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ABSTRACT 
 
The human immune response to SARS-CoV-2 antigen after infection or vaccination is defined 
by the durable production of antibodies and T cells. Population-based monitoring typically 
focuses on antibody titer, but there is a need for improved characterization and quantification of 
T cell responses. Here, we utilize multimodal sequencing technologies to perform a longitudinal 
analysis of circulating human leukocytes collected before and after BNT162b2 immunization. 
Our data reveal distinct subpopulations of CD8+ T cells which reliably appear 28 days after 
prime vaccination (7 days post boost). Using a suite of cross-modality integration tools, we 
define their transcriptome, accessible chromatin landscape, and immunophenotype, and identify 
unique biomarkers within each modality. By leveraging DNA-oligo-tagged peptide-MHC 
multimers and T cell receptor sequencing, we demonstrate that this vaccine-induced population 
is SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we also 
identify these CD8+ populations in scRNA-seq datasets from COVID-19 patients and find that 
their relative frequency and differentiation outcomes are predictive of subsequent clinical 
outcomes. Our work contributes to our understanding of T cell immunity, and highlights the 
potential for integrative and multimodal analysis to characterize rare cell populations. 
 
INTRODUCTION 
 

The COVID-19 pandemic has represented an unprecedented challenge for global public 
health, but mRNA vaccines have demonstrated strong clinical efficacy in protecting against 
severe disease1–3. Immune responses elicited by SARS-Cov-2 mRNA vaccines are typically 
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assessed via titers of B cell-derived neutralizing antibodies, which rise rapidly after vaccination 
boosts but decline after 3-6 months4–7. However, it is evident that cellular immunity, mediated in 
part by CD4+ and CD8+ T cells, plays a critical role in viral clearance and protection8. In 
particular, vaccine-induced T cells have been found to provide protection against COVID-19 
even in the absence of antibody responses9, and cellular immunity is likely to play an important 
role in providing protection against new viral variants10. A deeper understanding of the distinct 
subpopulations that drive cellular immunity, as well as their molecular programs and 
developmental determinants, will be essential for interpreting individual immune responses and 
for informing public health strategies11. 

 
Antigen-specific T cells are conventionally identified by profiling cytokine secretion or 

expression of activation-induced surface markers after ex vivo antigen exposure, or, alternately, 
by labeling with peptide-MHC multimers. Both types of assays can be multiplexed with 
additional surface proteins for flow cytometry assays12. Multiple studies have applied these 
approaches to profile responses to SARS-CoV-2 mRNA vaccination, focusing in particular on 
the kinetics of antigen-specific T cell proliferation, alongside surface marker 
characterization7,8,13–19. Longitudinal profiling of human peripheral blood mononuclear cells 
(PBMC) followed by pMHCI-tetramer enrichment revealed a clear induction of antigen-specific 
CD8+ T cells after prime and boost vaccination, followed by a subsequent contraction phase as 
cells differentiated in the subsequent 3-4 months8. Ex vivo activation experiments demonstrated 
similar kinetics, and highlighted the potentially limited sensitivity of these assays to quantify rare 
CD8+ cells5,7,20. 

 
 Single-cell RNA-sequencing (scRNA-seq) assays are, in principle, well-suited for 
characterization of cellular responses. They can complement flow cytometry to provide 
transcriptome-wide molecular readouts, providing rich information for phenotyping high-
resolution stages as well as activation and differentiation trajectories21–23. Moreover, single-cell 
sequencing assays enable unsupervised identification of cell states directly from PBMC samples, 
without need for ex vivo restimulation to reveal pre-established immunophenotypic markers of 
differentiation, or specificity for particular HLA haplotypes. However, even as scRNA-seq 
assays increase in sensitivity and throughput, it can be challenging to detect rare or 
transcriptomically subtle cell states from sparse and noisy datasets. For example, a previous 
study that utilized scRNA-seq to profile COVID mRNA vaccine responses showed substantial 
activation and proliferation within myeloid clusters, but did not specifically identify antigen-
specific T cell subsets24. 
 

Here, we perform a longitudinal analysis of human PBMC from a SARS-CoV-2 mRNA 
vaccination time series using a suite of multimodal single-cell sequencing technologies. Moving 
beyond the transcriptome, we additionally measure (either in parallel or in separate experiments) 
chromatin accessibility, surface protein abundance, immune receptor repertoires, and 
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pMHC/multimer-binding modalities. By leveraging computational tools for within- and across-
modality integration, we identify specific groups of vaccine-induced CD8+ effector memory T 
cells in each dataset. This strategy enables us to delineate high-resolution subpopulations and 
biomarkers within each modality, validate their clonal identity and antigen-specificity, and 
identify their developmental regulators. Moreover, by integrating our datasets with single-cell 
datasets of natural SARS-CoV-2 infection, we track the temporal differentiation patterns of these 
cells and show that their quantitative abundance is strongly associated with recovery from severe 
disease.                                                         
 
