
Cell-type-specific inhibitory circuitry from a

connectomic census of mouse visual cortex
Casey M Schneider-Mizella, Agnes L. Bodora, Derrick Brittaina, JoAnn Buchanana, Daniel J. Bumbargera, Leila Elabbadya,

Clare Gamlina, Daniel Kapnera, Sam Kinna, Gayathri Mahalingama, Sharmishtaa Seshamania, Shelby Suckowa, Marc Takenoa,

Russel Torresa, Wenjing Yina, Sven Dorkenwaldb,d, J. Alexander Baeb,e, Manuel A. Castrob, Akhilesh Halagerib, Zhen Jiab,d,

Chris Jordanb, Nico Kemnitzb, Kisuk Leeh, Kai Lid, Ran Lub, Thomas Macrinab,d, Eric Mitchellb, Shanka Subhra Mondalb,e,

Shang Mub, Barak Nehoranb,d, Sergiy Popovychb,d, William Silversmithb, Nicholas L. Turnerb,d, William Wongb, Jingpeng Wub,

The MICrONS Consortiuma,b,c, Jacob Reimerc,f, Andreas S. Toliasc,f,g, H Sebastian Seungb,d, R. Clay Reida, Forrest Collmana,

and Nuno Maçarico da Costaa

aAllen Institute for Brain Science, Seattle, WA

bPrinceton Neuroscience Institute, Princeton University, NJ

cDepartment of Neuroscience, Baylor College of Medicine, Houston, TX

dComputer Science Department, Princeton University

eElectrical and Computer Engineering Department, Princeton University

fCenter for Neuroscience and Artificial Intelligence, Baylor College of Medicine

gDepartment of Electrical and Computer Engineering, Rice University

hBrain & Cognitive Sciences Department, Massachusetts Institute of Technology

Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional

properties. Synaptic connectivity powerfully shapes how each cell type participates in the cortical circuit, but mapping connectivity

rules at the resolution of distinct cell types remains difficult. Here, we used millimeter-scale volumetric electron microscopy1 to in-

vestigate the connectivity of all inhibitory neurons across a densely-segmented neuronal population of 1352 cells spanning all layers

of mouse visual cortex, producing a wiring diagram of inhibitory connections with more than 70,000 synapses. Taking a data-driven

approach inspired by classical neuroanatomy, we classified inhibitory neurons based on the relative targeting of dendritic compart-

ments and other inhibitory cells and developed a novel classification of excitatory neurons based on the morphological and synaptic

input properties. The synaptic connectivity between inhibitory cells revealed a novel class of disinhibitory specialist targeting basket

cells, in addition to familiar subclasses. Analysis of the inhibitory connectivity onto excitatory neurons found widespread specificity,

with many interneurons exhibiting differential targeting of certain subpopulations spatially intermingled with other potential targets.

Inhibitory targeting was organized into "motif groups," diverse sets of cells that collectively target both perisomatic and dendritic

compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition

and will serve as a foundation for linking modern multimodal neuronal atlases with the cortical wiring diagram.

Correspondence: nunod @alleninstitute.org

Introduction

In mammalian cortex, information processing involves a diverse population of neurons distributed across six layers in an ar-

rangement described as a cortical column2–5. The function of this circuit depends on not only the properties of cells individually,
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but also the network of synaptic connectivity through which they interact. The concept of cell types has become central to un-

derstanding how this network is organized6. Originally classified on the basis of morphology7, cortical cell types have more

recently been characterized also by molecular, electrophysiological, and functional properties believed to subserve specialized

computational roles8–18. There are thus a variety of powerful methods to define cell types, but determining how these definitions

might reflect differences in cortical connectivity remains difficult.

Inhibitory neurons, despite making up little more than 10% of cortical neurons19, have at least as much cell type diver-

sity as excitatory neurons12,14,20, offering the potential for highly selective control of cortical activity. However, most of our

understanding of inhibitory connectivity is based not on individual cell types, but on coarse molecular subclasses21–23 with

certain shared developmental, functional, and synaptic properties. Parvalbumin (PV)-expressing neurons target the perisomatic

region of excitatory cells, including basket cells that target the soma and proximal dendrites of excitatory neurons and chan-

delier cells that target the axon initial segment. Additionally, PV basket cells synapse with one another24,25 and other basket

cells26. Somatostatin (SST)-expressing neurons, such as Martinotti cells, target the distal and apical dendrites of excitatory

cells and also inhibit non-SST inhibitory subclasses. The connectivity of vasoactive intestinal peptide (VIP)-expressing neu-

rons is heterogeneous, including not only a subclass of disinhibitory specialists that preferentially target SST cells25,27, but also

excitatory-targeting small basket cells that coexpress cholecystokinin (CCK)28–30. A fourth subclass expresses Id223, spanning

lamp5 and sncg transcriptomic groups20,22, and includes neurogliaform cells with diffuse synaptic outputs as well as a variety of

cell types in layer 1. Within these cardinal subclasses, individual cell types are highly diverse12,13,31 and functionally distinct18

but in most cases little is known about connectivity at that level.

Moreover, the structure of how inhibition is distributed across different excitatory cells is still a matter of debate, despite being

a key determinant of how cortical activity is controlled. While some studies have observed largely unspecific connectivity onto

nearby cells32,33, other studies have found examples of selective targeting of certain subpopulations of excitatory cells based on

their layer position34 or long-range axonal projection target35–37. It is not known whether such selectivity is common or rare

relative to unspecific connectivity. Likewise, many other basic organizational properties remain unclear, for example which

excitatory neurons receive inhibition from the same interneurons, and do somatic-targeting and dendrite-targeting neurons have

similar or different connectivity patterns to one another.

The ideal data to address such questions would capture the synaptic connectivity of individual interneurons across a broad

landscape of potential targets. To date, physiological38,39 or viral40 approaches to measuring connectivity are still challenging

to scale to the full diversity of potential cell type interactions. In smaller model organisms like Caenorhabditis elegans41

and Drosophila melanogaster42,43, dense reconstruction using large-scale electron microscopy (EM) has been instrumental for

discovering cell types and their connectivity. In mammalian cortex, technical limitations on EM volume sizes have meant that

similar studies could not examine complete neuronal arbors, making the link between cellular morphology and connectivity

difficult to address44–48. However, recent advances in data generation and machine learning49–51 have enabled the acquisition

and dense segmentation of EM datasets at the scale of a cubic millimeter, making circuit-scale cortical EM volumes possible1,45.

In this study, we used a millimeter-scale EM volume of mouse primary visual cortex (VISp)1 to reconstruct anatomy and

synaptic connectivity for a continuous population of 1352 neurons in a column spanning from layer 1 to white matter (WM).
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The scale of this data, combined with the resolution provided by EM, led us to address the fundamental question of how the

morphological cell types of the neocortex relate to the synaptic connectivity of inhibitory neurons. Taking a data-driven ap-

proach to classical neuroanatomical methods, we first classified inhibitory neurons into four subclasses largely overlapping

conventional classes according to how each cell distributed its synaptic output across excitatory dendritic compartments and

other inhibitory neurons. These subclasses, combined with synaptic connectivity between inhibitory neurons, revealed a novel

category of disinhibitory specialist that targets basket cells, distinct from the expected category targeting SST-like neurons.

Next, we developed a novel classification of excitatory neurons using morphological and synaptic input properties, capturing

features that were not clear from morphology alone. By analyzing the synaptic output of inhibitory neurons at both the single

cell and subclass levels, we found that inhibitory neuron output exhibited widespread specificity, targeting few postsynaptic

subclasses, and we identified groups of interneurons with similar subclass-specific targeting, but with different compartmen-

tal targeting. This specificity was achieved with combination of both spatially-precise axonal arbors and cell type selectivity,

synapsing more or less onto particular cell types than expected. Our data suggest an organizing principle for inhibitory con-

nectivity that is complementary to, but distinct from, cell types: diverse groups of inhibitory neurons that are positioned to

collectively control activity of the same target populations with remarkable precision.

