connectivity measured with fMRI, Neu-
968 rolmage 50 (2010) 81-98. doi:10.1016/j .neuroimage.2009.12.011|

99 [19] A. Zalesky, A. Fornito, L. Cocchi, L. L. Gollo, M. Breakspear, Time-resolved resting-state brain networks, Pro-
970 ceedings of the National Academy of Sciences 111 (2014) 10341-10346. doii10.1073/pnas.1400181111,

971 [20] L. Novelli, A. Razi, A mathematical perspective on edge-centric brain functional connectivity, Nature Communi-
972 cations 13 (2022) 2693. doi:10.1038/s41467-022-29775-7.

973 [21] Z.Ladwig, B. A. Seitzman, A. Dworetsky, Y. Yu, B. Adeyemo, D. M. Smith, S. E. Petersen, C. Gratton, BOLD
34


http://dx.doi.org/10.1038/s41593-019-0510-4
http://dx.doi.org/10.1038/s41593-019-0510-4
http://dx.doi.org/10.1038/s41593-019-0510-4
http://dx.doi.org/10.1016/j.neuroimage.2021.118649
http://dx.doi.org/10.1017/pen.2018.4
http://dx.doi.org/10.1017/pen.2018.4
http://dx.doi.org/10.1017/pen.2018.4
http://dx.doi.org/10.1038/nn.4406
http://dx.doi.org/10.1101/2022.05.11.491521
http://dx.doi.org/10/gcsbkz
http://dx.doi.org/10/gcj5q7
http://dx.doi.org/10/ghr3sd
http://dx.doi.org/10.1016/j.neuroimage.2021.118518
http://dx.doi.org/10.1016/j.neuroimage.2021.118518
http://dx.doi.org/10.1016/j.neuroimage.2021.118518
http://dx.doi.org/10/f786fz
http://dx.doi.org/10/f9p8v2
http://dx.doi.org/10.1016/j.neuroimage.2021.118763
http://dx.doi.org/10.1016/j.neuroimage.2021.118763
http://dx.doi.org/10.1016/j.neuroimage.2021.118763
http://dx.doi.org/10.1089/brain.2018.0609
http://dx.doi.org/10.1089/brain.2013.0192
http://dx.doi.org/10.1089/brain.2013.0192
http://dx.doi.org/10.1089/brain.2013.0192
http://dx.doi.org/10.1016/j.neuroimage.2012.06.078
http://dx.doi.org/10.1016/j.neuroimage.2009.12.011
http://dx.doi.org/10.1073/pnas.1400181111
http://dx.doi.org/10.1038/s41467-022-29775-7
https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525348; this version posted May 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

974 cofluctuation ‘events’ are predicted from static functional connectivity, Neurolmage 260 (2022) 119476. doi:10.
975 1016/j.neuroimage.2022.119476.

o76 [22] T. Matsui, T. Q. Pham, K. Jimura, J. Chikazoe, On co-activation pattern analysis and non-stationarity of resting
977 brain activity, Neurolmage 249 (2022) 118904. doi{10.1016/j .neuroimage.2022.118904,

o78  [23] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols, J. D. Ramsey,
979 M. W. Woolrich, Network modelling methods for FMRI, Neurolmage 54 (2011) 875-891. do0i:10.1016/j.
980 neuroimage.2010.08.063.

981 [24] K. Friston, Causal modelling and brain connectivity in functional magnetic resonance imaging, PLoS Biology 7
982 (2009) €1000033. doiz10.1371/journal .pbio.1000033,

93 [25] K. Friston, Dynamic causal modeling and Granger causality Comments on: The identification of interacting
984 networks in the brain using fMRI: Model selection, causality and deconvolution, NeuroImage 58 (2011) 303-305.
985 doii10.1016/j.neuroimage.2009.09.031.

986 [26] O. David, I. Guillemain, S. Saillet, S. Reyt, C. Deransart, C. Segebarth, A. Depaulis, Identifying neural drivers
987 with functional mri: An electrophysiological validation, PLoS Biology 6 (2008) e315. doii10.1371/journal.
988 pbio.0060315,

g9 [27] A. K. Seth, P. Chorley, L. C. Barnett, Granger causality analysis of fMRI BOLD signals is invariant to hemody-
990 namic convolution but not downsampling, NeuroImage 65 (2013) 540-555. doi:10.1016/j.neuroimage.2012.
991 09.049.

992 [28] V. Pallarés, A. Insabato, A. Sanjuan, S. Kiihn, D. Mantini, G. Deco, M. Gilson, Extracting orthogonal subject- and
993 condition-specific signatures from fMRI data using whole-brain effective connectivity, NeuroImage 178 (2018)
994 238-254. doi:10.1016/j .neuroimage.2018.04.070.

995 [29] M. Gilson, G. Deco, K. J. Friston, P. Hagmann, D. Mantini, V. Betti, G. L. Romani, M. Corbetta, Effective
996 connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of
997 cortical interactions, Neurolmage 180 (2018) 534-546. doii10.1016/j .neuroimage.2017.09.061.

