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Abstract  
Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for noninvasively measuring human brain 
activity; yet, thus far, fMRI has been relatively limited in its temporal resolution. A key challenge is understanding the 
relationship between neural activity and the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, gen-
erally modeled by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and individuals, 
confounding our ability to make inferences about the timing of the underlying neural processes. Here we show that rest-
ing-state fMRI signals contain information about HRF temporal dynamics that can be leveraged to understand and char-
acterize variations in HRF timing across both cortical and subcortical regions. We found that the frequency spectrum of 
resting-state fMRI signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. These 
spectral differences extended to subcortex as well, revealing significantly faster hemodynamic timing in the lateral genic-
ulate nucleus of the thalamus. Ultimately, our results demonstrate that the temporal properties of the HRF impact the 
spectral content of resting-state fMRI signals and enable voxel-wise characterization of relative hemodynamic response 
timing. Furthermore, our results show that caution should be used in studies of resting-state fMRI spectral properties, as 
differences can arise from purely vascular origins. This finding provides new insight into the temporal properties of fMRI 
signals across voxels, which is crucial for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track 
fast neural dynamics.  

 

Introduction 

Functional magnetic resonance imaging (fMRI) enables non-invasive measurement of human brain activity via the 
hemodynamic response. When activity in a population of neurons changes, these changes give rise to the blood-oxygen-
ation-level-dependent (BOLD) signal measured in most fMRI studies (1). Thus far, however, BOLD fMRI has exhibited rel-
atively limited ability to provide the fine-grained temporal information necessary for deepening our understanding of 
brain dynamics. This is due to the fact that the signals obtained from BOLD fMRI are not direct measures of neural activity, 
but rather reflect the coupling between neuronal activity and the hemodynamic response, which evolves on a time course 
of seconds (2, 3). This coupling between neural activity and the BOLD signal can be represented by the hemodynamic 
response function (HRF) (4, 5). The properties of the HRF depend on many interconnected factors, including the effects of 
local vascular architecture and cerebrovascular dynamics, that vary substantially across the brain and between individuals 
(4–7). The relative timing and shape of the HRF, therefore, also varies considerably across brain regions and even between 
neighboring voxels (8–13). Hemodynamic response temporal lag variation is substantially larger than many neural effects 
of interest, introducing variability on the order of several seconds (8–11). Thus, to enable inferences about the relative 
timing of neural activity using signals obtained from BOLD fMRI, it is crucial to understand the variations in HRF timing 
across the brain. 

Advances in acquisition technology now allow high-resolution whole brain fMRI data to be acquired at fast (<500 
ms) rates (14–19), suggesting that fMRI could provide a unique tool to noninvasively track temporal sequences of neural 
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activity (20) across the entire brain. Indeed, recent studies have revealed highly structured temporal dynamics using fMRI 
and suggest that fMRI can enable whole-brain mapping of temporal sequences (21–25).  Furthermore, hemodynamic sig-
nals have been shown to contain more information about fast and high-frequency activity than previously thought (21, 
26–29). Studies examining individual brain regions have demonstrated that fMRI can achieve impressive temporal preci-
sion within regions, on the order of 100 ms (30), meaning that high fidelity temporal information is present within these 
hemodynamic signals. However, a key remaining challenge is that the hemodynamic differences across the brain confound 
our ability to infer the timing of the underlying neural activity from BOLD fMRI. Specifically, if a given brain region shows 
earlier BOLD activity, it could be due to faster neural activity or simply due to a faster hemodynamic response in that 
region. Fully exploiting the higher temporal resolution provided by fast fMRI techniques will therefore ultimately require 
accounting for differences in the temporal dynamics of the hemodynamic response across the whole brain.  

Despite the well-known heterogeneity of hemodynamic timing, most common analysis approaches for BOLD fMRI 
data assume a standard, canonical HRF shape throughout the brain (31). This approach is understandable, since the true 
HRF is not known, but it nevertheless cannot account for the vascular confound introduced by hemodynamic response 
variability. Incorrect assumptions about the shape and timing of the HRF can lead to incorrect inferences regarding the 
underlying neural activity (32–34), and studies that assume a whole brain canonical HRF are unable to decouple the neural 
and vascular components of the BOLD signal (5, 35–38). Even when using flexible modeling approaches, such as basis sets 
or finite impulse response models, it is not possible to determine whether a given region’s faster fMRI response reflects 
fast neural activity, or simply faster local neurovascular coupling (34).  

The fact that most studies do not account for variations in HRF dynamics is largely due to methodological chal-
lenges. Previous work has demonstrated that it is possible to quantify hemodynamic lags across brain regions, and even 
on a voxel-wise level, to detect the relative order of BOLD responses with high temporal precision (11–13, 30, 38–47). One 
such method is the use of a stimulus paradigm that drives activity in particular brain regions where the neuronal response 
properties are relatively well understood and controlled such as primary sensory or motor cortices (5, 10–12, 40). How-
ever, this approach cannot be applied to the majority of the brain, where the neuronal response properties are not known 
ahead of time. Alternatively, using a breath hold or similar hypercapnic challenge can modulate cerebral blood flow (CBF) 
to all vascularized regions with minimal changes in cerebral metabolic rate of oxygen (CMRO2), allowing mapping of vas-
cular latencies (38, 39, 42–45, 48). However, breath hold tasks are not suitable for all subject populations, as some patients 
may have difficulty complying with the breath hold task. Furthermore, breath hold tasks modulate and measure cerebro-
vascular reactivity (CVR), which contributes to neurovascular coupling but is a distinct process. While neurovascular cou-
pling reflects the alterations in local hemodynamics that occur in response to changes in neural activity, CVR is specifically 
a measure of a blood vessel’s capacity to dilate and constrict in response to a vasoactive stimulus, and does not include 
the extensive metabolic and molecular factors that also drive neurovascular coupling (48–50). In fact, there is evidence 
that while CVR is affected by healthy aging, some metrics of neurovascular coupling are not, hinting that distinct mecha-
nisms may shape these two patterns (51–53).  

A task-free, neurovascular-based approach for detecting the lags of intrinsic neurovascular coupling would there-
fore be broadly relevant for analyzing fMRI data. A potential alternative route towards identifying local hemodynamic 
properties is to examine the properties of resting-state fMRI data. Resting-state fMRI signals reflect neurovascular cou-
pling induced by spontaneous neural activity (54, 55) and confer the additional benefit of being task-independent, which 
makes it a viable scan type for patient populations. Moreover, unlike stimulus- or task-based paradigms for mapping local 
hemodynamic response timings in particular brain regions, resting-state fMRI can be used to examine the HRF across the 
whole brain. These advantages have prompted past research into the utility of resting-state fMRI signals to estimate the 
HRF itself with prior work utilizing deconvolution approaches to explore HRF timing in resting-state data (46, 47, 56). 
However, these approaches require assumptions about the underlying neural events, which are not known. We therefore 
investigated whether intrinsic signatures of local neurovascular coupling dynamics are present in the resting-state fMRI 
signal.  