Results

A millimeter-scale reconstruction of visual cortex with synaptic resolution. In order to measure synaptic connectivity

and neuronal anatomy within a large neuronal population, we analyzed a serial section transmission EM volume of mouse visual

cortex acquired as part of the broader MICrONs project1. The volume was imaged from pia to white matter (WM), spanning

870 × 1300 × 820 µm (anteroposterior × mediolateral × radial depth), split into two subvolumes along the anteroposterior

direction1. Here, we analyzed the larger subvolume, which covers 523 µm of the anteropostior extent and includes parts of

VISp and higher order visual areas AL and RL52(Fig. 1a–c). Importantly, these dimensions were sufficient to capture the

entire dendritic arbor of typical cortical neurons (Fig. 1a) at a resolution capable of resolving ultrastructural features such

as synaptic vesicles (Fig. 1b). Convolutional networks generated an initial autosegmentation of all cells, segmented nuclei,

detected synapses and assigned synaptic partners1,50,51. Due to reduced alignment quality near the edge of tissue, segmentation

began approximately 10 µm from the pial surface and continued into WM. To simultaneously perform analysis and correct

segmentation errors, we used a scalable, centralized proofreading platform integrated with a spatial database to dynamically

query annotations such as synapses across edits53–55.

To generate an unbiased sample of cells across all layers, we focused our proofreading and analysis on cells whose soma

was within a 100×100µm wide column spanning pia to WM and centered on the VISp portion of the volume (Fig. 1c). Note

that reconstructions extended well past the column bounds, and this location was chosen to be far from dataset edges to avoid

truncated arbors. A total of 1886 cells had their nucleus centroid inside the column. In order to follow a continuous population of

neurons, the column slanted starting in layer 5, allowing the apical dendrites of deep-layer cells to be intermingled with the cell

bodies of superficial cells (Figure 1d,e; see Methods). This slanted trajectory was also followed by primary axons of superficial

cells and the translaminar axons of inhibitory neurons, suggesting that the pia–WM direction is not simply orthogonal to the
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Figure 1. A columnar reconstruction of mouse visual cortex. a) The millimeter-scale EM volume is large enough to capture complete dendrites of cells across all layers.
Neurons shown are a random subset of the volume, with a single example at right for clarity. b) The autosegmented EM data reveals ultrastructural features such as
membranes, synapses, and mitochondria. c) Top view of EM data with approximate regional boundaries indicated. The yellow box indicates the 100 µm × 100 µm column
of interest. d) All nuclei within the column colored by cell class. e) Example neurons from along the column. Note that anatomical continuity required adding a slant in deeper
layers. f) Proofreading workflow by cell class. g) Cell density for column cells along cortical depth by cell class. h) Input synapse count per µm of depth across all excitatory
(purple) and inhibitory (green) column cells along cortical depth by target neuronal cell class. i) All excitatory dendrites, with arbors of cells with deeper somata colored
darker. Same orientation as in d. j) Number of input synapses for each excitatory neuron as a function of soma depth. k) As in j, but for inhibitory neurons. l) As in k, but for
inhibitory neurons. m) As in j, but for the proofread axons of inhibitory neurons. n) As in k, but for number of synaptic outputs on inhibitory neuron axons.

pial surface in deep layers, but is shared across cell classes.

A dense neuronal population sample across all layers. We classified all cells in the column as excitatory neurons, in-

hibitory neurons, or non-neuronal cells on the basis of morphology (Fig. 1d). For neurons, we performed extensive manual

proofreading – more than 46,000 edits in all (Fig. 1f), guided by computational tools to focus attention on potential error lo-

cations (see Methods). Our proofreading strategy was designed to measure the connectivity of inhibitory neurons across all

possible target cell types. Proofreading of excitatory neurons aimed to reconstruct complete dendritic arbors, combining both

manual edits and computational filtering of false axonal merges onto dendrites (see Methods), while for inhibitory neurons

we reconstructed both complete dendritic arbors and extensive but incomplete axonal arbors. Non-neuronal cells were not

proofread, but we manually labeled non-neuronal subclasses as a data reference.

Consistent with previous reports56, excitatory cell densities varied between layers, while inhibitory neurons and non-neuronal

cells were more uniform (Fig. 1g). The reconstructions included the locations of a total of 4,490,649 synaptic inputs across

all cells. Synaptic inputs onto excitatory cell dendrites were more numerous in layers 1–4 compared to layers 5–6 (Spearman

correlation of synapse count with depth: r = −0.92, p = 1.3×10−11), while inputs onto inhibitory cells were relatively uniform

across depths (Fig. 1h) (Spearman correlation of synapse count with depth: r = −0.06, p = 0.76).
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Individual reconstructions captured rich anatomical properties across all layers. Excitatory cell dendrites (Fig. 1i) typically

had thousands of synaptic inputs, with laminar differences in total synaptic input per cell (ANOVA for laminar effect: F = 82.9,

p = 1.6×10−48, Fig. 1j). Typical inhibitory neurons had 103–104 synaptic inputs (Fig. 1k,l) and 102–104 outputs (Fig. 1m,n),

but did not show strong laminar patterns (ANOVA for laminar effect: F = 0.72, p = 0.53). Collectively, inhibitory axons had

427,294 synaptic outputs. Attempts were made to follow every major inhibitory axon branch, but for large inhibitory arbors

not every tip was reconstructed to completion and axonal properties should be treated as a lower bound. Based on comparisons

to similar neurons where reconstruction aimed for completeness57, we estimate that typical axonal reconstructions captured

50-75% of their total synaptic output compared to exhaustive proofreading. There was also some variability; in particular,

axons in layer 1 and deep layer 6 were generally less complete due to alignment quality, while a small number cells were more

exhaustively reconstructed.

Connectivity-based inhibitory subclasses. Molecular expression has emerged as a powerful organizing principle for in-

hibitory neurons, with four cardinal subclasses having distinct connectivity rules, synaptic dynamics, and developmental

origins21. However, EM data has no direct molecular information, and no simple rules map morphology to molecular identity.

Classical neuroanatomical studies often used the postsynaptic compartments targeted by an inhibitory neuron as a key feature

of its subclass30,58,59, for example distinguishing soma-targeting basket cells from dendrite-targeting Martinotti cells.

Inspired by this approach, we used a data-driven approach based on the targeting properties of inhibitory neurons to assign

cells to anatomical subclasses (Fig. 2a). For all excitatory neurons, we divided the dendritic arbor into four compartments:

soma, proximal dendrite (<50 µm from the soma), apical dendrite, and distal basal dendrite (Fig. 2b) (Extended Data Fig. 1) (see

Methods). Inhibitory cells were treated as a fifth target compartment. For each inhibitory neuron we measured the distribution

of synaptic outputs across compartments (Fig. 2c). To further capture targeting properties, we devised two measures of how

a cell distributes multiple synapses onto an individual target: 1) the fraction of all synapses that were part of a multisynaptic

connection and 2) the fraction of synapses in a multisynaptic connection that were near another synapse in the same connection

along the axon ("clumped") (Fig. 2d). We used a distance threshold of 15 µm , approximately a quarter of the circumference

of a typical cell body, although measurements are robust to this value (Extended Data Fig. 2). We use the term "connection" to

indicate a pre- and postsynaptic pair of cells connected by one or more distinct synapses, and "multisynaptic connection" for a

connection with at least two synapses. We trained a linear classifier based on expert annotations of the four cardinal subclasses

for a subset of inhibitory neurons and applied it all cells (Fig. 2d, Extended Data Fig. 3).