998 [30] M. Gilson, R. Moreno-Bote, A. Ponce-Alvarez, P. Ritter, G. Deco, Estimation of directed effective connectivity
999 from fmri functional connectivity hints at asymmetries of cortical connectome, PLOS Computational Biology 12
1000 (2016) €1004762. doi:10.1371/ journal .pcbi. 1004762,

1001 [31] C. Jin, H. Jia, P. Lanka, D. Rangaprakash, L. Li, T. Liu, X. Hu, G. Deshpande, Dynamic brain connectivity is a
1002 better predictor of PTSD than static connectivity: Dynamic Brain Connectivity, Human Brain Mapping 38 (2017)
1003 4479-4496. doi:10.1002/hbm. 23676.

1004 [32] R. Liégeois, J. Li, R. Kong, C. Orban, D. Van De Ville, T. Ge, M. R. Sabuncu, B. T. T. Yeo, Resting brain
1005 dynamics at different timescales capture distinct aspects of human behavior, Nature Communications 10 (2019)
1006 2317. doi;10/gf3k2q.

1007 [33] M. R. Arbabshirani, A. Preda, J. G. Vaidya, S. G. Potkin, G. Pearlson, J. Voyvodic, D. Mathalon, T. van Erp,
1008 A. Michael, K. A. Kiehl, J. A. Turner, V. D. Calhoun, Autoconnectivity: A new perspective on human brain
1009 function, Journal of Neuroscience Methods 323 (2019) 68-76. doi:10/gf2tvj.

1010 [34] R.Liégeois, A. Santos, V. Matta, D. Van De Ville, A. H. Sayed, Revisiting correlation-based functional connectivity
1011 and its relationship with structural connectivity, Network Neuroscience 4 (2020) 1235-1251. doii10/gm79q6|

1012 [35] H. Honari, A. S. Choe, J. J. Pekar, M. A. Lindquist, Investigating the impact of autocorrelation on time-varying
1013 connectivity, Neurolmage 197 (2019) 37-48. doii10/gm7955.

1014 [36] L.Novelli, J. T. Lizier, Inferring network properties from time series using transfer entropy and mutual information:
1015 Validation of multivariate versus bivariate approaches, Network Neuroscience (2021) 1-32. doii10.1162/netn_
1016 a_00178.

1017 [37] W. Cheng, X. Ji, J. Zhang, J. Feng, Individual classification of ADHD patients by integrating multiscale neu-
1018 roimaging markers and advanced pattern recognition techniques, Frontiers in Systems Neuroscience 6 (2012).
1019 doii10.3389/fnsys.2012.00058.

1020 [38] H. Cai, J. Zhu, Y. Yu, Robust prediction of individual personality from brain functional connectome, Social
1021 Cognitive and Affective Neuroscience 15 (2020) 359-369. doi:10.1093/scan/nsaa044.

1022 [39] A. Abraham, M. P. Milham, A. Di Martino, R. C. Craddock, D. Samaras, B. Thirion, G. Varoquaux, Deriving
1023 reproducible biomarkers from multi-site resting-state data: An Autism-based example, Neurolmage 147 (2017)
1024 736-745. doii10.1016/j .neuroimage.2016.10.045.

125 [40] K. Dadi, M. Rahim, A. Abraham, D. Chyzhyk, M. Milham, B. Thirion, G. Varoquaux, Benchmarking functional
1026 connectome-based predictive models for resting-state fMRI, Neurolmage 192 (2019) 115-134. doi:10.1016/j.
1027 neuroimage.2019.02.062,

1028 [41] A.Zalesky, A. Fornito, E. Bullmore, On the use of correlation as a measure of network connectivity, Neurolmage
1029 60 (2012) 2096-2106. doi:10.1016/j .neuroimage.2012.02.001,

1030 [42] X.Liang,J. Wang, C. Yan, N. Shu, K. Xu, G. Gong, Y. He, Effects of different correlation metrics and preprocessing
1031 factors on small-world brain functional networks: A resting-state functional MRI study, PLoS ONE 7 (2012)
1032 €32766. doii10.1371/journal . pone. 0032766,

35


http://dx.doi.org/10.1016/j.neuroimage.2022.119476
http://dx.doi.org/10.1016/j.neuroimage.2022.119476
http://dx.doi.org/10.1016/j.neuroimage.2022.119476
http://dx.doi.org/10.1016/j.neuroimage.2022.118904
http://dx.doi.org/10.1016/j.neuroimage.2010.08.063
http://dx.doi.org/10.1016/j.neuroimage.2010.08.063
http://dx.doi.org/10.1016/j.neuroimage.2010.08.063
http://dx.doi.org/10.1371/journal.pbio.1000033
http://dx.doi.org/10.1016/j.neuroimage.2009.09.031
http://dx.doi.org/10.1371/journal.pbio.0060315
http://dx.doi.org/10.1371/journal.pbio.0060315
http://dx.doi.org/10.1371/journal.pbio.0060315
http://dx.doi.org/10.1016/j.neuroimage.2012.09.049
http://dx.doi.org/10.1016/j.neuroimage.2012.09.049
http://dx.doi.org/10.1016/j.neuroimage.2012.09.049
http://dx.doi.org/10.1016/j.neuroimage.2018.04.070
http://dx.doi.org/10.1016/j.neuroimage.2017.09.061
http://dx.doi.org/10.1371/journal.pcbi.1004762
http://dx.doi.org/10.1002/hbm.23676
http://dx.doi.org/10/gf3k2q
http://dx.doi.org/10/gf2tvj
http://dx.doi.org/10/gm79q6
http://dx.doi.org/10/gm7955
http://dx.doi.org/10.1162/netn_a_00178
http://dx.doi.org/10.1162/netn_a_00178
http://dx.doi.org/10.1162/netn_a_00178
http://dx.doi.org/10.3389/fnsys.2012.00058
http://dx.doi.org/10.1093/scan/nsaa044
http://dx.doi.org/10.1016/j.neuroimage.2016.10.045
http://dx.doi.org/10.1016/j.neuroimage.2019.02.062
http://dx.doi.org/10.1016/j.neuroimage.2019.02.062
http://dx.doi.org/10.1016/j.neuroimage.2019.02.062
http://dx.doi.org/10.1016/j.neuroimage.2012.02.001
http://dx.doi.org/10.1371/journal.pone.0032766
https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525348; this version posted May 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1033 [43] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K. Ugurbil, The WU-Minn Human