Our goal was to understand whether information about the temporal dynamics of the hemodynamic response is 
present in resting-state fMRI data. We first used simulations of the BOLD response to illustrate how distinct, physiologically 
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relevant HRF shapes should produce marked differences in the frequency content of resting-state signals. Next, we verified 
this result in fast fMRI data collected at 7 Tesla using visual stimulation to induce a neural response with known timing in 
primary visual cortex. We quantified the temporal delay of voxels in the primary visual cortex (V1) in response to a con-
trolled, oscillating visual stimulus, and found that voxels with fast and slow hemodynamic responses exhibited distinct 
resting-state spectral features. We further extended our analyses to the visual thalamus (lateral geniculate nucleus, LGN) 
and found that this principle generalized to subcortex. To understand the potential of this information as a tool to predict 
the temporal properties of individual voxels, we then trained classifiers to use information from the resting-state spectrum 
to classify voxels as being fast or slow cortical voxels, or even faster LGN voxels. We found that resting-state signals were 
better predictors of voxel-wise differences in relative hemodynamic timing than latencies measured from a gold standard 
breath hold task. Our results establish that information about hemodynamic timing can be extracted from the frequency 
spectrum of resting-state fMRI signals. This demonstrates that resting-state fMRI can provide a way to understand and 
predict the temporal dynamics of the HRF across the brain, which is critical for interpreting neural activity using BOLD 
fMRI.  
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Results 
The temporal dynamics of the HRF profoundly impact the spectrum of simulated BOLD responses 
Previous modeling work has illustrated that narrower HRFs should result in BOLD responses containing more high fre-
quency power (27), suggesting that local variations in HRF timing should manifest as local variations in the frequency 
content of BOLD signals. We therefore hypothesized that the frequency spectrum of BOLD dynamics in the resting-state 
can be used to infer the relative timing of the task-driven hemodynamic response. We first aimed to illustrate this property 
by simulating the BOLD frequency response using HRFs with different temporal dynamics. If we assume that the BOLD 
response is a linear time-invariant system, we can compute the BOLD response as a convolution between a given input 
(i.e., the stimulus) and the characteristic input response of the system (i.e., the HRF). Then, by varying the frequency of 
the stimulus we can construct a spectrum of the BOLD frequency response for HRFs with faster or slower dynamics (Fig. 
1A). We performed this simulation using six different HRFs (Fig. 1B) with physiologically representative values for their 
time-to-peak (TTP), full width at half maximum (FWHM), and amplitude (11). We observed that while HRFs with faster 
dynamics produced less power in the low frequency bands compared to those with slower dynamics, they also showed a 
shallower decline in power at higher frequencies (Fig. 1C). Furthermore, this effect was preserved when we normalized 
the different HRFs to have the same peak amplitude (Supplementary Fig. S1A), demonstrating that this phenomenon is 
not solely due to the higher amplitude of slower HRFs (Supplementary Fig. S1B). This effect was also preserved if we 
accounted for the 1/f-like spectral pattern that neural activity displays (Supplementary Fig. S1C-E). These simulations 
demonstrate that there should be profound differences in the relative power at low versus high frequencies for voxels 
with fast vs. slow HRFs which we hypothesize can be quantified and related to the temporal dynamics of the hemodynamic 
response. This relationship will be explored in the remainder of the paper.  

 

Figure 1  – Simulations show that the temporal properties of the hemodynamic response function affect the frequency spectrum of the 
BOLD signal. A) We generated a simulated BOLD response to determine the response amplitude of each HRF to each neural frequency. 
By convolving a given HRF with an oscillating stimulus, and sweeping across a range of frequencies, we generated a frequency spec-
trum of the simulated BOLD responses. This simulation was repeated using HRFs with varying temporal properties, to compare the 
frequency spectrum of simulated BOLD responses with faster or slower hemodynamic responses. B) We generated a range of HRFs 
with physiologically plausible timings and amplitudes (11). C) We found that temporal properties of the HRF had noticeable effects on 
the simulated spectra, particularly under 0.2 Hz.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.25.525528doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525528
http://creativecommons.org/licenses/by-nc-nd/4.0/


Features of the resting-state spectrum show significant differences between fast and slow voxels  
Based on these simulation results, we then examined the frequency content of resting-state fMRI data. Spontaneous BOLD 
fluctuations captured in resting-state fMRI are linked to fluctuations in neuronal activity (54, 55, 57), and accordingly, 
reflect the neurovascular coupling mechanisms that link neural fluctuations to BOLD fluctuations. To empirically test the 
prediction that fast and slow voxels should have distinct frequency content in the resting-state, we first used a task para-
digm to identify voxels in the primary visual cortex (V1) with consistently fast or slow hemodynamic responses. To drive 
continuous oscillations in V1 we presented the subjects with a 12-Hz counterphase flickering radial checkerboard with the 
luminance contrast of the checkerboard modulated in time as a sine wave of 0.05 Hz (Fig. 2A, top). We used a combination 
of an anatomical and functional localizer to identify stimulus-driven voxels in V1 (Fig. 2B). For those voxels that were 
significantly driven by the stimulus, we then calculated the phase lag, or relative response latency to the stimulus (Fig. 2C). 
Consistent with prior studies (10, 28, 58) we found a wide range of hemodynamic response lags within V1 (Fig. 2A, bot-
tom). We extracted groups of fast and slow responding voxels (Fig. 2D-E). Then, for each voxel identified as fast or slow 
within the task run, we calculated that voxel’s frequency spectrum in the resting-state. Figure 2F shows the resting-state 
spectrum of a representative fast and slow voxel from a single subject where the differences in the spectra, particularly 
the distinct slope under 0.2 Hz, are visible.  

 

Figure 2 – Experimental design: oscillating visual stimuli identify fast- and slow-responding voxels in V1. A) Subjects viewed a flickering 
checkerboard with oscillating luminance contrast to drive neural oscillations in V1. Some voxels showed a faster response to the visual 
stimulus and other showed a slower response, with a noticeable difference in the temporal dynamics of the mean response in these 
groups. Shading represents standard error. B) Example of a functional localizer in one subject with the white lines denoting the outline 
of the primary visual cortex (V1) based on anatomical segmentation. One visual stimulus run was used as a functional localizer to 
identify stimulus-driven voxels in V1. C) For all stimulus-driven voxels in V1, the phase of the response to the visual stimulus was 
calculated from the average of the visual stimulus runs not used as the functional localizer, corresponding to the local hemodynamic 
delay. D) We defined groups of “fast” and “slow” voxels using a Gaussian fit to the histogram of phases. Histogram shows example 
from one representative subject. E) Example map of fast and slow voxels generated for a single subject. F) Frequency spectrum of a 
representative slow and fast voxel’s resting-state signal, showing a difference in power drop off across frequencies, with a steeper 
slope for the slower voxel.  
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Our simulations had predicted a difference in the overall frequency content of resting-state fMRI signals in voxels with 
fast versus slow HRFs. To quantify this property across voxels, we sought to generate a set of spectral features that could 
capture these resting-state spectral dynamics. We constructed four spectral features to capture spectral properties: the 
slope using a linear fit under 0.2 Hz, the exponent of an aperiodic 1/f fit, the amplitude of low frequency fluctuations (0.01-
0.1 Hz power; ALFF) (59), and the fractional ALFF (ratio of 0.01-0.08 Hz to 0-0.25 Hz; fALFF) (60)(Fig. 3). Each feature of the 
resting-state spectra revealed significant differences (Wilcoxon rank-sum test, p<0.05) between fast and slow voxels 
across subjects. The slope showed significant differences between the fast and slow voxels within each individual subject 
(15/15), while the aperiodic exponent, ALFF, and fALFF showed significant differences in 14, 11, and 13 subjects, respec-
tively. (See Supplementary Table S1 for p-values). Each of these features reflects information about the frequency content 
at high and low frequencies, suggesting that this was an effective metric for differentiating voxels with fast or slow hemo-
dynamic responses. Notably, the most effective features for distinguishing fast and slow voxels were the ones that explic-
itly captured the relative difference in high-frequency vs. low-frequency power.  