RESULTS 
 
Multimodal identification of vaccine-responsive CD8+ T cell subsets  
 

To investigate immune responses to SARS-CoV-2 mRNA vaccination at single-cell 
resolution, we recruited an initial set of six healthy donors and analyzed circulating PBMC 
samples over a time course of BNT162b2 mRNA vaccination. Specimens were collected in the 
first four months of 2021 from donors with no self-reported previous experience with SARS-
CoV-2 infection (Supplementary Methods, Supplementary Table 1). Donors were profiled at 
four time points: immediately before (Day 0) vaccination, after primary vaccination (Day 2, Day 
10), and seven days after boost vaccination (Day 28). For each of the 24 samples, we performed 
two multimodal single-cell sequencing assays: CITE-seq for simultaneous measurement of 
cellular transcriptomes and surface proteins25, and ASAP-seq for simultaneous profiling of open 
chromatin regions alongside cell surface proteins26 (Figure 1A). For each assay, we utilized an 
optimized panel of oligo-conjugated antibodies (‘TotalSeq-A’ panels from BioLegend, 
Supplementary Table 2) along with the inclusion of additional markers. Our initial dataset 
represented 192,574 single cells in total. 

 
We first explored our CITE-seq datasets, applying our ‘anchor-based’ integration 

workflow to match together cells in shared biological states across individuals and time 
points27,28. Although this causes shared cell types in pre-vaccination and post-vaccination 
datasets to initially cluster together, integration enables us to consistently annotate these cell 
states across samples, and to learn cell type-specific responses in downstream analyses. To 
cluster cells, we applied ‘weighted-nearest neighbor’ (WNN) analysis (Supplementary Methods), 
which defines cell states jointly based on a weighted combination of RNA and protein 
modalities28. As we have previously shown28, WNN analysis improved the identification of cell 
states for multimodal technologies such as CITE-seq, by simultaneously leveraging the 
unsupervised nature of transcriptomic data with the robust protein measurements from oligo-
tagged CITE-seq antibodies. We annotated clusters at three different levels of resolution (Figure 
1B and Supplementary Figure 1A). 
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Comparing sample expression profiles across timepoints, we observed a strong activation 
of interferon-signaling pathways originating at the first post-vaccination time point (Day 2) and 
dampened by later time points, which was consistent with previous studies5,24,29 (Figure 1C and 
Supplementary Figure 1B). This response was most strongly activated in innate immune 
response components, but was weakly detectable in lymphoid cell types as well (Supplementary 
Figure 1C). The mRNA vaccine-responsive gene set was accompanied by the clear up-regulation 
of cell surface protein biomarkers including CD64 and CD169 in myeloid cell types28 
(Supplementary Figure 1D). 

 
We next explored changes in cellular density and abundance across our four vaccination 

timepoints. Strikingly, we identified two subsets of CD8+ T cells (‘vaccine-induced group A’ and 
‘vaccine-induced group B’; Figure 1D-E) that were minimally present in Day 0 samples but 
increased moderately in abundance after primary vaccination, and sharply in abundance at Day 
28 after boost vaccination) across multiple donors (Supplementary Figure 1E-F). We observed 
consistent results using either cluster-based differential abundance testing or alternately, using 
Milo, a framework for identifying differences in cellular density without reliance on cellular 
labels30. We observed only mild changes in cellular density among CD4+ T cell subgroups, likely 
due to earlier sampling timepoints in our experiment and the differential kinetics of CD4+ and 
CD8+ T cell responses6,8.  

 
Both vaccine-responsive CD8+ T cell subsets exhibited up-regulation of protein 

biomarkers previously associated with activation during antigen-specific responses8,31, including 
CD38, HLA-DR, and CD278 (ICOS) (Figure 1F; additional markers in Supplementary Figure 
1G). Including protein data using WNN analysis was essential for identifying and defining these 
subgroups, as they were not readily identifiable using unsupervised analysis of the transcriptomic 
data alone. Once identified, differential analysis revealed that group A and group B cells differed 
primarily in the expression of cell cycle genes (Figure 1G), while a module of 197 genes were 
consistently up-regulated across both groups (Figure 1G, Supplementary Figure 1H and 
Supplementary Table 3). This module was enriched for cytotoxic effector genes (GZMH, GZMA 
and GZMB), and also included multiple deaminase proteins (such as APOBEC3H, APOBEC3G, 
APOBEC3C and ADA) that can introduce mutations as part of the antiviral response32,33 (Figure 
1G and Supplementary Figure 1I). We note that the identification of these two groups not only 
indicates the presence of both proliferative and non-proliferative populations, but also enables us 
to discriminate between proliferative responses (unique to group B), and activation responses 
(shared between groups A and B), which might otherwise blend together. 

 
 For additional validation, we re-analyzed a previously published CITE-seq dataset 
profiling a similar SARS-CoV-2 mRNA vaccination time course across six individuals24. While 
the original study did not identify populations of vaccine-induced CD8+ T cells in unsupervised 
transcriptomic analysis, we reasoned that supervised reference mapping workflows may have 
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higher power to detect subtle cell states. Indeed, when mapping the query onto our newly 
generated reference, we identified both vaccine-induced populations (Supplementary Figure 2A). 
These cells sharply increased in frequency after boost vaccination (Supplementary Figure 2B), 
exhibited up-regulation of CD38 and ICOS surface protein levels, and were highly enriched in 
their expression of our identified vaccine-induced gene expression module (Supplementary 
Figure 2C). Taken together, we conclude that our multimodal analysis identifies CD8+ T cell 
subpopulations and molecular signatures that are induced after vaccination and are reproducible 
across donors and studies. 
 