We named each subclass based on its dominant anatomical property: perisomatic targeting cells (PeriTC) that primarily

target soma or proximal dendrites, distal dendrite targeting cells (DistTC) that primarily target distal basal or apical dendrites,

sparsely targeting cells (SparTC) that make few multisynaptic connections, and inhibitory targeting cells (InhTC) that primarily

target other inhibitory neurons instead of much more numerous excitatory neurons (Fig. 2e). Typical examples of each subclass

correspond approximately to classical or molecular subclasses (Fig. 2e), but there is not a one-to-one match. For example,

PeriTCs would include soma-targeting cells from multiple molecular subclasses (e.g. both PV and CCK+ basket cells)21,28,60

and DistTCs could include any molecular class that targets apical dendrites, not only SST neurons. The SparTC subclass
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Figure 2. Data-driven characterization of inhibitory cell subclasses and their connectivity with one another. a) For determining inhibitory cell subclasses, connectivity
properties were used such as an axon (green) making synapses (green dots) the perisomatic region of a target pyramidal cell (purple). b) Dendritic compartment definitions
for excitatory neurons. c) Cartoon of a multisynaptic connection (left) and the synapses within the multisynaptic connection considered "clumped" along the presynaptic
axon (right). d) Targeting features for all inhibitory neurons, measured as fraction of synapses onto column cells (for "Fraction clumped" only, all synapses in multisynaptic
connections), sorted by target subclass. e) Relationship between anatomical connectivity categories (top), typical associated classical cell categories (middle), and anatomical
examples (bottom) of the four inhibitory subclasses. Dendrite is darker, axon is lighter. Scale bar is 500 µm . g) Inhibition of inhibition connectivity. Each dot represents
a connection from a presynaptic to a postsynaptic cell, with dot size proportional to synapse count. Dots are colored by presynaptic subclass and ordered by subclass,
connectivity group (see Figure 5), and soma depth. h) Standard connectivity model of inhibition of inhibition based on molecular subclasses. i) Heatmap showing the
mean number of synaptic inputs a postsynaptic cell received from all cells of a given presynaptic subclass. Note that the top five connections (highlighted in bold and white
outlines) align with those arrows in (h). j) Diagram of potential InhTC connectivity. k) Heatmap showing the fraction of synaptic outputs each InhTC places onto cells of other
subclasses. InhTCs are clustered into two subtypes, one that targets DistTCs (InhTCdist) and one that targets PeriTCs (InhTCperis). l) Connectivity diagram for InhTCperis
suggested by data. m) Morphology of example InhTCdists. Scale bar is 500 µm . n) Morphology of all InhTCperis. Scale bar same as (m). o) Median synapse size from
InhTCdist (left) and InhTCperi (right) onto inhibitory subclasses. Error bars indicate 95% confidence interval. T-test p-values indicated; *: p<0.05, ***: p<0.005 after Holm-Sidak
correction. p) Distribution of synapses per connection for InhTCperi and InhTCdist onto their preferred and non-preferred targets.

included both neurogliaform cells and all layer 1 interneurons, suggesting it largely contained cells from the lamp5 and sncg

transcriptomic classes13 or the collective Id2 class23.

Some cell types, such as chandelier cells61, had no examples in the column (although were found elsewhere in the EM

volume62), and other cells in the column either did not fall cleanly into classical categories. For example, among PeriTCs we

found that the degree to which cells targeted soma versus proximal dendrites fell along a continuum (Extended Data Fig. 4).

A small number of PeriTCs made very few synapses onto somata but many onto proximal dendrites, a feature inconsistent
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with the standard definition of a basket cell28. Among DistTCs, we found a similar range of distal basal versus apical dendrite

targeting (Extended Data Fig. 4). Even those DistTCs with substantial output in layer 1, a defining feature of Martinotti

cells across layers11,63, showed substantial targeting of basal dendrites in layers 2–6 (Extended Data Fig. 5), suggesting an

underappreciated additional aspect of Martinotti cell connectivity (See also Gamlin et al.57 and Bodor et al.64). Interestingly,

the DistTC with the highest fraction of apical-targeting outputs (88%) did not significantly arborize in layer 1, but instead

projected a descending horse-tail axon across layers 2–5 (see Fig. 6j).

Inhibition of inhibitory neurons. Inhibitory neurons, even those that primarily target excitatory cells, also target other in-

hibitory neurons. The EM data offered a detailed view into the inhibition of inhibition, with 9,235 synapses between pairs of

inhibitory neurons across 3,569 distinct connections (Fig. 2g, Extended Data Fig. 6). Numerous studies have identified a stan-

dard architecture for the inhibition of inhibition at the subclass level25,65,66: PV neurons inhibit other PV neurons, SST neurons

inhibit all other subclasses (but not themselves), and VIP neurons inhibit SST neurons (Fig. 2h). Many variations on this broad

pattern have been found, however67. For example, VIP+ neurons have been shown to target both SST and PV cells27,68, but

little is known about the relationship between these connections and the diversity of cells expressing VIP.

To measure inhibitory connectivity at the level of cardinal subclasses, we computed the average number of synapses be-

tween all neurons of a presynaptic subclass onto each single neuron of the postsynaptic subclass. The five expected subclass-

level connections align with the five strongest connections measured from EM (Fig. 2i), based on the approximate corre-

spondence (Fig. 2e). Both cardinal subclass identification and neuronal reconstructions were thus consistent with established

connectivity.

At the level of individual cells, however, the data revealed novel connectivity patterns. We focused on InhTCs, "inhibitory

specialists" that almost exclusively target other inhibitory neurons rather than excitatory cells (mean: 82% of synaptic outputs).

For each InhTC we computed its distribution of synaptic outputs across inhibitory subclasses (Fig. 2j, k). Extensive literature

has found VIP-positive inhibitory specialists that preferentially target SST cells25,39,69, and thus we expected InhTCs would

largely target DistTCs.

Indeed, we found 21/29 InhTCs whose synaptic output was principally onto DistTCs (mean of 74% of those synapses onto

inhibitory neurons), a group we denote InhTCDist (Fig. 2k). Single-neuron consideration of InhTCDist connectivity showed

striking laminar organization (Extended Data Fig. 7). We found that InhTCDist in layers 2–4 targeted those DistTCs in layers

4-5, but not those in layer 2/3. Similarly, those DistTCs in layer 2/3 made few synapses onto InhTCDist in return. Interestingly,

layer 2/3 DistTCs typically targeted excitatory neurons in upper ("layer 2") but not lower ("layer 3") layer 2/3, suggesting

InhTC-mediated disinhibition differs across layer 2/3 pyramidal cells.

Unexpectedly, we also found a second population of inhibitory specialists. This smaller group of InhTCs (8/29) specifically

targeted PeriTCs (mean of 82% of those synapses onto inhibitory neurons), hence we called them InhTCPeri) (Fig. 2k). While

InhTCDist had bipolar or multipolar dendrites and were concentrated in layers 2–4 (Extended Data Fig. 7), consistent with

typical VIP neurons (Fig. 2m), InhTCsPeri all had multipolar dendrites and were distributed across layers (Fig. 2n). The eight

InhTCPeri in the column targeted 56/58 PeriTCs with a mean of 10.5 net synapses per target cell, suggesting that this connectivity
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is likely to include both PV and other molecular subclasses (Extended Data Fig. 6). Because the reciprocal inhibition between

VIP and SST neurons is thought to play an important part in their functional role70, we next asked if InhTCPeri receive reciprocal

inhibition from PeriTCs. However, we found few reciprocal synapses from PeriTCs back onto InhTCPeris, but numerous

inhibitory inputs from DistTCs (Extended Data Fig. 8), suggesting an addition to the standard inhibitory diagram (Fig. 2k).

The targeting preference of InhTCs was seen across multiple aspects of their connectivity. We first looked at a measure

of synapse size based on the automatic synapse detection (see Methods). InhTCDist → DistTC synapses had a median size

44% larger than those onto other inhibitory subclasses (Fig. 2o). Similarly, the median InhTCPeri → PeriTC synapse being 69%

larger than synapses onto other inhibitory subclasses (Fig. 2o). In addition, the mean number of synapses per unique connection

was significantly higher between InhTCDist → DistTC compared to other targets (Fig. 2p) (3.6 vs 1.6 syn./connection, p =

1.5∗10−10) and between InhTCPeri → PeriTC compared to other targets (3.1 vs 1.5 syn./connection; p = 1.1∗10−5, Student’s

t-test). The location of synapses onto of their preferred targets was similar for the two InhTC subgroups, with a median distance

from soma of 83.5 µm (InhTCDist) and 86.2 µm (InhTCPeri) and no significant difference in distribution (Kolmogorov-Smirnov

test, p=0.25) (Extended Data Fig. 8). Taken together, both InhTCDist and InhTCPeri express their distinct targeting preferences

in a common manner: through increased synapse count, larger synapses and more synapses per connection.

Dendritic synaptic input properties define excitatory subclasses. While inhibitory neurons have frequently been de-

scribed as having dense, nonspecific connectivity onto nearby neurons32,71, many studies have revealed examples not only of

layer-specific connectivity72, but also selectivity within spatially intermingled excitatory subpopulations36,37,73. It is unclear the

degree to which inhibition is specific or not, and, in general, the principles underlying which excitatory neurons are inhibited

by which populations inhibitory neurons is not well understood.