 

Figure 3– Features of the resting-state spectrum differed between fast and slow voxels in each subject. For each subject, we calculated 
four features of the resting-state frequency spectrum and compared the values between the task-defined fast and slow voxels using 
a Wilcoxon rank sum test. For the A) slope, using a linear fit of frequency spectrum under 0.2 Hz, 15/15 subjects showed significant 
differences; B) exponent of an aperiodic 1/f fit under 0.5 Hz, 14/15 subjects showed significant differences; C) amplitude of low fre-
quency fluctuations (ALFF), 11/15 subjects showed significant differences; and D) fractional ALFF, 13/15 subjects showed significant 
differences. Black lines indicate a significant difference in a given subject (Wilcoxon rank-sum test, p < 0.05) and red lines indicate a 
non-significant difference.  
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Faster hemodynamic responses in thalamus are also reflected in shallower frequency spectra 
A key strength of fMRI is its ability to noninvasively image activity in the subcortex. Having established that the resting-
state spectrum contained signatures of local hemodynamic response timing within V1, we next aimed to test whether this 
principle extended to the visual thalamus, specifically the LGN. Prior studies have shown that LGN has faster hemodynamic 
responses than V1 (61–63); however, due to its small size and lower signal-to-noise ratio, extracting its spectral features 
accurately could be more challenging. We generated individual masks of the LGN within each subject using the individual 
anatomical segmentation (64) and a functional localizer (Fig. 4A). To confirm the presence of stimulus-locked oscillations 
in the LGN and to assess the relative timing of its response, we first examined the latency of the average response to the 
visual stimulus in the LGN, as compared to the fast and slow groups in V1. We observed that the LGN peaked before both 
the fast and slow groups in V1 (Fig. 4B), consistent with prior work demonstrating faster hemodynamics in thalamus (61–
63). Then, to test whether this faster hemodynamic response was similarly linked to flatter resting-state spectra, we com-
pared the LGN voxels’ resting-state features to the previously identified fast and slow voxels in the cortex. We found that 
for all subjects there were clear differences in each spectral feature within the LGN compared to both the fast and slow 
voxels of the visual cortex (Fig. 4C-F). (See Supplementary Table S1 for p-values). The feature that had the poorest sensi-
tivity to differences between the LGN features and cortical features is ALFF, which could be explained by ALFF’s higher 
sensitivity to non-neural noise sources (60). We thus observed even shallower frequency slopes for the fast LGN voxels – 
again consistent with our simulation results, demonstrating that this pattern held not just within V1 but even extended to 
the LGN of the thalamus. This observation was also robust to controlling for the higher thermal noise in LGN signals (Sup-
plementary Fig. S2). 

 

Figure 4 – The coupling of response timing and resting-state spectral content is maintained in the LGN. A) Example LGN localizer in one 
subject showing uncorrected z-statistic in the localizer run within the anatomical mask of LGN defined by the white outline. B) Average 
time series of fast and slow V1 voxels compared to LGN voxels for an example subject. LGN displayed a fast visually-driven response, 
leading even the earliest cortical voxels. Time series are smoothed for display using a 10-point moving average. Shading represents 
standard error. C-F) For each subject we calculated the four resting-state spectral features for the LGN and compared them to the fast 
and slow voxels in V1. For the C) slope, 15/15 subjects showed significant differences between fast vs. LGN and slow vs. LGN; D) 
exponent of an aperiodic 1/f fit, 15/15 subjects showed significant differences between fast-LGN and slow-LGN; E) ALFF, 5/15 subjects 
showed significant differences between fast vs. LGN and 7/15 between slow vs. LGN; and F) fALFF, 15/15 subjects showed significant 
differences between fast-LGN and between slow-LGN. Black lines indicate a significant difference (Wilcoxon rank-sum test, p < 0.05) 
and red lines indicate a non-significant difference.  
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Resting-state spectral information better characterizes neurovascular coupling delays than a breath hold task 
Perhaps the most established method of mapping hemodynamic latencies across the brain is using a breath hold task to 
quantify cerebrovascular reactivity (38, 42–45, 48).  Therefore, we tested whether similar information about hemody-
namic latencies found using the resting-state spectra could be found in data from the breath hold task. To determine this, 
we first mapped the vascular latency in response to the breath hold task on a voxel-wise basis across the brain (38). We 
then compared each voxel’s relative vascular latency from the breath hold task across the three groups identified in the 
visual task – the fast and slow cortical voxels and LGN voxels. We found that some subjects showed the expected temporal 
sequence of activation, where LGN voxels and fast cortical voxels respond earlier than slow cortical voxels (Fig. 5A), but 
this effect was not present in all subjects (Fig. 5B). Even among the subjects that exhibited the expected order of activation, 
few of them showed individual-level significant differences in breath hold latency between the groups (Fig. 5C). Specifi-
cally, in only 7/15 subjects was the average breath hold latency of fast cortical voxels significantly faster compared to slow 
cortical voxels. Furthermore, the breath hold latency in LGN voxels was slower than expected in some subjects: it was 
significantly slower than fast cortical voxels in 5 subjects and significantly slower than slow cortical voxels in 1 subject 
(Wilcoxon rank-sum test, p<0.05). These results demonstrate that although the vascular latencies derived from the breath 
hold task do show significant differences between fast and slow cortical voxels and LGN voxels across the group, this effect 
is less robust in individual subjects than the resting-state spectral features. Additionally, not all subjects demonstrated the 
expected order of latencies between the three groups – with LGN first followed by fast cortical and, lastly, slow cortical 
voxels. Taken together, these results suggest that the features of the resting-state spectrum capture additional infor-
mation about local differences in neurovascular coupling delays.  

 

Figure 5 – Breath hold vascular latencies yield less robust characterization of task-driven hemodynamic response lags. A) Plot of one 
subject’s average BOLD response to the breath hold task in fast (teal) and slow (pink) cortical voxels as well as LGN voxels (yellow). 
The shaded areas are the standard error across voxels of that group. Colored arrows denote the peak of the response to the breath 
hold. The LGN time series peaks slightly earlier than the fast cortical voxels and both the LGN and fast cortical voxels peak well before 
the slow cortical voxels. This sequence of activation matches what is expected based on the hemodynamic lags across these structures.  
B) Plot of one subject’s average BOLD response to the breath hold task where the order of activation is not as expected. While LGN 
peaked earliest as expected, the average response in slow cortical voxels peaked before the average response in fast cortical voxels, 
meaning that the breath hold would not accurately predict latency in this subject. C) Comparison of the average breath hold latency 
in fast, slow, and LGN voxels in all subjects. For 9/15 subjects, the average latency of the fast cortical voxels was less than the slow 
cortical voxels, as expected, and 7 of these 9 had a significant difference. For only 2/15 subjects, the average latency of the LGN voxels 
was less than fast voxels, as expected, but only 1 of these 2 had a statistically significant difference. For 4/15 subjects, the average 
latency of slow cortical voxels was larger than LGN voxels, and 1 of these 4 had a statistically significant difference. (Wilcoxon rank-
sum test, p < 0.05). 