Characterizing the epigenetic landscape of vaccine response 
 
 We next aimed to characterize vaccine-responsive programs defined by changes in 
chromatin accessibility. While transcriptomic measurements are rich descriptors of a cell’s 
current state and molecular output, ATAC-seq profiles are uniquely suited for identifying 
enhancers that exhibit heterogeneous activity, and for identifying regulators that establish and 
maintain cellular state. Our collected ATAC-seq profiles were obtained on the same biological 
samples as our CITE-seq data, but were collected from different cell aliquots. Particularly given 
the challenges in identifying and annotating high-resolution cellular states from scATAC-seq 
profiles34,35, we aimed to integrate chromatin accessibility profiles with our CITE-seq 
measurements.  
 

To integrate datasets across modalities, we applied our recently developed ‘bridge 
integration’ approach, which performs integration of single-cell datasets measuring different 
modalities by leveraging a multi-omic dataset as a bridge36. We have previously demonstrated 
how this procedure can successfully map scATAC-seq query datasets onto scRNA-seq 
references using a publicly available “10x Multiome” dataset as a bridge36. Applying this 
workflow to our ASAP-seq datasets (Supplementary Methods), we annotated chromatin 
accessibility profiles by transferring labels from our CITE-seq reference (Figure 2A). We 
validated our inferred annotations using cell surface protein data that is simultaneously generated 
during ASAP-seq (Supplementary Figure 3A). For example, predicted monocytes were uniquely 
enriched for CD14 surface expression, predicted B cells exhibited CD19 upregulation, predicted 
dendritic cells exhibited up-regulation of FCER1A, and predicted CD8+ T and CD4+ T cells 
correctly expressed their canonical surface markers (Supplementary Figure 3A). 

 
We first examined accessibility changes in the innate immune response, where we had 

previously observed strong up-regulation of a module of interferon stimulated genes (ISG). 
Surprisingly, we did not observe dramatic remodeling of chromatin accessibility for myeloid 
cells before and after vaccination (Figure 2B-C and Supplementary Figure 3B-C).  In a genome-
wide analysis, which included both proximal and distal regions (Supplementary Methods), the 
chromatin accessibility profiles of CD14 monocytes were highly concordant before and after 
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vaccination (Figure 2C, R=0.997). While we did detect a small number of peaks (n=75) that 
were differentially accessible across timepoints, these changes reflected minor quantitative 
fluctuations, as opposed to the opening or closing of regulatory regions (Figure 2C and 
Supplemental 3C).  

 
These results suggest that the epigenetic landscape which is required to drive the 

transcriptional innate immune response is already established prior to vaccination, enabling the 
cells to quickly respond to external stimuli. We also identified nearly identical patterns when re-
analyzing a published dataset37 of chromatin accessibility profiles before and after influenza 
vaccination (Supplementary Figure 3D-F; R=0.998). Taken together, these results demonstrate 
that chromatin accessibility patterns in myeloid cells exhibit only minor fluctuations during the 
initial innate immune response, and highlight how pre-established cell-type specific differences 
in accessibility correlate with future functional potential. 

 
Notably, our bridge integration workflow also annotated vaccine-responsive CD8+ T cells 

in the ASAP-seq datasets. These cells increased sharply in frequency after boost vaccination 
(Figure 2D), and exhibited surface protein up-regulation of CD38, HLA-DR, and ICOS (Figure 
2E and Supplementary Figure 4A). The surface protein measurements were not considered 
during the bridge integration procedure, and their consistency with the CITE-seq dataset 
represents an independent validation of our annotations. Moreover, these cells exhibited elevated 
gene ‘activities’ for the vaccine-induced gene module identified by CITE-seq (Supplementary 
Figure 4B). We did not observe a second population of proliferating cells in the ATAC-seq data, 
likely due to only subtle differences in chromatin accessibility that can accompany cell cycle 
changes38. 

 
Having validated the identity of these cells, we next identified 2,678 peaks exhibiting 

differential accessibility (Supplementary Table 4), after comparison against other CD8+ T cell 
subsets (Supplementary Methods). These peaks included putative enhancer elements upstream of 
the CD38 and ICOS loci themselves, which are activated as cells acquire an activated state after 
immunization (Figure 2F). Globally, we found that 930 peaks were located near (within 20kb) 
genes that were up-regulated in vaccine-responsive CD8+ T cells. However, the remaining 1,170 
peaks were located near genes that did not exhibit similar transcriptional differences, suggesting 
the pre-establishment of a chromatin landscape that will enable the downstream function of these 
cells. Interestingly, we found that enhancers specific to vaccine-specific cells harbored 13 SNPs 
that have been previously reported to be highly associated (p-value > 5e-8) with COVID 
susceptibility39, including within elements adjacent to FYCO1, CCR3, CCR2 and IFNAR2 
(Figure 2F). 