1034 Connectome Project: An overview, Neurolmage 80 (2013) 62—79. doi:10/f46ktq.

1035 [44] M. F. Glasser, S. N. Sotiropoulos, J. A. Wilson, T. S. Coalson, B. Fischl, J. L. Andersson, J. Xu, S. Jbabdi,
1036 M. Webster, J. R. Polimeni, D. C. Van Essen, M. Jenkinson, The minimal preprocessing pipelines for the Human
1087 Connectome Project, Neurolmage 80 (2013) 105-124. doi:10/£46nj4.

1038 [45] G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, S. M. Smith, Automatic denois-
1039 ing of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers,
1040 Neurolmage 90 (2014) 449-468. doii10/ggwbcj.

1041 [46] E. C.Robinson, S. Jbabdi, M. F. Glasser, J. Andersson, G. C. Burgess, M. P. Harms, S. M. Smith, D. C. Van Essen,
1042 M. Jenkinson, MSM: A new flexible framework for Multimodal Surface Matching, NeuroImage 100 (2014)
1043 414-426. doi110.1016/j .neuroimage.2014.05.069.

1044 [47] J.L.Ji, J. Demsar, C. Fonteneau, Z. Tamayo, L. Pan, A. Kralji¢, A. Matkovi¢, N. Purg, M. Helmer, S. Warrington,
1045 A. Winkler, V. Zerbi, T. S. Coalson, M. F. Glasser, M. P. Harms, S. N. Sotiropoulos, J. D. Murray, A. Anticevic,
1046 G. Repovs, QuNex—An integrative platform for reproducible neuroimaging analytics, Frontiers in Neuroinfor-
1047 matics 17 (2023) 1104508. doii10.3389/fninf.2023.1104508.

1048 [48] M. R. Arbabshirani, E. Damaraju, R. Phlypo, S. Plis, E. Allen, S. Ma, D. Mathalon, A. Preda, J. G. Vaidya,
1049 T. Adali, V. D. Calhoun, Impact of autocorrelation on functional connectivity, NeuroImage 102 (2014) 294-308.
1050 doi:10/f6rcdt.

1051 [49] C. E. Davey, D. B. Grayden, G. F. Egan, L. A. Johnston, Filtering induces correlation in fMRI resting state data,
1052 Neurolmage 64 (2013) 728-740. doii10/f4jgxv.

1053 [50] M. F. Glasser, T. S. Coalson, E. C. Robinson, C. D. Hacker, J. Harwell, E. Yacoub, K. Ugurbil, J. Andersson, C. F.
1054 Beckmann, M. Jenkinson, S. M. Smith, D. C. Van Essen, A multi-modal parcellation of human cerebral cortex,
1085 Nature 536 (2016) 171-178. doii10/£8z3gb!

106 [51] U. Pervaiz, D. Vidaurre, M. W. Woolrich, S. M. Smith, Optimising network modelling methods for fMRI, Neu-
1057 rolmage 211 (2020) 116604. doi:10/ggx68f.

108 [52] J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via coordinate descent,
1059 Journal of Statistical Software 33 (2010). doii10.18637/jss.v033.101}

1060 [53] C.-M. Ting, A.-K. Seghouane, M. U. Khalid, S.-H. Salleh, Is first-order vector autoregressive model optimal for
1061 fMRI data?, Neural Computation 27 (2015) 1857-1871. doi:10/£7n8qq.

1062 [54] P. A. Valdes-Sosa, Spatio-temporal autoregressive models defined over brain manifolds, Neuroinformatics 2 (2004)
1063 239-250. doi;10/fs5xbw.

1064 [55] J. Casorso, X. Kong, W. Chi, D. Van De Ville, B. T. Yeo, R. Liégeois, Dynamic mode decomposition of resting-state
1065 and task fMRI, Neurolmage 194 (2019) 42-54. doii10/gfx53r.

1066 [56] D. Bates, M. Méchler, B. Bolker, S. Walker, Fitting linear mixed-effects models using Ime4, Journal of Statistical
1067 Software 67 (2015). doi:10/gcrnkw.