Features of the resting-state spectrum can predict voxels with fast or slow hemodynamic response timing 
Our results showed consistent signatures of hemodynamic response latency in the resting-state fMRI signal, suggesting 
that this information could potentially be used to predict local neurovascular latencies. Indeed, we found that these spec-
tral features were significantly correlated with the absolute timing of their hemodynamic responses (Supplementary Fig. 
S3, Supplementary Table S3).  To investigate the utility of the resting-state spectrum to predict the temporal dynamics of 
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the HRF, we tested whether support vector machines (SVMs) could classify slow, fast, and fastest (LGN) voxels using in-
formation from the resting-state spectrum. First, we trained a SVM to classify slow, fast, and LGN voxels based on the four 
features of the resting-state spectra identified in Fig. 3. We found that the classifier validation accuracies, both within each 
individual subject and on the dataset that combined all subjects, were well above chance (Fig. 6), demonstrating robust 
prediction of local hemodynamic delays. We next investigated whether our chosen features were sufficient for classifica-
tion, or whether additional useful information was present in the full resting-state spectrum, by training a second SVM 
classifier to use each voxel’s resting-state spectrum as the predictor for the classifier. The input to the classifier was the 
resting-state spectrum limited to up to 0.5 Hz to reduce the number of features fed into the model to avoid overfitting. 
Once again, we found that the accuracies, both within individual subjects and on the dataset that combined all subjects, 
were well above chance (Fig. 6; per-subject accuracy in Table S2). The SVM classifiers trained using the spectrum trended 
toward slightly higher classification accuracies than the pre-selected features (Fig. 6), but the performance of the two 
models was not significantly different (p=0.2828; Wilcoxon sign-rank test). Regression models aiming to predict specific 
response timing (rather than classifying fast vs. slow) also performed significantly above chance, but were less reliable 
than classifying voxels by relative timing (coefficient of determination=0.17; RMSE=0.949; Supplementary Table S4), likely 
due to the fact that absolute HRF timing depends on task state (27).  We therefore concluded that our constructed spectral 
features are capturing key aspects of the resting-state spectrum that are important for predicting hemodynamic latency.  

We next tested whether the resting-state signals performed better than the breath hold task at differentiating between 
fast, slow, and LGN voxels. We trained another SVM classifier to use the breath hold latencies as predictors and found 
that this model performed significantly above chance (Fig. 6), consistent with prior work demonstrating its utility in pre-
dicting delays. However, it nevertheless performed significantly worse than both resting-state models (Wilcoxon sign-rank 
test, p<0.0005; per-subject accuracy in Supplementary Table S2). This result further supported the conclusion that resting-
state spectral information performs well at capturing differences in hemodynamic response timings.  

 

Figure 6 – Average classification accuracy of SVM classifier trained using different features. The classification accuracies reported are 
the average validation accuracy across 1000 bootstraps. The black markers indicate the models trained using resting-state spectral 
features from all subjects combined into one model; the colored markers show results from individual subjects (n=15). Both models 
trained using features of the resting-state spectrum performed significantly better than the model trained using the breath hold la-
tencies; however, there was no significant difference in performance between the two models trained using information from the 
resting-state spectrum (p=0.283). All classifiers perform significantly above chance (33%). *** p<0.0005 (Wilcoxon signed-rank test).  
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Discussion 
We conclude that the frequency spectrum of resting-state fMRI signals contains rich information about local hemodynamic 
timing. Our simulations first illustrated the rationale for this effect: HRFs with faster temporal dynamics produce less 
power in the low frequency bands and a shallower attenuation of power at high frequencies. This effect is preserved even 
when we account for the higher amplitude of slower HRFs and the 1/f decay of the amplitude of spontaneous neural 
activity. Following this observation, we constructed several quantitative features based on the resting-state spectrum, 
each capturing a similar property: the relative amplitude of high vs. low frequencies. These spectral features showed 
significant differences between fast and slow voxels, and when used as predictors for a SVM were able to classify individual 
voxels as fast or slow. Our findings demonstrate that the temporal properties of the HRF affect the spectral features of 
resting-state fMRI signals and present a framework for characterizing the temporal properties of the hemodynamic re-
sponse across voxels, which is crucial for accurate fMRI analyses.  

The work presented here has broad implications for fMRI studies using the frequency content of the BOLD signal to make 
inferences about intrinsic brain activity. Prior work has identified changes in the spectral content of fMRI signals in certain 
clinical populations, including major depressive disorder (65), mild cognitive impairment (66), and Alzheimer’s disease 
(67), and interpreted these differences as changes in intrinsic brain activity. However, as seen here, differences in hemo-
dynamic response timings will also alter the frequency content of fMRI signals. Furthermore, prior work has shown that 
intrinsic timescales of BOLD activity vary across brain regions and can be used to predict individual subject patterns (68). 
Our work suggests hemodynamic differences may contribute to these observations. Therefore, changes in the spectral 
content of fMRI signals can arise not just from differences in intrinsic brain activity, but could also be indicators of different 
hemodynamic response timing.  

A common theme across the spectral features we constructed was that they were sensitive to the relative contributions 
of low- and high-frequency power. Two features we selected (the slope of the spectrum and the exponent of the aperiodic 
1/f fit) are direct measures of the attenuation in power towards higher frequencies. Similar information is contained in 
the commonly used metrics ALFF and fALFF (60): ALFF is a marker of the power in low frequency bands and fALFF is a 
measure of the ratio of high to low frequency power. While each of these features showed significant differences between 
fast and slow cortical voxels, only the slope and fALFF exhibited significant differences within each individual subject. 
These features explicitly capture the relative difference in high-frequency vs. low-frequency power, corresponding to the 
main prediction of our simulations. Conversely, ALFF had the poorest sensitivity within subjects which could be due to the 
fact that ALFF is the only feature that does not include information from both low and high frequency ranges and is instead 
limited to a relatively narrow band of frequencies, 0.01-0.08 Hz. Overall, our results suggest that while some information 
is contained in the magnitude of the fMRI signal alone, capturing the relative power in high versus low frequencies is the 
most important metric for predicting hemodynamic timing. Moreover, using the resting-state spectrum itself did not per-
form significantly better than our chosen features in classifying fast and slow voxels, suggesting that the relative power is 
indeed the primary contributor when predicting variations in local HRF timings.  

A unique advantage of fMRI is its ability to image throughout the whole brain, and our results suggest the potential for 
extracting more information from fMRI studies of subcortex. Due to significant improvements in both the sensitivity and 
spatial resolution of fMRI, an increasing number of studies are utilizing fMRI to study small, deep brain structures such as 
the thalamus and brainstem (69–72). The ability to image these deeper brain structures in humans opens the door to 
studying diverse aspects of cognition associated with these deeper brain regions (69–73). However, these deep brain 
structures also have unique physiological and anatomical properties that alter their vascular dynamics (61–63, 74, 75). 
Faster hemodynamic responses are frequently reported in subcortex, but hemodynamic responses in these regions are 
less well characterized than in the cortex. Our analyses found that variations in HRF timing are reflected in the frequency 
spectra of thalamic voxels as well, despite their differing signal-to-noise ratio. This result demonstrates the utility of our 
approach in subcortex and could benefit neuroimaging studies of structures such as the thalamus, a target of increasing 
interest in fMRI.  

Improvements in the temporal resolution of BOLD fMRI have also sparked interest in detecting neural sequences at sub-
second timescales, which are highly relevant for many studies of cognition. Recent studies have leveraged fast fMRI to 
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detect rapid sequences of neural events related to visual sequence detection (76), auditory dynamics (77), and changes in 
arousal state (22). As we continue to identify these rapid neural sequences, it will become even more crucial to consider 
how the hemodynamic response varies across regions to determine whether a given sequence represents regional differ-
ences in neuronal or in hemodynamic timing. Considering spectral signatures can support inference of precise timing of 
neural activity by providing information about relative hemodynamic latencies between voxels and regions.  