To address these questions, we first anatomically characterized excitatory neurons subclasses in the EM data. Previous ap-

proaches to data-driven clustering of excitatory neuron morphology could only use information about the skeleton14,15,17,74,

but the EM data also has the location and size of all synaptic inputs (Fig. 3a). We reasoned that synaptic features in addition

to skeleton features would better characterize the landscape of excitatory neurons, since synapses directly reflect how neurons

interact with one another. We assembled a suite of 29 features to describe each cell, including synapse properties such median

synapse size, skeleton qualities such as total branch length, and spatial properties characterizing the distribution of synapses

with depth ( Fig. 3b, Extended Data Fig. 9–11, see Methods). The synapse detection algorithm did not distinguish between

excitatory and inhibitory synapses, and thus all synapse-based measures potentially include both types of synapses. We per-

formed unsupervised clustering of these features (Fig. 3b–d), identifying 17 "morphological types" or "M-types". Briefly, we

repeatedly applied a graph-based clustering algorithm75 on subsets of the data to compute a matrix of co-clustering frequency

between cells, followed by agglomerative clustering to obtain a consensus result (see Methods).

To relate this landscape to known cell types, expert neuroanatomists labeled cells by the layer of the cell body and long-range

projection type (IT: intratelencephalic or intracortical; ET: extratelencephalic or subcortical projecting, NP: near-projecting, CT:

cortico-thalamic)76. Each layer contained multiple M-types, some spatially intermingled and others separating into subdomains

within layer (Fig. 3e). M-types were named by the dominant expert label (Extended Data Fig. 13), with M-types within the
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Figure 3. Data-driven characterization of excitatory neuron morphological types (M-types). a) Morphology (black) and synapse (cyan dots) properties were used to extract
features for each excitatory neuron, such as this layer 2/3 pyramidal cell shown. b) Heatmap of z-scored feature values for all excitatory neurons, ordered by anatomical
cluster (see text) and soma depth. See Methods for detailed feature descriptions. c) UMAP projection of neuron features colored by anatomical cluster. Inset shows number
of cells per cluster. d) Example morphologies for each cluster. See (Extended Data Fig. 12) for all excitatory neurons. Scale bar is 500 µm . e) Soma depth of cells in each
anatomical cluster. f) Median linear density of input synapses across dendrites by M-type. g) Median synapse size (arbitrary units, see Methods). In f and g, colored dots
indicate single cells, black dots and error bars indicate a bootstrapped (n=1000) estimate of the median and 95% confidence interval.

same layer being ordered by projection class and average soma depth. For clarity, we use the letter "L" in the name of M-types

(which may include some cells outside the given layer) and the word "layer" to refer to a spatial region. Upper and lower layer

2/3 emerged as having distinct clusters, which we denoted "L2" and "L3" respectively. Layer 6 had the most distinct M-types.

These broadly split into two categories, those with shorter ascending or inverted apical dendrites (L6short), consistent with IT

subclasses, and those with taller ascending apicals and narrow basal dendrites (L6tall), consistent with CT subclasses14. It was

difficult to unambiguously label some layer 6 neurons as either IT or CT on the basis of anatomy alone, but 99% (n=142/143)

manually assigned CT cells fell into one of the L6tall M-types. While we expect that L6short cells are IT and layer 6 CT cells

fall into the L6tall M-types, we thus do not have the confidence to assign these names.

Most M-types had visually distinguishable characteristics, consistent with previous studies14,15,17 (Fig. 3d, Extended Data

Fig. 12), but in some cases subtle differences in skeleton features were further differentiated by synaptic properties. For

example, the two layer 2 M-types are visually similar, although L2a had a 29% higher overall dendritic length (L2a, 4532 µm

; L2b, 3510 µm ) (Extended Data Fig. 9). However, L2a cells had 80% more synaptic inputs than L2b cells (L2a, 4758; L2b,
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2649), a 40% higher median synapse density (L2a, 1.04 syn/µm ; L2b, 0.72 syn/µm ) (Fig. 3f,g), and a wider distribution of

synapse sizes (Extended Data Fig. 9). Median synapse size turned out to differ across M-types, often matching layer transitions

(Fig. 3g, (Extended Data Fig. 11)). Strikingly, L5NP cells were outliers across synaptic properties, with the fewest total

dendritic inputs, lowest synaptic input density, and among the smallest synapses (Fig. 3g,h). Excitatory M-types thus not only

differ in morphology, but also in cell-level synaptic properties like total synaptic input and local properties like synapse size.

Figure 4. Inhibition of excitatory neurons. a) Connectivity from all inhibitory neurons (columns) onto all excitatory neurons, sorted by M-type and soma depth. Dot size
indicates net number of synapses observed. b) Net synapses onto column cells for each inhibitory subclass. Black dots indicate median, bars show 5% confidence interval.
c) Mean net synapses per target cell from each inhibitory subclass onto each excitatory M-type. d) Spearman correlation of PeriTC and DistTC net input onto individual cells,
measured within each M-type. Bars indicate 95% confidence interval based on bootstrapping (n=2000). Stars indicate M-types significantly different from zero with a p-value
< 0.05 after Holm-Sidak multiple test correction. e) Example of connectivity density calculation. Connectivity density from a single interneuron (gray) onto all cells within two
example M-types (left: L2a right, L2b). Potential target cell body positions shown as dots, filled if synaptically connected and gray otherwise. Scale bar is 100µm . f) Pearson
correlation of connectivity density between excitatory M-types, based on PeriTCs (left) and DistTCs (right). Dotted lines indicate groups of cells roughly within a layer.
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Coordination of inhibition across excitatory M-types. Excitatory M-types are defined by their different structural prop-

erties, but this may or may not be meaningful to cortical circuitry. One piece of evidence that M-types do matter would be if

different M-types received input from different inhibitory populations. Having classified inhibitory subclasses and excitatory

M-types, we thus analyzed how inhibition is distributed across the landscape of excitatory neurons.

The column reconstructions included 70,884 synapses from inhibitory neurons onto excitatory neurons (Fig. 4a). PeriTCs

and DistTCs were by far the dominant source of inhibition, with individual cells having as many as 2,118 synapses onto ex-

citatory cells in the column (mean PeriTC: 581 synapses per presynaptic cell; mean DistTC: 596 synapses per presynaptic

cell), while SparTCs and InhTCs made far fewer synapses per presynaptic cell (mean SparTC: 74 synapses, mean InhTC: 16

synapses) (Fig. 4b). Inhibition was distributed unequally across M-types (Fig. 4c). Much of this difference in inhibition was re-

lated to differences in overall synaptic input. Across M-types, synaptic input at the soma, which is almost completely inhibitory,

was strongly correlated (r=0.96, p=5 × 10−10) with net synaptic input onto dendrites, which is primarily excitatory (Extended

Data Fig. 14). Notably, this structural balance of dendritic and somatic input also remained significant across individual cells

within 16/18 M-types (all except L5NP and L5wm).

Similarly, synaptic input from PeriTC and DistTC was also typically balanced onto individual cells for each M-type. We

examined the number of PeriTC and DistTC inputs onto individual excitatory neurons for each M-type and found that PeriTC

and DistTC input was significantly positively correlated for 12/18 M-types (Fig. 4d), suggesting coordinated amounts of in-

hibitory synaptic inputs across the entire arbor of target cells. M-types in upper layers had particularly heterogeneous amounts

of inhibitory input, with L2b cells receiving 60% fewer synapses from intracolumnar interneurons as spatially intermingled L2a

cells (L2b: 37.7±0.27 syn; L2a: 94.8±0.58 syn), while L3b cells had nearly as many intracolumnar inhibitory inputs as much

larger L5ET cells. All layer 6 M-types had relatively few intracolumnar inhibitory inputs compared to upper layers (Fig. 4c).

However, note that due to the columnar sampling, this reflects only local sources of inhibition and does not eliminate the

possibility that deep layer neurons receive inhibitory input from more distant cells compared to upper layers.

Individual inhibitory neurons often targeted multiple M-types, suggesting that certain cell type combinations are inhibited

together. For each inhibitory neuron we computed the connection density onto each M-type, that is the fraction of cells within

the column that received synaptic input (Fig. 4e). To measure the structure of co-inhibition, we computed the correlation of

inhibitory connection density between M-types across PeriTCs and DistTCs separately (Fig. 4f). A high correlation would

indicate that the same inhibitory neurons that connected more (or less) to one M-type also connect more (or less) to another,

while zero correlation would suggest independent sources of inhibition between M-types.