1068 [57] E.Jolly, Pymer4: Connecting R and Python for linear mixed modeling, Journal of Open Source Software 3 (2018)
1069 862. doii10/gnzggv.

170 [58] L. Li, L. Zeng, Z.-J. Lin, M. Cazzell, H. Liu, Tutorial on use of intraclass correlation coefficients for assessing
1071 intertest reliability and its application in functional near-infrared spectroscopy—based brain imaging, Journal of
1072 Biomedical Optics 20 (2015) 050801. doi:10/gj7s8x.

1073 [59] M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, Neurolmage
1074 52 (2010) 1059-1069. doi:10.1016/j.neuroimage.2009.10.003.

1075 [60] M. E. J. Newman, Networks, second edition ed., Oxford University Press, Oxford, United Kingdom ; New York,
1076 NY, United States of America, 2018.

177 [61] J. D. Power, B. L. Schlaggar, C. N. Lessov-Schlaggar, S. E. Petersen, Evidence for hubs in human functional brain
1078 networks, Neuron 79 (2013) 798-813. d0i:10.1016/j .neuron.2013.07.035.

1079 [62] M. Pedersen, A. Omidvarnia, J. M. Shine, G. D. Jackson, A. Zalesky, Reducing the influence of intramodular
1080 connectivity in participation coefficient, Network Neuroscience 4 (2020) 416—431. doi10.1162/netn_a_00127.
1081 [63] R. Guimera, L. A. Nunes Amaral, Functional cartography of complex metabolic networks, Nature 433 (2005)
1082 895-900. doii10.1038/nature03288.

1083 [64] F. Klimm, J. Borge-Holthoefer, N. Wessel, J. Kurths, Gorka Zamora-Lépez, Individual node’s contribution to the
1084 mesoscale of complex networks, New Journal of Physics 16 (2014) 125006. doii10.1088/1367-2630/16/12/
1085 125006.

186 [65] S. Maslov, K. Sneppen, Specificity and stability in topology of protein networks, Science 296 (2002) 910-913.
1087 doi:10.1126/science. 1065103,

1088 [66] J. L. Ji, M. Spronk, K. Kulkarni, G. Repovs, A. Anticevic, M. W. Cole, Mapping the human brain’s cortical-
1089 subcortical functional network organization, Neurolmage 185 (2019) 35-57. doii10.1016/j.neuroimage.
1090 2018.10.006.

1091 [67] J. Li, R. Kong, R. Liégeois, C. Orban, Y. Tan, N. Sun, A. J. Holmes, M. R. Sabuncu, T. Ge, B. T. Yeo, Global
36


http://dx.doi.org/10/f46ktq
http://dx.doi.org/10/f46nj4
http://dx.doi.org/10/ggwbcj
http://dx.doi.org/10.1016/j.neuroimage.2014.05.069
http://dx.doi.org/10.3389/fninf.2023.1104508
http://dx.doi.org/10/f6rcdt
http://dx.doi.org/10/f4jgxv
http://dx.doi.org/10/f8z3gb
http://dx.doi.org/10/ggx68f
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10/f7n8qq
http://dx.doi.org/10/fs5xbw
http://dx.doi.org/10/gfx53r
http://dx.doi.org/10/gcrnkw
http://dx.doi.org/10/gnzggv
http://dx.doi.org/10/gj7s8x
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1016/j.neuron.2013.07.035
http://dx.doi.org/10.1162/netn_a_00127
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1088/1367-2630/16/12/125006
http://dx.doi.org/10.1088/1367-2630/16/12/125006
http://dx.doi.org/10.1088/1367-2630/16/12/125006
http://dx.doi.org/10.1126/science.1065103
http://dx.doi.org/10.1016/j.neuroimage.2018.10.006
http://dx.doi.org/10.1016/j.neuroimage.2018.10.006
http://dx.doi.org/10.1016/j.neuroimage.2018.10.006
https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525348; this version posted May 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1092 signal regression strengthens association between resting-state functional connectivity and behavior, Neurolmage
1093 196 (2019) 126-141. doi:10/gj8p69.

1094 [68] R. Kashyap, R. Kong, S. Bhattacharjee, J. Li, J. Zhou, B. Thomas Yeo, Individual-specific fMRI-Subspaces
1095 improve functional connectivity prediction of behavior, NeuroImage 189 (2019) 804-812. doi;{10/gft3tt|

1006 [69] T.Ge, M. Reuter, A. M. Winkler, A. J. Holmes, P. H. Lee, L. S. Tirrell, J. L. Roffman, R. L. Buckner, J. W. Smoller,
1097 M. R. Sabuncu, Multidimensional heritability analysis of neuroanatomical shape, Nature Communications 7 (2016)
1098 13291. doi:10/£9b8cv.

1090 [70] D.J. Stekhoven, P. Buhlmann, MissForest-non-parametric missing value imputation for mixed-type data, Bioin-
1100 formatics 28 (2012) 112-118. doi:10/dhxth8,

101 [71] T.Ge, T.E. Nichols, P. H. Lee, A. J. Holmes, J. L. Roffman, R. L. Buckner, M. R. Sabuncu, J. W. Smoller, Massively
1102 expedited genome-wide heritability analysis (MEGHA), Proceedings of the National Academy of Sciences 112
1108 (2015) 2479-2484. doii10/£63g67.