We found that the resting-state signals predicted voxel-wise differences in relative hemodynamic response timing signif-
icantly better using a breath hold to estimate vascular delays, the current gold standard. This observation could be ex-
plained by multiple factors. First, the models trained using the breath hold latencies were only able to leverage one piece 
of information: the measure of vascular latency derived from cross-correlation. The information from taking the cross-
correlation in the time domain may also be more sensitive to noise, especially at the fast sampling rate of our scans. 
However, a more important factor may be the biological mechanisms generating each signal. The breath hold task directly 
modulates cerebrovascular reactivity with minimal accompanying changes in CMRO2, allowing for assessment of local cer-
ebral vascular reactivity uncoupled from neuronal activation (42). CVR is important to assess in many clinical applications, 
and the breath hold-based approach remains a gold standard for CVR mapping (42–44, 48). However, while CVR is a sig-
nificant modulator of the hemodynamic response, it is only one component of neurovascular coupling, and there are many 
other factors and signaling pathways that also contribute. In particular, local metabolic factors and feedback mechanisms 
also modulate of blood flow in the brain and are not replicated in the breath hold task (50, 78). The hemodynamic re-
sponses induced by neural activity may, therefore, not be identical in timing to those induced by a purely vascular signal. 
By contrast, the signals obtained from resting-state fMRI are coupled to underlying neural activity in an analogous manner 
as during a task condition (54, 55, 57). The improved performance of the resting-state-based prediction may therefore 
reflect that it is intrinsically more similar to a task than the breath hold condition, as the underlying biological origins of 
resting-state signals share common mechanisms with task-induced neurovascular coupling. Future applications may 
therefore benefit from continuing to use breath tasks as a gold standard to assess CVR, whereas resting-state analyses 
may be a better metric of neurovascular coupling.  

The work presented here suggests a wide range of neuroscience applications for our approach to measuring hemodynamic 
timing. One logical next step would be to use the ability to characterize temporal variation in the HRF to not just predict, 
but to correct for vascular delays. Previous work demonstrated that correcting for varying hemodynamic latencies across 
the brain can affect functional connectivity analyses (35, 38). Our results could further enhance removal of non-neural 
latency differences that confound functional connectivity metrics, both static and dynamic, and can increase confidence 
that the networks we are analyzing are derived from neuronal dynamics. This has become increasingly of interest as more 
studies use functional connectivity, particularly in resting-state, to study dynamics underlying diseases such as PTSD (79–
82), Alzheimer’s Disease (83–86), Parkinson’s Disease (87–91), and others (92). Since changes in neurovascular function 
have been observed in many disorders (93–95), analyzing spectral dynamics may help interpret functional connectivity 
differences in clinical populations.  

Although we focused on the utility of resting-state spectral information to classify voxels as having relatively fast or slow 
hemodynamic response timings, we did also examine the correlation with absolute timing measures. We found that most 
subjects had significant positive correlations between each of the spectral features and the task response latency. Despite 
this fact, when estimating continuous predictions of absolute hemodynamic response lag, prediction performance was 
poor. Importantly, previous evidence has shown that the absolute timing of the HRF varies between task and resting-state 
conditions (27), suggesting that caution is needed in using absolute measures of hemodynamic latencies, as these may 
not generalize across conditions. Measuring relative differences in HRF timing might therefore be a more effective method 
to correct for variations in the hemodynamic response across brain regions, since task state can modulate the absolute 
timing of the hemodynamic response. Furthermore, the relative differences provide the key information necessary to 
interpret sequences of activity across brain regions, enabling examination of whether purely vascular differences are pre-
sent across those regions.  
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Together, our results demonstrate that the resting-state fMRI signal contains information about local hemodynamic re-
sponse speeds. This approach can help understand brain-wide variations in HRF dynamics, which is critical as the field 
moves towards a new era of fMRI studies utilizing fast fMRI to study rapid neuronal dynamics and higher-level cognition.  
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Materials and Methods 
Simulations 
Spectra of simulated BOLD responses were generated by convolving a given HRF with oscillating stimuli, ranging from 0.1-
0.5 Hz, and taking the magnitude of the simulated BOLD response as the power at that frequency (Fig. 1A). We used six 
HRFs with varying time-to-peak (TTP), full width at half maximum (FWHM), and peak percent signal changes (PSCs) to 
represent a range of physiologically relevant HRFs (Fig. 1B). These properties were drawn from previous work character-
izing varying HRF temporal dynamics at different cortical depths (11) and the values used are reported below in Supple-
mentary Table S5. We also normalized these HRFs by their maximum percent signal change and re-simulated the BOLD 
responses to create a new simulated spectrum for each HRF (Fig. 1C). Additionally, we performed simulations to account 
for the dominant 1/f-like spectral pattern of neural activity by setting the amplitude of the oscillating stimuli to be 1/stim-
ulus frequency ranging from 0.1-0.5 Hz (Fig. S1).  

Subject Population 
All experimental procedures were approved by the Massachusetts General Hospital Institutional Review Board and all 
subjects provided informed consent. 21 participants were scanned in total; 5 were excluded for excessive motion and 1 
was excluded for poor performance on the visual task suggesting they had closed their eyes. This left 15 subjects whose 
data was analyzed (mean age = 28 years, range = 22-42 years, 8 female).   

Experimental Design 
Subjects underwent a total of 7 functional scans: 3 visual stimulus, 2 breath hold, and 2 resting-state runs. All stimuli were 
programmed in MATLAB using Psychtoolbox (96). 

Visual Stimulus  
Each visual stimulus functional run lasted 254 seconds, with the first 14 seconds showing a gray screen with the red fixation 
dot and the following 240 seconds consisting of the 12-Hz counterphase flickering radial checkerboard. To drive continu-
ous neural oscillations in the visual cortex, the luminance contrast of the flickering checkerboard oscillated at a frequency 
of 0.05 Hz (except for one subject who was presented with 0.1 Hz oscillations). To assist the subjects with fixation, in the 
center of the visual field was a red dot that changed brightness at random intervals. Subjects were directed to press a 
button whenever the brightness of the red dot changed, and their average response time and response accuracy was 
reported at the end of each run. This allowed us to monitor participant engagement with the task. Each subject partici-
pated in 3 visual stimulus runs.  

Breath Hold Task  
For each breath hold run subjects performed 8 repetitions of an adapted version of a previously established breath hold 
task (38): a block comprised of 27 seconds of free breathing, 3 cycles of paced breathing (3 seconds breathe out, 3 seconds 
breathe in), a 15 second breath hold, and, lastly, a 30 second period of free breathing. The total time for the breath hold 
task scans was 8.5 minutes. The instructions for breathing were projected to the subjects displaying the text “Breathe 
Freely”; “Breathe Out”; “Breathe In”; and “HOLD BREATH.” All but one subject participated in 2 breath hold runs; a single 
subject performed only 1 breath hold run. For 2 subjects, a single breath hold run was excluded from analyses for excessive 
motion defined here as greater than 0.5 mm average motion across the whole run. No additional runs were excluded for 
these subjects.  

Resting-state  
Each subject participated in 2 resting-state runs where they were instructed to relax in the scanner with their eyes open 
and to try not to fall asleep. For some of the subjects, a fixation dot was presented to help minimize eye movements. Each 
resting-state scan lasted 8.5 minutes.  

MRI Data Acquisition 
Subjects were scanned on a 7-Tesla Siemens MAGNETOM scanner with a custom-built 32-channel head coil. Anatomical 
images were acquired with 0.75-mm isotropic multiecho magnetization-prepared rapid gradient-echo (MEMPRAGE) pro-
tocol (97) with TR = 2,530 ms, echo time (TE) = 1.76 ms and 3.7 ms, inversion time (TI) = 1100 ms, echo-spacing = 6.2 ms, 
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7o flip angle, bandwidth = 651 Hz, in-plane acceleration R=2, FOV = 320 x 320 x 244 mm and a total scan time of 7:20 
minutes.  For functional runs, 15 oblique slices were positioned to target the calcarine sulcus to include primary visual 
cortex (V1) and angled to include the lateral geniculate nucleus (LGN) located in the thalamus. Functional runs were ac-
quired as single-shot gradient-echo EPI  with 2 mm isotropic resolution, TR = 227 ms, TE = 24 ms, echo-spacing = 0.59 ms, 
30o flip angle, bandwidth = 2604 Hz, in-plane acceleration R = 2, SMS Multiband Factor = 3, CAIPI shift=FOV/3 (98). 