These correlations revealed several notable features of the structure of inhibition across layers. In superficial cortex, the layer

2 and layer 3 M-types were strongly correlated within layer, but had relatively weak correlation with between layers, suggesting

different sources of inhibition. Layer 4 M-types, in contrast, were highly correlated with one another. Layer 5 M-types were

more complex, with weak correlation with one another, suggesting largely non-overlapping sources of inhibition, particularly

among neurons with different long-range projection targets. Interestingly, layer 5 IT cells shared co-inhibition with layer 4 M-

types. Layer 6 inhibition was virtually independent from other layers, with DistTC connectivity also distinct between IT-like

L6short cells and CT-like L6tall cells. Importantly, most co-targeting relationships were consistent for both PeriTC and DistTC
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output, suggesting that cardinal inhibitory subclasses distribute their output across excitatory neurons with similar patterns of

connectivity.

Cellular contributions of inhibition. How do individual neurons distribute their output to produce the patterns of inhibition

described above? To compare patterns of output across inhibitory neurons, for every inhibitory neuron, we measured the

fraction of synaptic outputs made onto each M-type (Fig. 5a). This normalized synaptic output budget reflected factors such

as the number of synapses per connection and the number of potential targets, but is not strongly affected by partial arbors.

We performed a consensus clustering (see Methods), identifying 18 "motif groups", sets of cells with similar patterns of output

connectivity (Fig. 5a, Extended Data Fig. 15). While this measurement only included synapses with cells within the column,

interneurons made more than 4 times more synapses onto cells outside the column than within ( Extended Data Fig. 15s,t). To

check if these results would hold with data outside the column, we used a prediction of neuronal M-types based on perisomatic

features and trained on column M-type labels62. We found that within-column and predicted dataset-wide synaptic output

budgets were highly correlated (pearson r=0.90), confirming that the columnar sampling provided a good estimate of overall

neuronal connectivity ( Extended Data Fig. 15u,v).

Each motif group represented a collection of cells that targeted the same pattern of excitatory cell types. While some motif

groups focused their output onto single excitatory M-types (e.g. Group 9) or layers (Group 7), others spanned broadly (e.g.

Group 6). However, motif groups were not simply individual cell types. Individual motif groups (Fig. 5b,c) showed diversity

in both individual cell morphology and connectivity subclasses (Extended Data Fig. 15, Extended Data Fig. 1). Indeed, 15/18

groups (comprising 156/163 cells) included neurons from at least two subclasses, often aligned in cortical depth (Fig. 5d). This

aligns with the observation of similar co-targeting between PeriTCs and DistTCs.

Presynaptic specificity alone does not tell us about the importance of a connection to its postsynaptic partners. To get a view

of the relationship between motif groups and M-types, we computed both the average output fraction from each motif group

onto each M- type, (Fig. 5e) and the input fraction, the fraction of all within-column inhibitory synaptic inputs onto a given

M-type that come from each motif group (Fig. 5f). These offered different perspectives, as an individual neuron could be both

very selective but also contribute much less input than another less selective cell. Input fraction often followed output fraction

for particularly strong connections, but not always. For example, while Group 3 more strongly targeted layer M-types in layer

3 than layer 2, it still contributed a substantial fraction of all inhibitory layer 2 input. In addition, we found that dominant

connections for motif groups had both high connectivity density and multiple synapses per connection (Extended Data Fig. 16),

properties that suggest a strong functional role in the circuit.

Inhibitory circuits were organized differently in upper layers compared to layer 5. In layers 2–4, each excitatory M-type

received strong inhibition from 2-3 motif groups with overlapping combinations of targets, some specific within layers and

others that cross layer boundaries (Fig. 5g). In contrast, most motif groups targeted only single M-types in layer 5, although in

some cases also targeted cells in other layers (Fig. 5h). Connectivity patterns in layer 6 included clear examples of IT-specific

and putatively CT-specific cells, similar to the layer 5 projection classes, but also had cells, particularly PeriTCs, that targeted

widely in layer 6. Taken together, our data suggest that cortical inhibition is comprised of groups of neurons which target
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specific collections of M-types across their perisomatic and dendritic compartments with sub-laminar precision.

Figure 5. Inhibitory motif groups organize inhibitory connectivity. a) Distribution of synaptic output for all interneurons, clustered into motif groups with common target
distributions. Each row is an excitatory target M-type, each column is an interneuron, and color indicates fraction of observed synapses from the interneuron onto the target
M-type. Only synapses onto excitatory neurons are used to compute the fraction. Neurons are ordered by motif group and soma depth. Bar plots along top indicate number
of synapses onto column cells, with color showing subclass (as in d). Bar plots along right indicate number of cells in target M-type. b) All cells in Group 4. Colors as in d.
c) All cells in Group 13. Colors as in d. d) Soma depth and subclass for cells in each motif group. e) Net synaptic output distribution across M-types for each motif group. f)
Synaptic input for each M-type from each motif group as a fraction of all within-column inhibition. g) Schematic of motif group connectivity in upper layers. h) Schematic of
motif group connectivity in Layer 5.

Synaptic selectivity. Our data suggest that cell-type-specific targeting is a widespread property of cortical interneurons, in

that individual neurons target only a small number of excitatory subclasses. Many factors could go into achieving such specific

connectivity. Neurons of different types have varying dendritic and axonal morphologies that physically constrain potential

interactions77,78. Neurons also vary in the density of synaptic outputs or synaptic inputs and exhibit different compartmental

targeting preferences. In addition, they can exhibit cell type selectivity, which we define as making synapses with particular

cell types more or less than might be expected based on other factors such as axon/dendrite overlap, Note that we explicitly

distinguish this from specificity, which we use to describe how concentrated the output connectivity is onto particular cell types.

To differentiate the effects of these contributing factors, we assembled a rich collection of information about each interneuron:

morphology (Fig. 6a), synaptic connectivity, and how output is distributed across compartments (Fig. 6b) or excitatory M-
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Figure 6. Synaptic selectivity and cell connectivity cards. a) Example inhibitory neuron (Cell ID 303085). Axon in blue, dendrite in red. b) Distribution of synaptic outputs
across target compartments for the cell in a. c) Distribution of synaptic outputs across M-types (bar length) and compartments (bar colors) for the cell in a. d) Selectivity
index (SI) values for the cell in a, measured as the ratio of observed synapse count to median shuffled synapse count for a null model as described below. Error bars
indicate 95 percentile interval. Colored dots (blue: low, orange: high) indicate significant differences (two-sided p<0.05) relative to the shuffle distribution after Holm-Sidak
multiple test correction. e) As a baseline synapse distribution for null models, all synaptic inputs onto all cells in the column were binned by compartment, depth, and M-type.
See (Extended Data Fig. 17) for more details. f) Shuffled connectivity for the cell in a was computed by sampling from the baseline synapse distribution with the observed
depth and compartment bins and counting (N=1,000) and counting synapses onto each M-type. Example shuffle values for L3a (top) and L4a (bottom) M-types vs. observed
synapses are shown. g) SI for all cells in Motif group 5. Non-significant values are assigned a value of 1. The cell in a is highlighted by a black box. h) Direction of the
median cell’s SI from each motif group onto each M-type. Orange indicates more connected, blue less connected. Connections where the median SI was non-significant are
indicated with a dot. i––l) Compact cell connectivity cards encapsulating anatomy (left), M-type target distribution (middle, bar length), compartment targeting (middle, bar
colors as in d), and SI (right, as in g) for four example neurons. Full connectivity cards for all cells can be found in Extended Data Cell Atlas.

types (Fig. 6c) within the column. To quantify the effect of selectivity in particular, we developed a Selectivity Index (SI)

comparing observed synaptic connectivity to a null model capturing key properties outside of M-type (Fig. 6d). The null model
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needed to capture not only space, but also compartment preference and postsynaptic factors such as number of synapses a cell

typically receives and the spatial heterogeneity of potential targets78–80. Because many of these factors are correlated with

target cell type, such a null model aims to address confounding between the cell type label itself and those structural properties

that affect connectivity more generally, for example if cells with higher input synapse density receive more inhibitory inputs

irrespective of their cell type.