 
We next asked if the ASAP-seq data could reveal specific regulators required for the 

development and maintenance of vaccine-responsive subset. To accomplish this, we searched for 
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transcription factor binding motifs that were overrepresented in specific peak subsets. We found 
that the motif for the transcriptional regulator BATF3 exhibited the strongest association with 
increased accessibility in vaccine-responsive CD8+ T cells (Figure 2G). While BATF3 has been 
characterized as a critical regulator of DC development40,41, recent studies in murine models have 
demonstrated its necessity for the specific development of CD8+ memory T cells42. Our findings 
extend these results to a human context, and suggest that our identified vaccine-induced subsets 
contribute to CD8+ T memory responses. 

 
Correlating molecular state with clonal identity 
 
 While our previous analyses identify and characterize CD8+ T cell populations that are 
induced in response to vaccination, our initial dataset cannot establish if these subgroups are 
mounting antigen-specific responses. To address this, we utilized dual DNA-oligo-tagged and 
fluorochrome-tagged peptide-class I MHC multimers43, constructed off a dextran backbone 
(“dextramers”, Figure 3A).  We selected reagents designed to bind TCRs specific for 
immunodominant SARS-CoV-2 spike peptides, enabling direct ex vivo detection of antigen-
specific T cells by either sequencing or cytometry. We selected 8 total donors carrying HLA-
A*02:01 or HLA-B*07:02 alleles, and assayed for dextramer-positive (Dex+) cells initially by 
flow cytometry. We validated 5 such dextramer reagents to include in our panel (each targeting a 
separate peptide epitope), by demonstrating a robust and specific appearance of Dex+CD8+ T 
cells after vaccination (Supplementary Figure 5A).  
 
 To further explore heterogeneity within responding cells, we performed additional single-
cell profiling using ECCITE-seq, which enables joint profiling of immunophenotypes, 5’-end 
transcriptomes, and immune repertoires44. We included the dextramer panel during antibody 
staining, enabling multiplexed detection of T cells specific for SARS-CoV-2 spike protein 
(Figure 3A). To enhance recovery of rare cell states, we restricted analysis to Day 28 PBMC 
cells and performed pre-enrichment steps via flow cytometric labeling and sorting, with 25% 
representing all CD8+ T cells, and 75% additionally enriched for CD38 expression and/or 
dextramer binding (Supplementary Methods). Our final dataset consisted of 31,396 single cells 
in total. 
 

We clustered and visualized cells using WNN analysis based on three modalities (protein, 
transcriptome, T cell receptor sequence), allowing us to define cellular state based on all data 
types (Supplementary Methods). We identified six cell clusters, including CD8 naive cells and 
CD8 central memory subsets (Figure 3B). In addition, matching our CITE-seq dataset, we 
observed both cycling and non-cycling subsets of CD8+ T cells that exhibited elevated 
expression of our previously identified vaccine-induced gene module, as well as CD38 and 
HLA-DR surface proteins (“antigen” and “antigen_prolif”, Figure 3B-C). These clusters were 
strongly enriched for Dex+ cells (Figure 3D) as well as large and expanded cell clones (Figure 3E 
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and Supplementary Figure 5B). We also found extensive TCR sharing between the cycling and 
non-cycling groups (Figure 3F). We therefore conclude that our identified vaccine-induced CD8+ 
T populations do represent antigen-specific cells that are responding to SARS-CoV-2 spike 
antigens.  
 

Our enrichment strategy also enabled us to explore further sources of cellular 
heterogeneity amongst CD8+CD38+ T cells, which encompassed the clusters bearing our 
vaccine-induced gene signature. For example, we found that a subset of CD38+ cells uniquely 
expressed the inhibitory receptor KLRG1 surface protein (“bystander”, Figure 3B-C). In contrast 
to the two clusters populated by activated antigen-specific cells, CD38+KLRG1+ cells were not 
enriched for Dex+ cells (Figure 3D), they did not show evidence of expanded clonality, and they 
did not demonstrate enriched overlap with TCRs on antigen-specific cells (Figure 3E-F). To 
address the possibility that these CD38+KLRG1+ cells simply harbor TCRs not recognized by 
our dextramer panel, we also examined a large external database of TCRβ sequences45,46 specific 
for SARS-CoV-2 spike protein (Supplementary Methods). We found that unlike CD38+KLRG1- 
cells, which demonstrated marked overlap with SARS-CoV-2 TCRs, the CD38+KLRG1+ 
population had minimal overlap with these documented clonotypes (Figure 3G, Supplementary 
Methods). These cells also exhibited weaker expression of the vaccine-induced gene module 
(Figure 3C), suggesting that CD38+KLRG1+ cells may represent cells harboring TCR with weak 
affinity for spike protein antigens, or alternatively, represent TCR-independent ‘bystander’ 
responses, such as those previously described within the microenvironments of tumors and other 
pathogens47,48. 

 
Multiparameter flow cytometry on the Dex+ gate demonstrated that antigen-specific cells 

were indeed KLRG1-, in addition to being double positive for CD38 and HLA-DR, consistent 
with our initial CITE-seq (Supplementary Figure 5A). As these three markers represented 
prominent features from both our CITE-seq and ECCITE-seq experiments, we proceeded to gate 
for this population within all CD8+ T cells by flow cytometry and compare across time points 
(Supplemental Figure 5C-D). Validating our previous findings, we observed a striking induction 
of this population on Day 28—a result agnostic to the donor’s HLA haplotype or 
immunopeptidome (Supplemental Figure 5D). We conclude that CD8+CD38+HLA-DR+KLRG1- 

cells are the most highly enriched for antigen-specific CD8+ T cells. 
 