Physiological Monitoring  
For all the functional scans, subjects’ heart rate and respiration were monitored using piezoelectric transducer on the non-
dominant thumb and a respiratory belt around the upper rib cage, respectively. The physiological recordings were ob-
tained at a sampling rate of 100 Hz using a PowerLab physio box connected to a computer running LabChart 7 from 
ADInstruments.  

fMRI Analyses  
fMRI Preprocessing 
Anatomical images were bias-corrected using SPM (https://www.fil.ion.ucl.ac.uk/spm/) and segmented using FreeSurfer 
(64). Functional runs were preprocessed with slice-timing correction, performed using FSL (http://fsl.fmrib.ox.ac.uk/fsl/fsl-
wiki/), and motion correction, performed using AFNI software (https://afni.nimh.nih.gov/). No spatial smoothing was ap-
plied.  

Because fast fMRI has distinct contributions from systemic physiological noise, including cardiac rhythms and respiration, 
physiological noise removal was performed on the visual stimulus and resting-state functional runs using dynamic regres-
sion adapted from RETROICOR (99) in runs where physiological recordings were successfully collected. In runs where phys-
iological recordings were not successfully collected (2 runs total), physiological noise was removed using a statistical model 
of harmonic regression with autoregressive noise (HRAN) (100).  

Visual Localizer 
For each subject, one of the visual stimulus runs was used as a functional localizer to identify voxels that were significantly 
driven by the oscillating stimulus. A general linear model (GLM) was fit in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) using 
sine and cosine basis functions with the same period as the stimulus. The F-statistic of the combined fit to both the sine 
and cosine basis function was transformed to a Z-score and voxels with a Z-score above 2.5 were selected for further 
analysis. This functional localizer was then constrained by its intersection with the anatomical definition of V1 (Fig. 2B). 
Specifically, the V1 segmentation was generated automatically from the MEMPRAGE volume based on the cortical surface 
reconstruction generated using FreeSurfer (64). The selected voxels from the localizer run were then mapped to each 
other functional run in a single transformation step. This was done by first registering all functional runs to the anatomical 
scan using boundary-based registration (101) and then resampling the desired volume into the localizer field of view using 
the registration matrices.  

LGN Segmentation  
The lateral geniculate nucleus (LGN) was segmented using both anatomical and functional constraints. The anatomically 
defined boundaries of the LGN were generated using the FreeSurfer developmental version that generates an individual-
level probabilistic atlas in individual anatomical space (102). From this probabilistic atlas we considered voxels with at 
least a 30% probability of falling within LGN and dilated this mask to capture border voxels. We next applied a functional 
constraint using the visual localizer where voxels in the dilated mask with a Z-score above 2.5 were considered part of our 
final LGN map in each subject.  

Voxel-wise Phase Analysis and Groupings 
We then averaged the two remaining visual stimulus runs and extracted voxel’s average time series between the two runs. 
We discarded the first 14 seconds to analyze the steady-state response to the visual stimulus. An estimation of the voxel’s 
lag in relation to the oscillating stimulus was calculated using the arctangent of the sine and cosine regressor estimates. 
This allowed us to generate a histogram of latencies to the visual stimulus (Fig. 2C). To extract “fast” and “slow” reacting 
voxels, a Gaussian model was fit to the histogram of phase delays. The centroid (𝑏𝑏) and Full Width at Half Maximum 
(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) of the Gaussian fit were calculated. Groups of fast and slow voxels were then Edges of the Gaussian fit were 
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defined as ±1
2

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 and fast and slow groups were made that each had a width of 1
3
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹. Fast voxels were identified 

as being within [𝑏𝑏 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
2

, 𝑏𝑏 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
6

] while slow voxels were identified as [𝑏𝑏 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
6

, 𝑏𝑏 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
2

] (Fig. 2C). This proce-
dure was done for each individual subject and on average yielded 142 fast voxels (range 64-236) and 139 slow voxels 
(range 68-254). Masks of fast and slow voxels were generated per subject and then mapped to the resting-state runs to 
inform the spectral analysis (Fig. 2D).  

Resting-state Spectral Analysis  
Fast and slow voxels were always identified in task-driven runs, allowing us to assess frequency content in the resting-
state run using fully independent data. The maps of fast and slow voxels were registered to each individual resting-state 
run, and for each voxel within these masks, after discarding the first 14 seconds, the voxel-wise resting-state power spec-
trum was calculated using the Chronux toolbox (103) with five tapers. We used 4 features to characterize the resting-state 
spectra: (1) slope of linear fit under 0.2 Hz; (2) the exponent of the aperiodic 1/f fit under 0.5 Hz; (3) the amplitude of low 
frequency fluctuations (ALFF); and (4) the fractional ALFF (fALFF). Each of these features was z-scored within the run and 
then averaged on a voxel-wise basis between the two resting-state runs. All analysis of the resting-state spectra was per-
formed in MATLAB. See Fig. 3A-D for more information.  

Slope 
A linear fit was generated for each voxel’s resting-state spectrum under 0.2 Hz using least-squares to determine the coef-
ficients of a first order polynomial. From this we were able to record the slope of that linear fit for each voxel.  

Exponent of Aperiodic Fit  
Equation 1 was fit using the Levenberg-Marquardt algorithm to solve non-linear least squares for each voxel’s resting-
state spectra. In this equation, 𝐹𝐹 is the independent variable and the 𝑏𝑏 and 𝑥𝑥 are the values being fit. The exponent of the 
resultant fit (𝑥𝑥) was recorded for each voxel.  

𝑦𝑦 = 𝑏𝑏 − log10(𝐹𝐹𝑥𝑥) 

EQUATION 1 

Amplitude of Low Frequency Fluctuations (ALFF) 
For each voxel, ALFF was calculated according to the method outlined in (60). Briefly, each voxel’s time series was band 
pass filtered between 0.01 – 0.08 Hz. Then, the voxel’s time series is transformed into the frequency domain via Fast 
Fourier Transform (FFT). The power at each frequency is proportional to the square of the amplitude of the FFT at that 
frequency, and for each voxel, the ALFF value was taken as the averaged square root of the power in the 0.01-0.08 Hz 
frequency range. This is shown in Equation 2 where 𝐹𝐹𝐹𝐹𝐹𝐹(𝑘𝑘) is the magnitude of the FFT at frequency 𝑘𝑘, 𝑁𝑁 is the number 
of time points, 𝑃𝑃 is the power spectrum, and the bar represents the average in the specified range.  

𝑃𝑃 =
|𝐹𝐹𝐹𝐹𝐹𝐹|2

𝑁𝑁
;  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = √𝑃𝑃����[0.01,0.8] 

EQUATION 2 

Fractional ALFF (fALFF) 
Each voxel’s fALFF was calculated as described in (60). Fractional ALFF is briefly defined as the ratio of the power of each 
frequency at the low frequency range (0.01-0.08 Hz) to that of the “global” frequency range (0.01-0.25 Hz). See Equation 
3. 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹[0.01,0.8]

𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹[0.01,0.25]
 

EQUATION 3 
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Breath-Hold Latency Calculations  
Voxel-wise hemodynamic latencies were calculated according to the method outlined in (38). Each voxel’s hemodynamic 
latency was defined as the time-lag yielding the maximum cross-correlation between the given voxel’s time series, 𝑥𝑥(𝑡𝑡), 
and a reference time series, 𝑦𝑦(𝑡𝑡). The reference time series was found by taking the average time series across voxels in 
the brain that exceeded a minimum correlation of 𝑟𝑟 > 0.25 with the breath hold task regressor. This breath hold task 
regressor was defined as the convolution of a box car function, where the value is set to 1 during the breath hold and 0 at 
other times, and a sign-reversed canonical HRF (31). Both 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) were resampled to a resolution of 100 ms before 
computing cross-correlations. 