1104 [72] A. C. Rencher, Methods of Multivariate Analysis, Wiley Series in Probability and Mathematical Statistics, 2nd ed
1105 ed., J. Wiley, New York, 2002.

106 [73] M. Helmer, S. Warrington, A.-R. Mohammadi-Nejad, J. L. Ji, A. Howell, B. Rosand, A. Anticevic, S. N. Sotiropou-
1107 los, J. D. Murray, On stability of Canonical Correlation Analysis and Partial Least Squares with application to
1108 brain-behavior associations, 2020. doi;10.1101/2020.08.25.265546,

1109 [74] A. M. Winkler, O. Renaud, S. M. Smith, T. E. Nichols, Permutation inference for canonical correlation analysis,
1110 Neurolmage 220 (2020) 117065. doii10.1016/j .neuroimage.2020.117065,

1111 [75] H.-T. Wang, J. Smallwood, J. Mourao-Miranda, C. H. Xia, T. D. Satterthwaite, D. S. Bassett, D. Bzdok, Finding
1112 the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists, Neurolmage 216
1113 (2020) 116745. doij10.1016/j .neuroimage .2020.116745,

1114 [76] X.Zhuang, Z. Yang, D. Cordes, A technical review of canonical correlation analysis for neuroscience applications,
1115 Human Brain Mapping 41 (2020) 3807-3833. doii10.1002/hbm. 25090,

1116 [77] S. M. Smith, T. E. Nichols, D. Vidaurre, A. M. Winkler, T. E. J. Behrens, M. F. Glasser, K. Ugurbil, D. M.
117 Barch, D. C. Van Essen, K. L. Miller, A positive-negative mode of population covariation links brain connectivity,
1118 demographics and behavior, Nature Neuroscience 18 (2015) 1565-1567. doi:10.1038/nn.4125,

1119 [78] A. Mihalik, J. Chapman, R. A. Adams, N. R. Winter, F. S. Ferreira, J. Shawe-Taylor, J. Mourdo-Miranda, Canon-
1120 ical correlation analysis and partial least squares for identifying brain-behavior associations: A tutorial and a
1121 comparative study, Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 7 (2022) 1055-1067.
1122 doii10.1016/j.bpsc.2022.07.012,

123 [79] A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X.-N. Zuo, A. J. Holmes, S. B. Eickhoff, B. T. T. Yeo, Local-
1124 global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI, Cerebral Cortex 28
1125 (2018) 3095-3114. doi:10/gd738m.

1126 [80] E. B. Erhardt, E. A. Allen, Y. Wei, T. Eichele, V. D. Calhoun, SimTB, a simulation toolbox for fMRI data under a
1127 model of spatiotemporal separability, Neurolmage 59 (2012) 4160-4167. doii10/cr4g9g.

1128 [81] X.-N. Zuo, R. Ehmke, M. Mennes, D. Imperati, F. X. Castellanos, O. Sporns, M. P. Milham, Network centrality in
1129 the human functional connectome, Cerebral Cortex 22 (2012) 1862—-1875. doii10.1093/cercor/bhr269,

1130 [82] M. Chong, C. Bhushan, A. Joshi, S. Choi, J. Haldar, D. Shattuck, R. Spreng, R. Leahy, Individual parcellation
1131 of resting fMRI with a group functional connectivity prior, Neurolmage 156 (2017) 87-100. doi:10.1016/j.
1132 neuroimage.2017.04.054,

1133 [83] T. O. Laumann, A. Z. Snyder, Brain activity is not only for thinking, Current Opinion in Behavioral Sciences 40
1134 (2021) 130-136. doii10.1016/j . cobeha.2021.04.002,

1135 [84] J. R. Cohen, The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity,
1136 Neurolmage 180 (2018) 515-525. doij10.1016/j .neuroimage.2017.09.036.

1137 [85] E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, V. D. Calhoun, Tracking whole-brain connectivity
1138 dynamics in the resting state, Cerebral Cortex 24 (2014) 663-676. doii10.1093/cercor/bhs352.

1139 [86] D. Vidaurre, A. Llera, S. Smith, M. Woolrich, Behavioural relevance of spontaneous, transient brain network
1140 interactions in fMRI, Neurolmage 229 (2021) 117713. doii10.1016/j .neuroimage.2020.117713,

1141 [87] A. Eichenbaum, I. Pappas, D. Lurie, J. R. Cohen, M. D’Esposito, Differential contributions of static and time-
1142 varying functional connectivity to human behavior, Network Neuroscience 5 (2021) 145-165. doi:10.1162/
1143 netn_a_00172|

1144 [88] A.S. Choe, M. B. Nebel, A. D. Barber, J. R. Cohen, Y. Xu, J. J. Pekar, B. Caffo, M. A. Lindquist, Comparing test-
1145 retest reliability of dynamic functional connectivity methods, Neurolmage 158 (2017) 155-175. doi:10.1016/j.
1146 neuroimage.2017.07.005,

1147 [89] W. H. Thompson, P. Fransson, The mean—variance relationship reveals two possible strategies for dynamic brain
1148 connectivity analysis in fMRI, Frontiers in Human Neuroscience 9 (2015). doii10.3389/fnhum.2015.00398|
1149 [90] C.Zhang, S. A. Baum, V. R. Adduru, B. B. Biswal, A. M. Michael, Test-retest reliability of dynamic functional
1150 connectivity in resting state fmri, Neurolmage 183 (2018) 907-918. doii10.1016/j .neuroimage.2018.08.021.