We computed a baseline distribution by considering all synaptic inputs onto all column neuron dendrites and binning them

by cortical depth (20 µm depth bins), M-type, and target compartment (Fig. 6e) (Extended Data Fig. 17). For each interneuron,

we computed a shuffled output distribution across M-types by repeatedly sampling connectivity from the baseline distribution

based on that cell’s synapse depths and compartment targeting distribution. For each connection from an interneuron onto a

potential target M-type, we defined the SI as the ratio of observed connectivity to the median of the distribution of shuffled

connectivity (N=1000 repeats) (Fig. 6f), reflecting the amount of cell-type-dependent selectivity beyond the factors included

in the null model. While this sampling included both excitatory and inhibitory synapses, previous studies81,82 and our data

suggest that excitatory and inhibitory inputs are proportional to one another, even at the level of individual cells (Extended Data

Fig. 14).

Because motif groups distributed their output with similar specificity, we asked if cells in motif groups had common patterns

of selectivity as well (Fig. 6g). To ask where required common selectivity to produce their observed connectivity, we computed

the median SI for each M-type/motif group pair, setting non-significant SI values to 1 (Fig. 6h). We found that while 17/18

motif groups showed consistent positive or negative selectivity for some targets, in many cases highly specific connectivity was

not associated with increased selectivity. For example, Group 1 is highly specific to layer 2 targets but surprisingly did not

show consistent positive selectivity for them (Extended Data Fig. 17). Examination of each constraint of the null model —

synapse abundance of different targets, presynaptic compartment specificity, and presynaptic depth distribution — suggested

that this was due to Group 1 axons having a narrow spatial distribution of axons that strongly overlapped layer 2 targets, which

for many cells was sufficient to explain their connectivity (Extended Data Fig. 17). This effect was particularly pronounced for

PeriTCs, which tended to target a more compact spatial domain with less overlap between M-types. In contrast, for DistTCs

the increased spatial overlap of distal and apical dendrites of different M-types required additional selectivity to explain their

connectivity (Extended Data Fig. 17). Collectively, this suggests that to achieve specific targeting patterns, interneurons both

project their axons to precise spatial domains and selectively favor or disfavor making synapses with specific targets, with the

relative contribution of these factors differing across cell types.

Cell connectivity cards. While motif groups describe the broad organization of groups of cells, individual interneurons

showed fascinating but idiosyncratic structural properties. To quickly assess individual cell properties, we devised a compact

collection of measures that summarize morphology and connectivity at the level of M-types and compartments that were

assembled into "connectivity cards" (Fig. 6i–l). Individual cards can reveal unique features that were not clear from groups

alone, such as extreme specificity (Fig. 6i) and different patterns of translaminar connectivity (Fig. 6j–l). A full atlas of cards

for all interneurons can be found in Extended Data Cell Atlas.
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Discussion

While excitatory neurons display morphological and transcriptomic diversity beyond layer boundaries or even long range pro-

jection classes14,83, it has been unclear in general how or if these differences have functional consequences in the local inhibitory

circuit. Here, we generated an EM reconstruction of neuronal anatomy and inhibitory connectivity across a column of visual

cortex. This data offered new insights into not only the connectivity of individual neurons, but also the broader organization of

inhibition across neuronal subclasses. Using synaptic properties in addition to traditional morphological features, we found a

collection of excitatory M-types with distinct patterns of inhibitory input, demonstrating that anatomical distinctions, including

both projection classes and more subtle sublaminar differences, are reflected in the cortical circuit. Inhibitory neurons were

organized into motif groups, heterogeneous collections of cells that convergently targeted both perisomatic and dendritic com-

partments of particular combinations of M-types. We also identified new aspects to the inhibition of inhibition, including a

novel type of disinhibitory specialist that mainly targets basket cells.

A. Sublaminar specificity of inhibitory targeting. This question of interneuronal specificity has been perhaps best studied

in layer 5, with its highly distinct ET and IT excitatory projection subclasses84. For dendrite targeting cells, precise genetic

targeting of layer 5 SST subtypes identified distinct cell types that targeted ET versus IT cells37. In addition, developmental

perturbation altering ET or IT neurons has suggested that they have different perisomatic input as well, with PV cells prefer-

entially targeting ET and CCK neurons targeting IT85–87. The EM reconstruction presented here identified additional structure

agreed to this picture. We found that ET cells received inputs from a larger number and diversity of inhibitory cells than IT,

suggesting that despite being less numerous, ET cells have a larger and more complex inhibitory network than IT cells. ET cells

were also frequently involved in translaminar circuits, with several examples of both ascending and descending translaminar

PeriTCs and ascending DistTCs that targeted both L2/3 neurons and ETs but not ITs, suggesting bidirectional pathways for

coordinated inhibition. Morphology and inhibitory connectivity also identified diversity within the L5IT population: shallow

L5ITa and deeper L5ITb. L5ITa had a small collection of highly specific PeriTC and DistTC inputs, including a Martinotti

cell distinct from previously established IT-specific SST cell types37 (see also Gamlin et al.57). L5ITb, in contrast, received

highly selective inhibition from only one inhibitory neuron, and otherwise largely shared inhibition with layer 4 pyramidal cells.

In addition, layer 5 NP cells had yet another distinct collection of inhibitory neurons. Collectively, the data suggests several

non-overlapping inhibitory networks within layer 5 alone, with few sources of inhibition that collectively inhibited all layer 5

neurons. This affords the network the potential to selectively inhibit each projection class both at the soma and across apical

and basal dendrites, potentially with different cell types active under different network conditions and behavioral states18, or

with synapses changing via different plasticity rules88.

Subtype-specific inhibitory circuits were found across all other layers as well. Layer 6 also has distinct IT and CT excitatory

projection subclasses and, similar to layer 5, we found distinct inhibitory subpopulations targeting each. In contrast to layer 5,

however, there was a combination of both projection-specific and broad layer 6 inhibition. We speculate that this indicates that

projection subnetworks in layer 6 might interact with one another more than in layer 5, in order for collective inhibition to be

useful.
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B Basket cell disinhibition

Even in layers 2–4, with only IT cells, there was significant sublaminar specificity. The differential inhibition of layer 2

versus layer 3 cells suggests that are functionally distinct subnetworks with independent modulation. This could mirror depth-

dependent differences in in intracortical projection patterns89, similar to prefrontal cortex, where amygdala-projecting layer

2 cells receive inhibition that selectively avoids neighboring cortical-projecting cells36,73. Another possibility is that they are

well-posed to differentially modulate top-down versus sensory-driven activity90,91, as layer 3 receives more sensory thalamic

input than layer 292,93. More generally, the distinct inhibitory environments of upper and lower layer 2/3 have been observed

across cortex, from primary sensory areas44,94 to higher-order association areas36,73,95, suggesting that it may reflect a general

functional specialization.

Interestingly, most inhibitory neurons that targeted main thalamorecipient layer 4 also targeted layer 3, possibly reflecting the

need to collectively control populations that share common thalamic input. The most specific layer 4 neurons were a collection

of PeriTCs that also all showed particularly selective innervation of a morphologically distinct excitatory subpopulation in deep

layer 4 (see also Weis et al.96). Such sublaminar organization within layer 4 is apparent in primates and cat visual cortex on

the basis of thalamic axon projection and cytoarchitecture97,98, and was seen in EM reconstruction of barrel cortex99. The data

here points to a graded transition in mouse visual cortex rather than sharp sublamina, but with a similar principle of specialized

thalamic inputs and local circuits.

Collectively, pervasive sublaminar specificity of inhibition hints that their excitatory targets have different circuit roles as

well, and suggests that it will be fruitful to pay close attention to sublaminar patterns of activity. However, the functional

consequences of these inhibitory networks will depend on how different groups of inhibitory neurons are recruited and how

local excitation feeds back into the inhibitory network. Interestingly, a companion study found that L5-ET neurons target those

inhibitory neurons that synapse back onto them64, raising the question if M-types generally target those motif groups that exert

inhibitory influence on them. It will also be important to understand the extent to which inhibitory cells with overlapping targets

are active simultaneously, collectively setting an inhibitory tone, or instead different populations that target the same cells are

active under different contexts, as in hippocampal basket cells26.

B. Basket cell disinhibition. Extensive functional experiments have demonstrated that a class of VIP interneurons are spe-

cialized to target other inhibitory neurons, with little output onto excitatory neurons. Such disinhibitory VIP neurons have been

shown to strongly target SST neurons across cortical areas25,27,39,69,100 and, to a lesser extent, fast spiking or PV neurons27,100.