Support Vector Machine (SVM) Classification of Fast, Slow, and LGN Voxels  
SVM classifiers were trained both within and across subjects using Scikit-learn in Python (104). Three models were trained 
with different predictive features: (1) the resting-state spectrum between 0 to 0.5 Hz, (2) the 4 features of the resting-
state spectrum previously identified, and (3) the latency of the response to the breath hold task. The resting-state spec-
trum was extracted by taking the power at frequencies up to 0.5 Hz ultimately generating a set of 461 features. For all 
models, before being put into the classifier, the data was normalized by removing the mean and dividing by the standard 
deviation across voxels for each feature independently using the StandardScaler function of Scikit-learn. For all models 
the parameters of the SVM classifier were as follows: regularization parameter (𝐶𝐶) = 10, kernel type = radial basis function 
(rbf), kernel coefficient (𝛾𝛾) = 1

𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∗𝑋𝑋.𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
. To get validation accuracies both within and across subjects, 1000 boot-

straps were performed where the 80-20 test-train split of voxels was randomly chosen for each bootstrap. The average 
validation accuracies over the 1000 bootstraps were calculated along with the 95% confidence intervals. This methodology 
was followed for all 3 SVM classifiers.  

Support Vector Machine (SVM) Regression to Predict Relative Hemodynamic Response Latency  
SVM models for regression were trained within subject to continuously predict the hemodynamic response latency esti-
mated from the visual stimulus. We limited the regression to voxels whose hemodynamic response latency relative to the 
median was between [-3, 3] sec. Two different models were trained with different predictive features: (1) the resting-
state spectrum between 0 to 0.5 Hz and (2) the 4 features of the resting-state spectrum previously identified. The input 
data to the model was normalized by removing the mean and dividing by the standard deviation cross voxels using the 
StandardScaler function of Scikit-learn. The parameters of the SVM regression model were as follows: kernel type = radial 
basis function, kernel coefficient (𝛾𝛾) = 1

𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∗𝑋𝑋.𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
, regularization parameter = 10, epsilon = 0.1. To get the valida-

tion coefficient of determination (𝑅𝑅2), 1000 bootstraps were performed on an 80-20 test-train split of voxels that were 
randomly chosen for each bootstrap. The average 𝑅𝑅2 over the 1000 bootstraps was calculated along with the 95% confi-
dence interval.  
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Supplementary Material 

 

Supplementary Figure S1 – Simulation results are robust to changes in HRF amplitude and 1/f decay of stimulus amplitude. A) We 
normalized each HRF to its respective peak amplitude to examine effect on frequency spectra. B) The differences in spectral content of the BOLD signal 
are not simply due to the amplitude of each HRF but rather a signature of the temporal dynamics of the HRF, as the slope differences persist when 
normalizing for amplitude, with slower HRFs generating steeper frequency responses. C) Plot showing the magnitudes of the neural waveform at each 
frequency and their 1/f decay. D) Physiologically relevant HRFs used in simulations. E) Temporal properties of HRF noticeably affect the slope of the 
simulated spectra even when oscillation amplitudes decay with 1/f pattern, demonstrating that distinct slopes are expected for distinct HRFs regard-
less of the specific neural signal amplitude.  

 

Supplementary Figure S2 – Accounting for thermal noise does not significantly change the estimated slope of the frequency spectrum 
under 0.2 Hz in V1 or LGN voxels. A) Spectra of example LGN voxel demonstrating the method for accounting for the noise floor in the 
slope of the linear fit. The original linear fit and the linear fit with the noise floor produce similar results. B) Average magnitude of 
slopes before and after fitting the noise floor in fast and slow cortical voxels as well as LGN voxels with error bars showing SEM. The 
within group averages did not significantly change when fitting for the noise floor versus not.  
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Supplementary Figure S3 – Example subjects showing significant (p<0.05) correlations between each spectral feature and phase on a 
voxel-wise basis. Each point represents a single voxel, red-line shows linear fit. p-values are from a linear hypothesis test on the 
model coefficients. A) Example subject showing significant, positive correlations between each spectral feature and the magnitude 
of the phase. B) A second example subject also showing a significant, positive correlation between each spectral feature (except 
ALFF) and the magnitude of the phase.   
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Table S1: p-values for all subjects and all resting-state spectral features between fast, slow, and LGN voxels, within individual sub-
jects. Significant differences based on Wilcoxon rank-sum test (p<0.05) are bolded.  

 Slope < 0.2 Hz Aperiodic Exponent ALFF fALFF 
Fast-Slow Fast-LGN Slow-LGN Fast-Slow Fast-LGN Slow-LGN Fast-Slow Fast-LGN Slow-LGN Fast-Slow Fast-LGN Slow-LGN 

S1 1.13E-14 6.51E-09 7.15E-17 1.13E-12 3.26E-09 1.71E-16 6.98E-14 0.7237 7.52E-09 1.64E-14 7.88E-10 7.38E-17 
S2 1.29E-21 3.93E-10 6.16E-14 6.21E-22 6.12E-11 9.59E-14 2.33E-10 0.0021 0.4402 2.59E-20 3.26E-05 1.14E-10 
S3 5.06E-16 3.08E-06 1.13E-10 7.46E-17 4.79E-06 5.69E-11 4.89E-05 0.8869 0.0159 3.34E-15 7.78E-07 6.76E-11 
S4 3.51E-03 4.42E-06 2.06E-08 3.95E-03 3.82E-07 2.59E-09 3.20E-03 0.2091 0.0079 0.0643 2.09E-05 2.05E-07 
S5 6.67E-08 2.88E-09 6.29E-10 3.91E-12 1.17E-09 3.45E-10 1.15E-05 2.98E-05 0.0446 2.02E-06 6.62E-09 8.86E-10 
S6 3.61E-25 1.01E-10 1.85E-12 4.20E-22 1.12E-10 1.34E-12 3.59E-20 0.9969 6.20E-06 3.72E-30 9.55E-07 1.27E-11 
S7 9.71E-04 2.51E-04 7.79E-05 0.1432 2.51E-04 9.19E-05 0.5493 0.0498 0.0867 0.0322 3.76E-04 1.75E-04 
S8 6.89E-14 1.39E-09 4.15E-14 1.20E-20 1.74E-09 1.41E-14 3.14E-03 0.4995 0.2247 4.56E-11 1.48E-09 9.87E-14 
S9 1.72E-24 9.55E-15 7.08E-21 6.84E-18 1.64E-14 6.48E-21 0.5928 0.6579 0.2915 1.27E-24 5.91E-11 8.89E-20 
S10 4.47E-10 1.75E-13 9.63E-19 9.19E-04 9.38E-18 9.81E-22 0.1464 0.3322 0.8048 9.32E-10 5.00E-13 5.58E-18 
S11 6.65E-04 2.19E-11 6.32E-12 4.96E-04 1.39E-11 4.80E-12 6.78E-04 0.0585 0.1637 0.0533 1.05E-09 4.39E-10 
S12 4.08E-13 1.41E-10 3.68E-13 1.77E-15 4.72E-09 1.01E-12 1.83E-09 5.88E-08 1.15E-10 1.83E-07 1.03E-09 2.38E-12 
S13 8.83E-10 7.77E-08 1.79E-11 5.32E-09 4.31E-04 8.21E-09 0.3715 4.92E-10 5.66E-07 8.67E-08 9.20E-10 2.47E-12 
S14 5.76E-04 4.19E-06 1.54E-08 2.70E-03 5.63E-06 8.22E-09 0.3232 0.1669 0.3733 0.0233 5.27E-06 9.18E-08 
S15 1.92E-12 1.06E-07 9.38E-11 6.07E-14 1.44E-08 2.79E-11 1.81E-07 8.08E-04 0.8278 8.47E-13 8.46E-05 2.32E-09 

 

Table S2: Average Classification Accuracies per subject. Results are average of over 1000 bootstraps with 95% confidence intervals 
for each subject on each model trained. For each subject the model with the highest accuracy is bolded. Chance is 33%. 