37


http://dx.doi.org/10/gj8p69
http://dx.doi.org/10/gft3tt
http://dx.doi.org/10/f9b8cv
http://dx.doi.org/10/dhxth8
http://dx.doi.org/10/f63g67
http://dx.doi.org/10.1101/2020.08.25.265546
http://dx.doi.org/10.1016/j.neuroimage.2020.117065
http://dx.doi.org/10.1016/j.neuroimage.2020.116745
http://dx.doi.org/10.1002/hbm.25090
http://dx.doi.org/10.1038/nn.4125
http://dx.doi.org/10.1016/j.bpsc.2022.07.012
http://dx.doi.org/10/gd738m
http://dx.doi.org/10/cr4g9g
http://dx.doi.org/10.1093/cercor/bhr269
http://dx.doi.org/10.1016/j.neuroimage.2017.04.054
http://dx.doi.org/10.1016/j.neuroimage.2017.04.054
http://dx.doi.org/10.1016/j.neuroimage.2017.04.054
http://dx.doi.org/10.1016/j.cobeha.2021.04.002
http://dx.doi.org/10.1016/j.neuroimage.2017.09.036
http://dx.doi.org/10.1093/cercor/bhs352
http://dx.doi.org/10.1016/j.neuroimage.2020.117713
http://dx.doi.org/10.1162/netn_a_00172
http://dx.doi.org/10.1162/netn_a_00172
http://dx.doi.org/10.1162/netn_a_00172
http://dx.doi.org/10.1016/j.neuroimage.2017.07.005
http://dx.doi.org/10.1016/j.neuroimage.2017.07.005
http://dx.doi.org/10.1016/j.neuroimage.2017.07.005
http://dx.doi.org/10.3389/fnhum.2015.00398
http://dx.doi.org/10.1016/j.neuroimage.2018.08.021
https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525348; this version posted May 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1151 [91] H. Jia, X. Hu, G. Deshpande, Behavioral relevance of the dynamics of the functional brain connectome, Brain

1152 Connectivity 4 (2014) 741-759. doii10.1089/brain.2014.0300.

1153 [92] B. Rashid, E. Damaraju, G. D. Pearlson, V. D. Calhoun, Dynamic connectivity states estimated from resting fMRI
1154 Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects, Frontiers in Human
1155 Neuroscience 8 (2014). doij10.3389/fnhum.2014.00897.

1156 [93] S. Marek, B. Tervo-Clemmens, F. J. Calabro, D. F. Montez, B. P. Kay, A. S. Hatoum, M. R. Donohue, W. Foran,
1157 R. L. Miller, T. J. Hendrickson, S. M. Malone, S. Kandala, E. Feczko, O. Miranda-Dominguez, A. M. Graham,
1158 E. A. Earl, A. J. Perrone, M. Cordova, O. Doyle, L. A. Moore, G. M. Conan, J. Uriarte, K. Snider, B. J. Lynch,
1159 J. C. Wilgenbusch, T. Pengo, A. Tam, J. Chen, D. J. Newbold, A. Zheng, N. A. Seider, A. N. Van, A. Metoki,
1160 R.J. Chauvin, T. O. Laumann, D. J. Greene, S. E. Petersen, H. Garavan, W. K. Thompson, T. E. Nichols, B. T. T.
1161 Yeo, D. M. Barch, B. Luna, D. A. Fair, N. U. F. Dosenbach, Reproducible brain-wide association studies require
1162 thousands of individuals, Nature 603 (2022) 654—660. doi:10.1038/s41586-022-04492-9.

1es  [94] C.T. Ellis, C. Baldassano, A. C. Schapiro, M. B. Cai, J. D. Cohen, Facilitating open-science with realistic fMRI
1164 simulation: Validation and application, Peer]J 8 (2020) e8564. doi:10/ght935.

1165 [95] J. E. Chen, J. R. Polimeni, S. Bollmann, G. H. Glover, On the analysis of rapidly sampled fMRI data, Neurolmage
1166 188 (2019) 807-820. doi:10/gfvhhv.

1167 [96] S. Bollmann, A. M. Puckett, R. Cunnington, M. Barth, Serial correlations in single-subject fMRI with sub-second
1168 TR, NeuroImage 166 (2018) 152-166. doii10/gcr9cx.

116s  [97] D. Rangaprakash, G.-R. Wu, D. Marinazzo, X. Hu, G. Deshpande, Hemodynamic response function (HRF) vari-
1170 ability confounds resting-state fMRI functional connectivity, Magnetic Resonance in Medicine 80 (2018) 1697—
171 1713. doi:10/gkzméc.

1172 [98] E. Tagliazucchi, H. Laufs, Multimodal imaging of dynamic functional connectivity, Frontiers in Neurology 6
1173 (2015). doij10.3389/fneur.2015.00010.