Here, we found two classes of disinhibitory specialists: one that targeted putative SST cells and a second that targeted bas-

ket cells. Bipolar cells, a typical VIP interneuron morphology, were all putatively SST-targeting, while multipolar cells were

found in both. Future experiments will be required to determine which molecular subclass the basket-targeting disinhibitory

specialists are, and they do not fit any well-established connectivity profile.

This novel class of cells specialized to control basket cells adds yet another pathway for the cortical network to control

perisomatic inhibition. Fast spiking or PV basket cells have been shown to be inhibited by other PV cells25,39, SST cells101

and even by neurogliaform cells via volume transmission102. The basket-targeting disinhibitory specialists differ from these

other pathways in their specificity — not only do they distribute the majority of synaptic output onto basket cells instead
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of any other inhibitory or excitatory targets, they do so with larger synapses and more synapses per connection. This highly

specific targeting offers an intriguing pathway to potentially enhance basket-cell-mediated excitatory gain or synchrony without

significantly affecting other neuronal populations. Determining what conditions cause these cells to be active will be important

for understanding their functional effect.

C. Limitations. One principal concern is the generalizability of data, since it comes from a single animal, is located toward

the edge of VISp, and has at most a few examples per cell type. Companion work from the same dataset focusing on multiple

examples of a few morphologically-defined cell types shows consistent target preferences57,64, and our data also agrees with

recent functional measurements of type-specific connectivity of SST cells37. We thus believe that the connectivity results

will apply generally, although it will be important to measure the variability across individual cells, distinct animals, and

locations in cortex. However, it is an interesting question if the connection specificity we observed is entirely determined

by molecularly-defined cell types or if other factors such as developmental timing, exact cortical depth, or activity-dependent

plasticity103 play a significant role in shaping these patterns. Such additional factors could interact with cell types to produce a

combination discrete and continuous rules underlying synaptic connectivity, while this study focused only on discrete cell type

and compartmental rules. Integrating the functional imaging from this same dataset1 could provide a valuable foundation to

investigate these potential interactions.

This study focused on the architecture of classical synaptic connectivity. However, gap junctions, non-synaptic neurotrans-

mitter release and neuromodulator release are all used by inhibitory interneurons, and enriching this data with such information

will yield a more complete picture of functional interactions104. Even among synapses, this study only considered cells and

connectivity within a narrow range of distances and limited volume. If cells change their connectivity with distance, as has been

seen in excitatory neurons105, or if some regions of the axon were within the column but others were not, this would bias the

observed connectivity distributions. Further, while the columnar approach was provided large samples of excitatory subgroups,

it resulted in few examples for any given inhibitory cell type; some cell types such as chandelier cells were not observed at all.

Extending a similar analysis across a much wider extent will be important for building a complete map of inhibitory cell types

and firmly establishing the nature of inhibitory motif groups. The lack of segmentation in the top 10 µm of layer 1 truncates

some apical tufts as well as limiting reconstruction quality of layer 1 interneurons. For those excitatory neurons with extensive

apical tufts, particularly layer 2 and L5ET cells, the reconstructions here might miss both distinguishing characteristics and

sources of inhibitory input in that region.

D. Comparison to other cell type approaches. Recent surveys aimed at discovering excitatory cell types have used mor-

phology alone96,106, morphology and electrophysiology14, transcriptomics20,107, or all three together using Patch-seq17. The

M-types found here from morphology and synaptic properties generally agree with these other approaches, in particular distin-

guishing cells in upper layer and lower layer 2/3 and differentiating between projection subclasses. Transcriptomic studies have

found multiple excitatory clusters in upper layer 2/3 in VISp107,108, although it is not clear if they correspond to exactly two

morphological clusters observed here. In other cases, the M-types described here can likely be divided further. For example,

transcriptomic clustering subdivides layer 5 ET cells into three groups22, while we only have one. Improved sampling of rare
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cell types, incorporation of axonal morphology, and multimodal analysis will be important to help refine the landscape of cell

types.

For inhibitory neurons, we focused on generating rich descriptions of individual neurons rather than clustering cell types,

since we did not have enough examples of most specific cell types. However, in many cases there are striking morphological

similarities between interneurons reconstructed here in EM and examples from the literature, such as particular layer 6 ascend-

ing translaminar basket cells109,110 and Cell IDs 302999 and 305182. In addition, a companion study quantitatively matched

EM reconstructions to Patch-seq reconstructions31 for a subset of SST neurons57, demonstrating that these matches can be

algorithmically discovered with sufficient data.

E. Peters’ rule and White’s exceptions. Since the seminal work of Braitenberg and Schüz80 and the experiments of Alan

Peters111 and Edward White112, two ideas have been pitched as competing principles: One is that cell type connectivity simply

reflects the distribution of pre- and post-synaptic elements of each cell type ("Peters’ rule") and the other is that cells preferen-

tially target certain cells over others ("White’s exceptions"). These concepts have been of great value in estimating the cortical

wiring diagram79,113 and offering null hypotheses for targeted studies114. Our data suggests both mechanisms are likely to be

used by cortical neurons. While some inhibitory cell types present remarkably selective connectivity, other cell types appear to

broadly target available partners. Importantly, some interneurons that connect with extremely specific connectivity, for example

onto layer 2 M-types, have no evidence of selectivity beyond tight control of their axonal arbors. However, such tight spatial

organization can follow synaptic specificity, for example if earlier in development or maturation, axonal exploration were fol-

lowed by pruning branches with synapses onto non-preferred targets115. Our data suggest that neurons use a combination of

spatial overlap, morphology, and synaptic selectivity together, with cell-type specific differences in the degree to which each

aspect contributes to observed connectivity.

F. A foundation for the multimodal study of cell types. This work provides a key step in dissecting the connectivity of

cortical cell types6, but to make the most use of this type of data will require following in the footsteps of Drosophila and linking

EM to genetic tools116. Patch-seq, which generates both transciptomic and morphological data, is a promising route to gener-

ating these correspondences. In addition to striking visual matches between cells reconstructed in EM and individual samples

from a VISp Patch-seq data collection31, a companion study used established morphometric features to to quantitatively link

EM reconstructions of layer 5 Martinotti cells to specific transcriptomic subtypes57. Currently, however, many cell subclasses

determined based on transcriptomic or multimodal clusters have diverse morphologies and likely diverse connectivity17,31. This

suggests that the process of linking structural and molecular datasets should aim to become bi-directional, not only decorating

EM reconstructions with transcriptomic information, but also using EM to identify cell types with distinct connectivity and

analyzing Patch-seq data to identify distinguishing transcriptomic markers or collecting additional examples.

The anatomical data presented here are exceptionally rich, and this study offered just one approach to its analysis. To

facilitate subsequent analysis of anatomy, connectivity, and ultrastructure, all EM data, segmentations, skeletons and tables of

synapses and cell types are available are available via MICrONs-Explorer1. In addition to being a rich resource for detailed

neuroanatomy, this highly-curated population within a larger volume will serve an important role for future analyses. The
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data presented here can serve as training data for anatomical classifiers62,117 or improvements in automated proofreading118.

Moreover, it can serve as a rich seed from which to consider other aspects of the cortical circuit in the same dataset, such as

thalamic input, excitatory connectivity, and functional properties.
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Methods

This dataset was acquired, aligned, and segmented as part of the larger MICRONS project. Methods underlying dataset acqui-

sition are described in detail elsewhere1,49–51 and the primary data resource is described in a separate publication1. We repeat

some of the methodological details for the dataset here for convenience.

Animal preparation for EM. All animal procedures were approved by the Institutional Animal Care and Use Committee at

the Allen Institute for Brain Science or Baylor College of Medicine. Neurophysiology data acquisition was conducted at Baylor

College of Medicine prior to EM imaging, afterwards the mice were transferred to the Allen Institute in Seattle and kept in a

quarantine facility for 1–3 days, after which they were euthanized and perfused. All results described here are from a single

male mouse, age 64 days at onset of experiments, expressing GCaMP6s in excitatory neurons via SLC17a7-Cre and Ai162

heterozygous transgenic lines (recommended and generously shared by Hongkui Zeng at Allen Institute for Brain Science;

JAX stock 023527 and 031562, respectively). Two-photon functional imaging took place between P75 and P80 followed by

two-photon structural imaging of cell bodies and blood vessels at P80. The mouse was perfused at P87. Details of animal

preparation are described in detail elsewhere1 and summarized below.