 Subsampled Spectra Spectral Features Breath Hold Latencies 
S1 71.43 % (0.31) 65.21 % (0.37) 58.46 % (0.36) 
S2 68.91 % (0.31) 71.63 % (0.31) 50.08 % (0.34) 
S3 70.46 % (0.44) 69.25 % (0.46) 49.06 % (0.50) 
S4 58.63 % (0.49) 53.88 % (0.47) 38.39 % (0.45) 
S5 62.48 % (0.30) 62.19 % (0.31) 52.94 % (0.35) 
S6 80.56 % (0.25) 77.37 % (0.29) 60.19 % (0.34) 
S7 72.69 % (0.48) 59.31 % (0.54) 64.01 % (0.53) 
S8 73.18 % (0.35) 72.12 % (0.37) 42.57 % (0.38) 
S9 72.87 % (0.29) 74.38 % (0.29) 53.93 % (0.34) 
S10 73.54 % (0.24) 61.90 % (0.26) 49.16 % (0.26) 
S11 50.09 % (0.44) 59.49 % (0.43) 46.74 % (0.45) 
S12 63.63 % (0.33) 64.98 % (0.34) 51.65 % (0.37) 
S13 67.50 % (0.32) 67.14 % (0.35) 46.58 % (0.35) 
S14 57.92 % (0.37) 57.34 % (0.38) 50.83 % (0.36) 
S15 67.99 % (0.35) 61.94 % (0.36) 63.08 % (0.39) 
COMBINED 66.68 % (0.08) 65.70 % (0.08) 52.02 % (0.11) 
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Table S3. Subject-wise results from fit of linear model relating each spectral feature with phase. p-values are from a linear hypothesis 
test on the model coefficients. 

 Slope < 0.2 Hz Aperiodic Exponent ALFF fALFF 
x1 R2 p-value x1 R2 p-value x1 R2 p-value x1 R2 p-value 

S1 0.3865 0.1058 1.51E-16 0.3391 0.0781 1.93E-12 0.3998 0.1063 1.28E-16 0.3868 0.1080 7.14E-17 
S2 0.3657 0.1204 1.46E-20 0.4044 0.1251 2.40E-21 0.2475 0.0500 4.24E-09 0.3239 0.1017 1.93E-17 
S3 0.3935 0.2451 4.94E-42 0.3940 0.2457 1.73E-40 0.2096 0.0621 2.10E-10 0.3691 0.2533 6.81E-42 
S4 0.2592 0.1153 5.87E-17 0.2692 0.1208 9.75E-18 0.1670 0.0351 6.14E-06 0.2188 0.0922 1.04E-13 
S5 0.1836 0.0413 1.93E-09 0.2591 0.0718 1.49E-15 0.1394 0.0227 9.65E-06 0.1727 0.0364 1.81E-08 
S6 0.3990 0.2049 6.30E-44 0.3721 0.1695 6.70E-36 0.3041 0.1270 1.07E-26 0.4249 0.2455 1.47E-53 
S7 0.2918 0.1363 1.09E-27 0.2558 0.0911 1.34E-18 0.1839 0.0710 1.09E-14 0.3188 0.1625 3.73E-33 
S8 0.2714 0.1870 8.47E-37 0.2969 0.2009 1.00E-39 0.1327 0.0593 5.78E-12 0.2725 0.1868 9.43E-37 
S9 0.3289 0.2446 5.36E-43 0.2775 0.1641 1.31E-27 -0.0130 3.28E-4 6.38E-01 0.3258 0.2519 2.01E-44 
S10 0.2136 0.0618 2.87E-16 0.1492 0.0277 5.86E-08 -0.0320 0.0013 2.41E-01 0.2145 0.0648 5.10E-17 
S11 0.2033 0.0509 6.62E-13 0.1769 0.0328 9.44E-09 0.0555 0.0032 7.59E-02 0.1810 0.0424 5.78E-11 
S12 0.2287 0.0797 2.62E-18 0.2434 0.0855 1.42E-19 0.1593 0.0351 1.06E-08 0.1814 0.0527 1.85E-12 
S13 0.2697 0.0905 6.89E-20 0.2490 0.0735 2.60E-16 0.1060 0.0127 8.16E-04 0.2467 0.0793 1.60E-17 
S14 0.1062 0.0153 3.11E-04 0.0883 0.0103 3.08E-03 0.0462 0.0030 1.13E-01 0.0592 0.0049 4.19E-02 
S15 0.2537 0.0818 6.84E-17 0.2710 0.0892 2.40E-18 0.1104 0.0159 2.99E-04 0.2268 0.0668 5.75E-14 

 

Table S4: Average regression coefficient of determination (𝑅𝑅2) and Root Mean Squared Error (RMSE). Results are averaged over 1000 
bootstraps with 95% confidence intervals for each subject on each model trained. All RMSE values are smaller than the RMSE from a 
model trained on shuffled labels.  

 R2 RMSE 
 Subsampled Spectra Spectral Features Subsampled Spectra Spectral Features 
S1 0.203 (0.006) 0.057 (0.005) 0.724 (0.003) 0.780 (0.003) 
S2 -0.012 (0.006) 0.052 (0.005) 0.822 (0.004) 0.793 (0.004) 
S3 0.422 (0.006) 0.237 (0.005) 0.961 (0.005) 0.971 (0.004) 
S4 0.173 (0.008) 0.067 (0.005) 1.217 (0.006) 1.095 (0.004) 
S5 -0.041 (0.005) -0.036 (0.004) 0.914 (0.003) 0.880 (0.003) 
S6 0.278 (0.005) 0.242 (0.004) 0.896 (0.004) 0.924 (0.004) 
S7 0.326 (0.008) 0.167 (0.005) 0.913 (0.005)  1.015 (0.004) 
S8 0.266 (0.006) 0.173 (0.004) 1.112 (0.004) 1.151 (0.004) 
S9 0.389 (0.004) 0.342 (0.005) 1.065 (0.004) 1.106 (0.004) 
S10 0.253 (0.004) 0.060 (0.004) 0.909 (0.003) 1.022 (0.003) 
S11 -0.078 (0.008) 0.002 (0.003) 0.787 (0.004) 0.914 (0.003) 
S12 0.120 (0.006) 0.049 (0.004) 0.999 (0.004) 1.033 (0.003) 
S13 0.147 (0.005) 0.104 (0.004) 0.903 (0.003) 0.928 (0.003) 
S14 0.149 (0.007) -0.023 (0.003) 0.790 (0.004) 0.947 (0.003) 
S15 0.197 (0.005) 0.044 (0.004) 0.803 (0.003) 0.927 (0.003) 
COMBINED 0.171 (0.001) 0.123 (0.001) 0.949 (0.002) 0.976 (0.001) 

 

Table S5. Simulated HRF parameters.  

 TTP (s) FWHM (s) Peak PSC 
(BOLD % Signal Change) 

HRF #1 6.0 5 6.0 
HRF #2 4.5 3.5 5.0 
HRF #3 3.5 3.0 2.5 
HRF #4 3.0 3.0 2.0 
HRF #5 2.5 2.0 1.5 
HRF #6 6.5 5.5 1.0 
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