The rate of clonal expansion of antigen-specific T cells is an indicator of the strength of 
immune response49, and we therefore searched for gene expression patterns that were correlated 
with clonal size, even among antigen-specific cells. We found that the expression of the vaccine-
induced gene module not only discriminated antigen-specific cells, but the module score also 
exhibited a dose-dependent relationship with clonal size (Figure 3H). We emphasize that the 
gene module is shared in both cycling and non-cycling groups, and therefore does not include 
proliferation-dependent genes that would be expected to correlate with clonal size. Instead, 
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expression of this module likely reflects the signal strength of the original TCR-peptide 
interaction, an essential parameter which regulates the magnitude of clonal expansion and 
immune response50–52. Taken together, our multimodal ECCITE-seq dataset verifies the spike-
specific nature of vaccine-induced CD8+ T cells, nominates specific biomarkers that subdivide 
heterogeneous activated populations, and identifies specific gene modules and surface markers 
which can be used to predict clonal dynamics, even in the absence of HLA haplotype and 
immune repertoire information. 
 
Identifying and tracing memory cells during COVID-19 progression  
 

Having demonstrated that our identified gene modules could successfully infer the 
identity of antigen-specific cells across multiple vaccinated scRNA-seq datasets, we next asked 
if this signature was conserved in SARS-CoV-2 infected samples. We first examined a recent 
study that utilized a SARS-CoV-2 dextramer panel to identify long-lived memory cells during 
acute SARS-CoV-2 infection53. While unsupervised clustering of scRNA-seq data struggled to 
clearly identify dextramer-enriched cells (Figure 4A), we found that the expression of the 
vaccine-induced gene module had high predictive power (ROC = 0.88) to accurately predict 
dextramer staining labels (Figure 4B). Indeed, we found that our gene expression signature 
originally identified in vaccinated datasets was highly conserved in the dextramer positive cells 
(Figure 4C). 
 

Multiple recent studies have reported that SARS-CoV-2-specific adaptive immune 
responses are associated with milder disease54–56. We therefore speculated that the abundance of 
CD8+ antigen-specific cells may correlate with disease phenotype and progression. To test this, 
we re-analyzed a large ECCITE-seq dataset (transcriptome + surface protein + TCR) from the 
COvid-19 Multi-omics Blood ATlas (COMBAT)57, which contains 65,889 CD8+ T cells 
prospectively collected from 10 healthy volunteers and 61 COVID-19 patients as they were 
admitted to inpatient hospital care, and who subsequently manifested mild, severe, or critical 
disease57. Applying our WNN integrative analysis pipeline, we identified analogous clusters 
enriched in the expression of our vaccine-induced gene module, as well as surface expression of 
CD38 and HLA-DR (Figure 4D and Supplementary Figure 6A). Based on our previous analyses 
(Figure 4B), we infer these populations to be specific to SARS-CoV-2 antigens. Abundances of 
both the cycling and non-cycling clusters (“antigen_prolif” and “antigen”) were sharply elevated 
in all infected samples, as compared to healthy controls (Figure 4E and Supplementary Figure 
6B). Interestingly, we also identified subpopulations of CD38+ cells with heterogeneous surface 
expression of KLRG1 (Figure 4D and Supplementary Figure 6A). 
 

We then examined the abundance of these identified populations and found that the 
CD38+KLRG1- (both “antigen” and “antigen_prolif” clusters) but not the CD38+KLRG1+ 
clusters were associated with the severity and trajectory of COVID-19. We found that the 
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relative abundance of predicted antigen-specific cells was sharply increased in diseased samples 
compared to healthy controls, but exhibited a progressive decrease across the spectrum of mild to 
critical severity patients (Figure 4F). We further explored the eventual outcome of 28 donors 
whose samples were collected during severe disease, and considered subsets of 16 patients who 
stabilized or recovered, versus 12 who further deteriorated. We found that the relative abundance 
of inferred antigen-specific cells was distinct between the two groups (Figure 4G). These data 
demonstrate that a mild clinical outcome is associated with an increased frequency of 
CD8+CD38+KLRG1- T cells at the outset of illness, and suggest that patients who do not mount 
effective cellular immune responses are more likely to succumb to critical COVID-19. 
 

We next explored relationships between immune repertoire sequences and molecular 
state, both of which were simultaneously measured in the COMBAT dataset. As expected, 
predicted antigen-specific cells were highly enriched for cells participating in either large- or 
hyper-expanded clones (Supplementary Figure 6C). We found that only CD8+CD38+KLRG1- 
cells exhibited enriched overlap with a public database of SARS-CoV-2 TCR sequences 
(Supplementary Figure 6D), demonstrating that in both vaccination and infection, KLRG1 
expression demarcates heterogeneous immune responses amongst activated and responding CD8 
T cells. 
 