1174 [99] M. X. Cohen, Analyzing Neural Time Series Data: Theory and Practice, Issues in Clinical and Cognitive Neu-
1175 ropsychology, The MIT Press, Cambridge, Massachusetts, 2014.

38


http://dx.doi.org/10.1089/brain.2014.0300
http://dx.doi.org/10.3389/fnhum.2014.00897
http://dx.doi.org/10.1038/s41586-022-04492-9
http://dx.doi.org/10/ght935
http://dx.doi.org/10/gfvhhv
http://dx.doi.org/10/gcr9cx
http://dx.doi.org/10/gkzm4c
http://dx.doi.org/10.3389/fneur.2015.00010
https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525348; this version posted May 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

ne 10, Supplement

autocorrelation

Buiusuymaid gy Bulusyymeid gyy Buusyymeld 1Hy  Bulusnymeud ou

Figure S1: The autocorrelation function of simulated data as a function of prewhitening order and noise. The mean
autocorrelation function was computed over all participants and regions. In general, noise and prewhitening reduced
absolute autocorrelation. The shape of the autocorrelation function varied as a function of noise and prewhitening.
In case without prewhitening, autocorrelation monotonically decreased and reached O at lag 8. After prewhitening,
autocorrelation varied between positive and negative values, and this was most pronounced in cases without noise. The
autocorrelation function was more similar to the experimental data in cases with low levels of noise.
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Figure S2: Correlations between connectivity methods. Same as in[Figure 2]A but includes all orders of prewhitening.

40


https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525348; this version posted May 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

mean correlation between individual-level matrices

multivariate AR1 .36 .29 .31 .31 .37 .37 .44 .45 .47 .11 .17 .18}
without e variate AR .39 .34 .36 .36 .36 .44 .48 .49 59 .23 .29 .30
AR o) -39 .51 52 52 .33 .23 .27 .27
AR i) .39 .51 52 52 .33 .23 .27 .27
A i) .39 .51 51 51 .32 21 .24 .25
partial correlation .39 .47 .48 .48 .34 .24 .28 .29

lagged correlation
(AR3 prewhitened)

lagged correlation
(AR2 prewhitened)

lagged correlation
(AR1 prewhitened)
lagged correlation

full correlation
(AR3 prewhitened)

full correlation
(AR2 prewhitened)

saollrew [aA3]-dnolb usamiaq suoie|aliod

correlation
1.0

.97 1.00.1.00 .98 .94 97 .

0.5

full correlation
(AR1 prewhitened)

full correlation

98 .

.97 .1.001.00 .98 .95
.98 .99 .991.00 .95 .

& & S ‘\eb\ & ‘\e& S Qe& O S D Qe& »‘\\0(\66??"\/

S G RO N N O O NN Y
& W @ (@ @
\)\\0 Q\G Q\QJ © 6(’ Q“ZJ © Q\Qa '\%\G Q\e Q‘e Q\e /GO \~\\Q’b~
RARCCORCOREMRT ARG COR-CAIF RGO COR-CAI IR
[UalRUalR Vol CRaN Vo VoSN Ua R SR R U o\ a
SOOI RO RO O
e G G Sl P CE N
(& (@ (@ (& (@ @ @ (& @
AP A\ 8 (P (P O AL AL W
QT & & RSP GRS
W @ @ N S

Figure S3: Correlations between connectivity methods on 200 participants with highest quality data.
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Figure S4: Similarities between node centrality measures based on positive connections. Similarities were estimated
by (i) computing node measures on group-average connectivity matrices (group-level comparison; below diagonal), (ii)
by computing node measures for each individual separately, correlating within participant and averaging these correla-
tions across participants (individual-level comparsion; above diagonal). Same as in but includes prewhitened
data.
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Figure S5: Similarities between node centrality measures based on positive connections. Similarities were estimated
by (i) computing node measures on group-averaged connectivity matrices (group-level comparison; below diagonal),
(ii) by computing node measures for each individual separately, correlating within participants and averaging these
correlations across participants (individual-level comparison; above diagonal). Similar to but for negative
connections.
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Figure S6: Correlations between centrality measures for static FC methods at the group level. Correlations were
computed separately for positive and negative connections. We observed a positive correlation between the participation
coeflicient of positive connections and strength-based measures of negative connections. This suggests that nodes that
participate in different modules tend to have fewer negative connections. Importantly, this finding highlights the func-
tional importance of negative connections. However, for partial correlation networks, a positive correlation was found
between strength-based measures and the participation coefficient. This suggests that indirect negative connections drive
the negative relationship between participation coefficient and strength. In other words, nodes that participate in dif-
ferent modules tend to have more indirect negative functional connections, compared to nodes with low participation
coefficient.
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Figure S7: Correlations between centrality measures for the multivariate autoregressive model at the group level.
Correlations were computed separately for positive and negative connections. The scatter plots above the diagonal refer
to outgoing connections, while the scatter plots below the diagonal refer to incoming connections.
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full correlation partial correlation