Lastly, we observed extensive TCR sharing between different CD8+ T cell subsets, 
indicating evidence for lineage-specific differentiation trajectories. As we observed during 
vaccination, there was extensive clonal overlap between cycling and non-cycling antigen-
specific cells (CD38+KLRG1-) (Figure 4H). Exploring overlap with differentiated cells, we 
found the most significant overlap with highly cytotoxic TEM (CD8+CD127-CD45RA-CD27-) 
subsets, with lower overlap with additional subsets including TEMRA cells (CD8+CD127-

CD45RA+CD27-), and effector cells with reduced cytotoxicity (CD8+CD127midCD45RA-

CD27mid). Interestingly, we also found that the molecular state of differentiated T cells sharing 
CD38+KLRG1- TCRs also varied as a function of disease severity. In samples with mild SARS-
CoV-2 infection, we observed that nearly 25% of TCR sequences observed in predicted antigen-
specific subsets exhibited clonal overlap with cytotoxic subsets of TEM (CD8+CD127-CD45RA-

CD27-), but this percentage was sharply reduced (in severe group: median of 7.74% for antigen 
cells, median of 10% for antigen_prolif cells; in critical group: median of 7.14% for antigen 
cells, median of 12.1% for antigen_prolif) in donors with severe and critical disease (Figure 4I). 
We did not observe similar findings for TEMRA cells (CD8+CD127-CD45RA+CD27-; 
Supplementary Figure 6E), and as a result, the distribution of cells harboring expanded antigen-
specific TCR sequences was skewed towards TEMRA fates in these samples (Figure 4J and 
Supplementary Figure 6F).  We confirmed that these findings were not driven by any potential 
correlation between disease severity and time since onset (Supplementary Figure 6G). Together, 
these results exhibit how the abundance and molecular differentiation outcomes CD38+HLA-
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DR+KLRG1- during SARS-CoV-2 infection are predictive of disease severity and clinical 
progression. 
 
Discussion 
 

Here, we present an extensive multimodal analysis of the immune response to SARS-
CoV-2 mRNA vaccination using a suite of single-cell technologies. Our results emphasize the 
importance of multimodal technologies and datasets, particularly when characterizing rare 
populations. We found that a weighted combination of both protein and transcriptome features 
was essential for initial identification of antigen-specific CD8+ T cells, which had previously 
been unidentified in scRNA-seq datasets of vaccinated human donors. Moreover, layering 
additional molecular modalities onto our initial map deepened our understanding of these cells. 
Leveraging ‘bridge integration’ to annotate these cells in scATAC-seq datasets led to the 
discovery of numerous cell type-specific enhancers and transcriptional regulators that establish 
and maintain cellular state. Similarly, additional datasets that measured immune repertoires and 
the binding of MHC-I dextramers established the antigen-specificity and clonal dynamics of 
these populations. Even though no single technology allows simultaneous profiling of all 
molecular modalities, our integrated experimental design enabled us to deeply characterize these 
cells. 
 

While our identified protein biomarkers CD38 and HLA-DR have been previously used 
to characterize antigen-specific CD8+ T cells in flow cytometry assays53,58, our unsupervised 
single-cell profiling strategy identified additional heterogeneity within this important subset. In 
addition to identifying both cycling and non-cycling subsets, we observed heterogeneity in the 
expression of KLRG1 within this group, and found that KLRG1- subpopulations were most 
likely to contain highly clonal cells that exhibited binding to spike-specific dextramer reagents. 
While KLRG1 is a highly cytotoxic molecule, previous studies have linked its expression within 
antigen-specific memory cells to a short-lived phenotype59–61. Our results suggest that this 
surface marker distinguishes cells with distinct antigen specificities, which likely contributes to 
downstream differences in their phenotype and persistence. 
 

By leveraging molecular signatures we identified within vaccinated samples, we were 
able to annotate antigen-specific CD8+ T cells in additional published datasets24, including those 
prospectively collected from COVID-19 patients53,57. In these samples, we also leveraged 
immune repertoire information to link antigen-specific CD8+ T memory precursors with their 
differentiated progeny. We found that disease severity and outcome correlated not only with the 
abundance of precursor cells, but also with the molecular state of their descendants, and in 
particular we found that donors who manifested extensive TCR sharing between memory 
precursors and cytotoxic progeny were associated with a milder clinical course. These results 
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exemplify a potential mechanism by which cellular immunity may play an important role in 
resolving viral infection. 
 

While our study is rooted in analyzing mRNA vaccination and coronavirus disease, the 
antigen-specific CD8+ T cell subpopulations we uncover are likely to represent features of 
human immune responses more broadly. For example, a recent study of neoadjuvant head and 
neck cancer immunotherapy patients identified a subpopulation of circulating CD8+ T cells, 
similarly enriched for CD38 and HLA-DR expression, whose abundance within the primary 
tumor and within PBMC changed after a 3-week course of checkpoint blockade therapy62. In a 
separate context, the study also identified heterogeneity in KLRG1 expression and found that the 
specific abundance of PD1+KLRG1- cells within that subset positively correlated with optimal 
induction of tumor antigen-specific T cells and overall treatment outcome. Taken together, these 
results demonstrate the potential for monitoring of antigen-specific T cells to inform our 
understanding of disease and treatment trajectories. 
 