B eigenvector centrality

C normalized participation coefficient

Figure S8: Cortical distribution of centrality measures for static FC methods and for negative connections. PageR-
ank centrality is omitted, because its correlation with strength is equal to 1. The values have been transformed to z-values
for visualization.
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Figure S9: Cortical distribution of centrality measures for multivariate autoregressive model and for negative
connections.
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Figure S10: Cortical distribution of centrality measures for HCP subject 100307 for multivariate autoregressive
model and for negative connections.
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Figure S11: Cortical distribution of centrality measures for HCP subject 100307 for multivariate autoregressive
model and for negative connections.
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Figure S12: Results of variance component model for brain-behavior associations on subsamples of unrelated
participants. (A) Variance explained for individual traits estimated with different connectivity methods, (B) mean
variance explained, and (C) similarities of explained va.ris:9ce patterns between connectivity methods. The traits are
ordered according to the mean variance explained across connectivity methods. The same as in[Figure 7]but in subsamples
of unrelated participants.
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Figure S13: Results of canonical correlation analysis for brain-behavior associations on subsamples of unrelated
participants. (A,C) First canonical correlation on test and training sets in the first (A, n = 384) and second subsample
(C, n = 339). (B,D) Correlations between canonical loadings and weights across FC methods for the first canonical
components on the first (B) and second (D) subsamples.
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Figure S14: Results of principal least squares analysis for brain-behavior associations. A. PLS weights. B. First
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Figure S15: Results of principal least squares analysis for brain-behavior associations on subsamples of unrelated
participants. (A,C) First canonical correlation on test and training sets in the first (A, n = 384) and second subsample
(C, n = 339). (B,D) Correlations between canonical loadings and weights across FC methods for the first canonical
components on the first (B) and second (D) subsamples.
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Figure S16: Correlation between ground truth and simulated data for all FC methods in association ith noise and
signal length. Same as in[Figure TIB but includes all orders of prewhitening.
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Figure S17: Correlation between selected pairs of FC methods as a function of noise and signal length on simulated
data. Same as in[Figure TT|C but includes all prewhitening orders.
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Figure S18: Distributions of edge values on simulated data for selected FC methods as a function of noise for the
signals with the longest length (10000 frames). The distributions are based on the average FC matrix across simulated
participants. The boxplot whiskers represent the minimum and maximum values.

56


https://doi.org/10.1101/2023.01.24.525348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.24.525348; this version posted May 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

HCP Field Friendly Name HCP Field Friendly Name
PicSeq-Unadj Visual Episodic Memory WM _Task_Acc Working Memory (N-back)
CardSort_Unadj Cognitive Flexibility NEOFAC_A Agreeableness (NEO)
Flanker_Unadj Inhibition (Flanker Task) NEOFAC_O Openness (NEO)
PMAT24_A_CR Fluid Intelligence NEOFAC_C Conscientiousness (NEO)
ReadEng_Unadj Vocabulary (Pronunciation) NEOFAC_N Neuroticism (NEO)
PicVocab_Unadj Vocabulary (Picture Matching) NEOFAC_E Extroversion (NEO)
ProcSpeed_Unadj Processing Speed ER40_CR Emotion Recog. - Total
DDisc_ AUC_40K Delay Discounting ER40ANG Emotion Recog. - Anger
VSPLOT_TC Spatial Orientation ER40FEAR Emotion Recog. - Fear
SCPT_SEN Sustained Attention - Sens. ER40HAP Emotion Recog. - Happiness
SCPT_SPEC Sustained Attention - Spec. ER40NOE Emotion Recog. - Neutral
IWRD_TOT Verbal Episodic Memory ER40SAD Emotion Recog. - Sadness
ListSort_Unadj Working Memory (List Sorting) AngAftect_ Unadj  Anger - Affect
MMSE_Score Cognitive Status (MMSE) AngHostil_Unadj Anger - Hostility
PSQI_Score Sleep Quality AngAggr_Unadj Anger - Aggressiveness
Endurance_Unadj Walking Endurance FearAffect_-Unadj  Fear - Affect
GaitSpeed_Comp Walking Speed FearSomat_Unadj  Fear - Somatic Arousal
Dexterity_Unadj Dexterity Sadness_Unadj Sadness

Strength_Unadj Grip Strength LifeSatisf_Unadj Life Satisfaction
Odor_Unadj Odor Identification MeanPurp_Unadj Meaning of Life
PainlInterf_Tscore Pain Interference Survey PosAftect_Unadj Positive Affect
Taste_Unadj Taste Intensity Friendship_-Unadj  Friendship

Mars_Final Contrast Sensitivity Loneliness_Unadj  Loneliness

Emotion_Task_Face_Acc Emotion Face Matching
Language_Task_Math_Avg Difficulty Level  Arithmetic
Language_Task_Story_Avg_Difficulty_Level ~ Story Comprehension
Relational_Task_Acc Relational Processing
Social_Task_Perc_Random Social Cognition - Random
Social_Task_Perc_ TOM Social Cognition - Interaction

Table S1: Behavioral measures.
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PercHostil_Unadj
PercReject_Unadj
EmotSupp_Unadj
InstruSupp_Unadj
PercStress_Unadj
SelfEff_Unadj

Perceived Hostility
Perceived Rejection
Emotional Support
Instrumental Support
Perceived Stress
Self-Efficacy
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