Data availability: 
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(A) Overview of human biospecimen study design. (B) Uniform manifold approximation and projection (UMAP) visualizations of 113,897 single cells profiled 
with CITE-seq and clustered by a weighted combination of RNA and protein modalities. Cells are colored based on level-2 annotation ( level-1 and  level-3 
annotations are shown in Supplementary Figure 1A). (C) Single-cell heatmap showing activation of interferon response module within CD14 monocytes. 
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embedding of the Milo differential abundance. Each node represents a neighborhood, node size is proportional to the number of cells, and neighborhoods are 
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CD38, HLA-DR and CD278 (ICOS) in vaccine-induced cells compared with other selected CD8 T cells. (G) Heatmap showing mRNA expression of 50 marker 
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randomly selected subset of CD8+ TEM are presented.
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Figure 2: Celltype-specific chromatin accessibility dynamics in response to vaccination.

(A) Bridge integration-based mapping of human PBMC scATAC-seq data onto the CITE-seq dataset from Figure 1B, using a multi-omic dataset as a bridge. 
Cells are colored by reference-derived annotation. (B) Coverage plots indicating chromatin accessibility around IFI6, IFITM3, and ISG15 in CD14 monocytes 
across all time points. Corresponding gene expression for each cell population, from the CITE-seq dataset, is shown on the right. (C) Scatter plot measuring 
correlation between Day 0 and Day 2 pseudo-bulk chromatin accessibility of CD14 monocytes. Each point corresponds to a called scATAC-seq peak. 
(D) UMAP visualization of scATAC-seq data on Day 0 and Day 28 after bridge integration. Vaccine-induced populations are highlighted in red. (E) CD38 
protein expression levels, which were not considered during the bridge integration procedure, are correctly up-regulated in cells predicted to be 
vaccine-induced. (F) Examples of enhancer loci that are specifically accessible in vaccine-induced cells. Chromatin accessibility patterns on Day 28 are 
shown for four selected cell types. SNP sites are annotated as yellow lines. (G) Motif-based overrepresentation analysis of transcription factor binding sites 
in the top 1000 peaks with differentially enriched accessibility in the vaccine-induced group A cells.
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Figure 3: Antigen-specific clonal expansion of vaccine-induced CD8+ T cells

(A) Schematic of ECCITE-seq experimental design. (B)�80A3�YLVXDOL]DWLRQV�RI��1�����VLQJOH�FHOOV�SURILOHG�ZLWK�(CC,7(�VHT�DQG�FOXVWHUHG�EDVHG�RQ�ZHLJKWHG�
FRPELQDWLRQ�RI�R1A��SURWHLQ�DQG�7�FHOO�UHFHSWRU�LQIRUPDWLRQ��(C)�9LROLQ�SORWV�IRU�CD����HLA�DR�DQG�.LR*1�SURWHLQ�OHYHOV��DQG�WKH�H[SUHVVLRQ�RI�LGHQWLILHG�
vaccine-induced gene module. (D)�LHIW��80A3�YLVXDOL]DWLRQ�IURP��%���GH[WUDPHU�SRVLWLYH��DH[���FHOOV�DUH�KLJKOLJKWHG�LQ�UHG��RLJKW��7KH�IUDFWLRQ�RI�FHOOV�KDUERULQJ�
VSLNH�VSHFLILF�7CR�LQ�HDFK�FOXVWHU��A�7CR�FORQH�LV�FRQVLGHUHG�VSLNH�VSHFLILF�ZKHQ�DW�OHDVW�RQH�FHOO�RI�WKH�FORQH�LV�DH[���%R[SORW�VKRZV�YDULDWLRQ�DFURVV�Q 10�
samples. (E)�80A3�YLVXDOL]DWLRQ�IURP��%���FHOOV�DUH�FRORUHG�E\�WKH�H[SDQVLRQ�LQGH[�RI�WKHLU�DVVRFLDWHG�FORQRW\SH�EDVHG�RQ�7CR�VHTXHQFH�LQIRUPDWLRQ���
(F)�80A3�YLVXDOL]DWLRQ�IURP��%���FHOOV�UHSUHVHQWLQJ�WKH�VL[�PRVW�DEXQGDQW�VSLNH�VSHFLILF�FORQHV�DUH�KLJKOLJKWHG�(G) Boxplots showing the fraction of cells 
harboring TCR matching SARS-CoV-2 spike antigens in public databases.  (H) Boxplots showing the single-cell expression of the vaccine-induced gene module 
LQ�DQWLJHQ�VSHFLILF�FHOOV��CHOOV�DUH�JURXSHG�E\�ODEHOV�LQ��(����
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Figure 4: Inferred spike-specific T cells in SARS-CoV-2 infected samples
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(A) UMAP visualizations of 113,897 single cells profiled with CITE-seq and clustered on the weighted combination of both RNA and protein modalities. 
Cells are colored with either level 1 or level 3 annotations. (B) Enriched GO terms for activated (Day 2 vs Day 0) genes in CD14+ Monocytes. (C) Violin 
plots of interferon response signatures in selected cell types across four timepoints. (D) Violin plots of protein upregulation of CD64 and CD169 in single 
cells in selected cell types, across four timepoints. (E-F) Percentage of CD8+ T cells in vaccine-induced groups for each donor across four timepoints. 
(G) Violin plots showing the protein expression of CD45RA, CD127, CD27, CD57 and CXC3R1 in selected cell types. (H) Violin plots comparing 
upregulated gene module scores in vaccine-induced group A and B cells, as well as selected other subsets. (I) Enriched GO terms for the 197 signature 
vaccine-induced gene set.
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(A) UMAP visualization of CITE-seq data derived from human PBMC from Arunachalam et al. on Day0 and Day28, after reference mapping to the 
CITE-seq data in Figure 1B. Cells matching gene signature for vaccine-induced group A and B cells are highlighted in red and blue. (B) Boxplots showing 
the percentage of CD8+ T cells that fall in vaccine-induced group A (left) or group B cells (right) for each donor across eight timepoints. Each dot 
represents one donor. (C) Violin plots showing protein expression of CD38 and ICOS, along with a gene module score for vaccine-induced cells in selected 
CD8+ T cell subsets.
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(A) Violin plots showing the expression of canonical surface proteins in the ASAP-seq dataset. Cells are grouped by bridge integration-derived labels. Proteins 
visualized include markers of CD4 and CD8 T cells, CD14 and CD16 monocytes, B cells and cDC2 cells. (B) Violin plots showing the gene ‘activity scores’, 
which are derived from scATAC-seq data, of the interferon-induced gene set shown in Figure 1C. (C) Scatter plot showing the correlation between pseudobulk 
chromatin accessibility of CD14 monocytes from Day 0 and Day 2 samples. Each point corresponds to a 5KB genomic bin. (D) UMAP visualization of the 
scATAC-seq profiles of myeloid cells from a trivalent inactivated seasonal influenza vaccine (TIV) study. Cells are colored by annotations (Left) or timepoints 
(right). (E) Scatter plot showing the correlation comparing pseudobulk chromatin accessibility of CD14 monocytes in the TIV dataset between Day 0 and 
Day 1. Each point corresponds to a 5KB genomic bin. (F) Visualization of open chromatin accessibility at representative loci on Day 0 and Day 1 in CD14 
monocytes from the TIV study. Despite extensive transcriptional activation at these genes on Day 1, chromatin accessibility patterns do not change.
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(A) Violin plots showing the protein upregulation of HLA-DR and CD278 (ICOS) in the vaccine-induced group A cells identified in the ASAP-seq dataset. 
Cells are grouped by their bridge integration-derived labels. (B) Violin plots showing the module score of the 197 signature vaccine-induced gene set in 
the ASAP-seq dataset. The module score is calculated based on gene activity scores, which are derived from scATAC-seq data.  
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(A) Flow cytometry data generated during validation of individual dextramer reagents, with the progressive emergence of cells in the Dex+ gate across
time points for a single donor.  CD8+ cells were used as input. Middle and bottom row show CD38, HLA-DR, and KLRG1 abundance from the parent gate of 
Dex+CD8+ cells. (B) Boxplots indicate the fraction of cells harboring a hyper- or large-expanded TCR clone in each cluster. Each dot represents one 
biological sample. (C) Exemplary flow cytometry plots indicating the percentage of cells in CD38+HLA-DR+ gate of a single donor, from a parent gate of 
CD8+ KLRG1- cells. (D) Boxplot shows the percentage of CD38+HLA-DR+ cells in each donor, as a fraction of the  CD8+KLRG1- gate exemplified in (C). 
Data represents n=4 donors with variable HLA haplotypes. p-value (p=0.0286) was calculated using a Mann-Whitney test.
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Supplementary Figure 6
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Supplementary Figure 6

(A) Violin plots showing the protein expression of CD38 and HLA-DR, along with the signature gene module score for the vaccine-induced cells, in the COMBAT 
dataset. (B) Milo analysis of differential abundance changes between healthy and SARS-CoV-2 infected CD8+ T cells groups from the COMBAT dataset. UMAP 
visualization of the Milo differential abundance testing results. Each node represents a neighborhood. The size of nodes is proportional to the number of cells in 
the neighborhood. Neighborhoods are colored by their log fold changes for SARS-CoV-2 infected versus healthy groups. Only neighborhoods showing 
significant enrichment (SpatialFDR < 0.1 and logFC > 2) are colored. (C) Boxplots showing the fraction of cells harboring a hyper or large expanded TCR clone 
within each cluster. Each dot represents one biological sample. (D) Barplot showing the fraction of cells within each cluster harboring TCR matching 
SARS-CoV-2 antigens in public databases. (E) Fraction of TCR clonotypes identified in either antigen cells (right) or antigen_prolif cells (left), that are also 
identified in TEMRA cells. Boxplots show variation across diseased donors. (F) Heatmaps show the distribution of  cells harboring expanded antigen-specific 
TCR sequences among all cell states. Each row corresponds to one expanded clone, clones that are shared between molecular states will exhibit a positive 
fraction in multiple columns. (G) Scatter plot showing the lack of a potentially confounding correlation between the fraction of CD8 T cells in the TEMRA state, and 
the sample collection time since onset. Each dot represents one donor and is colored by disease state. 
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