Tissue preparation. After optical imaging at Baylor College of Medicine, candidate mice were shipped via overnight air

freight to the Allen Institute. Mice were transcardially perfused with a fixative mixture of 2.5% paraformaldehyde, 1.25%

glutaraldehyde, and 2 mM calcium chloride, in 0.08 M sodium cacodylate buffer, pH 7.4. A thick (1200 µm) slice was cut with

a vibratome and post-fixed in perfusate solution for 12–48 h. Slices were extensively washed and prepared for reduced osmium

treatment (rOTO) based on the protocol of Hua and colleagues119. All steps were performed at room temperature, unless indi-

cated otherwise. 2% osmium tetroxide (78 mM) with 8% v/v formamide (1.77 M) in 0.1 M sodium cacodylate buffer, pH 7.4,

for 180 minutes, was the first osmication step. Potassium ferricyanide 2.5% (76 mM) in 0.1 M sodium cacodylate, 90 minutes,

was then used to reduce the osmium. The second osmium step was at a concentration of 2% in 0.1 M sodium cacodylate, for

150 minutes. Samples were washed with water, then immersed in thiocarbohydrazide (TCH) for further intensification of the

staining (1% TCH (94 mM) in water, 40 °C, for 50 minutes). After washing with water, samples were immersed in a third os-

mium immersion of 2% in water for 90 minutes. After extensive washing in water, lead aspartate (Walton’s (20 mM lead nitrate

in 30 mM aspartate buffer, pH 5.5), 50°, 120 minutes) was used to enhance contrast. After two rounds of water wash steps,

samples proceeded through a graded ethanol dehydration series (50%, 70%, 90% w/v in water, 30 minutes each at 4 °C, then

3 x 100%, 30 minutes each at room temperature). Two rounds of 100% acetonitrile (30 minutes each) served as a transitional

solvent step before proceeding to epoxy resin (EMS Hard Plus). A progressive resin infiltration series (1:2 resin:acetonitrile

(e.g. 33% v/v), 1:1 resin:acetonitrile (50% v/v), 2:1 resin acetonitrile (66% v/v), then 2 x 100% resin, each step for 24 hours or

more, on a gyrotary shaker) was done before final embedding in 100% resin in small coffin molds. Epoxy was cured at 60° for

96 hours before unmolding and mounting on microtome sample stubs. The sections were then collected at a nominal thickness

of 40 nm using a modified ATUMtome (RMC/Boeckeler49) onto 6 reels of grid tape49,120.
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F A foundation for the multimodal study of cell types

Transmission electron microscopy imaging. The parallel imaging pipeline used in this study49 used a fleet of transmission

electron microscopes that had been converted to continuous automated operation. It is built upon a standard JEOL 1200EXII

120kV TEM that had been modified with customized hardware and software, including an extended column and a custom

electron-sensitive scintillator. A single large-format CMOS camera outfitted with a low distortion lens was used to grab image

frames at an average speed of 100 ms. The autoTEM was also equipped with a nano-positioning sample stage that offered fast,

high-fidelity montaging of large tissue sections and a reel-to-reel tape translation system that locates each section using index

barcodes. During imaging, the reel-to-reel GridStage moved the tape and located the targeting aperture through its barcode and

acquired a 2D montage. We performed image QC on all data and reimaged sections that failed the screening.

Image processing: Volume assembly. The volume assembly pipeline is described in detail elsewhere50,51. Briefly, the im-

ages collected by the autoTEMs are first corrected for lens distortion effects using non-linear transformations computed from a

set of 10x10 highly overlapping images collected at regular intervals. Overlapping image pairs are identified within each sec-

tion and point correspondences are extracted using SIFT features. Montage transformation parameters are estimated per image

to minimize the sum of squared distances between the point correspondences between these tile images, with regularization.

A downsampled version of these stitched sections are produced for estimating a per-section transformation that roughly aligns

these sections in 3D. he rough aligned volume is rendered to disk for further fine alignment. The software tools used to stitch

and align the dataset is available in our github repository (https://github.com/AllenInstitute/render-modules). To fine align the

volume it was required to make the image processing pipeline robust to image and sample artifacts. Cracks larger than 30

um (in 34 sections) were corrected by manually defining transforms. The smaller and more numerous cracks and folds in the

dataset were automatically identified using convolutional networks trained on manually labeled samples using 64 × 64 × 40 nm3

resolution image. The same was done to identify voxels which were considered tissue. The rough alignment was iteratively

refined in a coarse-to-fine hierarchy121, using an approach based on a convolutional network to estimate displacements between

a pair of images122. Displacement fields were estimated between pairs of neighboring sections, then combined to produce a

final displacement field for each image to further transform the image stack. Alignment was first refined using 1024 × 1024 ×

40 nm3 images, then 64 × 64 × 40 nm3 images. The composite image of the partial sections was created using the tissue mask

previously computed.

Image processing: Segmentation. The image segmentation pipeline is fully described in Macrina et al50. Remaining mis-

alignments were detected by cross-correlating patches of image in the same location between two sections, after transforming

into the frequency domain and applying a high-pass filter. Combining with the tissue map previously computed, a "segmenta-

tion output mask" was generated that sets the output of later processing steps to zero in locations with poor alignment. Using

previously described methods123, a convolutional network was trained to estimate inter-voxel affinities that represent the poten-

tial for neuronal boundaries between adjacent image voxels. A convolutional network was also trained to perform a semantic

segmentation of the image for neurite classifications, including (1) soma+nucleus, (2) axon, (3) dendrite, (4) glia, and (5) blood

vessel. Following the methods described in Wu et al124, both networks were applied to the entire dataset at 8 × 8 × 40 nm3

in overlapping chunks to produce a consistent prediction of the affinity and neurite classification maps and the segmentation
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output mask was applied to predictions. The affinity map was processed with a distributed watershed and clustering algorithm

to produce an over-segmented image, where the watershed domains are agglomerated using single-linkage clustering with size

thresholds125,126. The over-segmentation was then processed by a distributed mean affinity clustering algorithm125,126 to create

the final segmentation.

For synapse detection and assignment, a convolutional network was trained to predict whether a given voxel participated in

a synaptic cleft. Inference on the entire dataset was processed using the methods described in Wu et al124 using 8 × 8 × 40

nm3 images. These synaptic cleft predictions were segmented using connected components, and components smaller than 40

voxels were removed. A separate network was trained to perform synaptic partner assignment by predicting the voxels of the

synaptic partners given the synaptic cleft as an attentional signal127. This assignment network was run for each detected cleft,

and coordinates of both the presynaptic and postsynaptic partner predictions were logged along with each cleft prediction.

For nucleus detection1 a convolutional network was trained to predict whether a voxel participated in a cell nucleus. Fol-

lowing the methods described in Wu et al124, a nucleus prediction map was produced on the entire dataset at 64 × 64 × 40

nm3.

Column description and cell classes. The column borders were found by manually identifying a region in primary visual

cortex that was far from both dataset boundaries and the boundaries with higher order visual areas. A 100 µm × 100 µm box

was placed based on layer 2/3 and was extended along the negative y axis of the dataset.

While analyzing data, we observed that deep layer neurons had apical dendrites that were not oriented along the most direct

pia-to-white-matter direction, and we adapted the definition of the column to accommodate these curved neuronal streamlines.

Using a collection of layer 5 ET cells, we placed points along the apical dendrite to the cell body and then along the primary

descending axon towards white matter. We computed the slant angle as two piecewise linear segments, one along the negative

y axis to lower layer 5 where little slant was observed, and one along the direction defined by the vector averaged direction of

the labeled axons. We believe the slant to be a biological feature of the tissue and not a technical artifact for several reasons:

1. The curvature is not aligned to a sectioning plane or associated with shearing or other distortion in the imagery, making

it unlikely to be a result of the alignment process.

2. Blood vessel segmentation does not show a large correlated distortion in deep layers, making it unlikely to be a result of

mechanical stress on the tissue (see https://ngl.microns-explorer.org/#!gs://microns-static-links/mm3/blood_vessels.json).

Moreover, it is unclear why such stress would affect only layer 5b and below.

3. Individual examples of neurons with slanted morphologies can be found among single cell reconstructions in the litera-

ture, for example several descending bipolar VIP interneurons and layer 6 pyramidal cells in [31]. It is not possible to

determine if these individual cases correspond to a larger population of correlated arbors, but it suggests these morpholo-

gies are not atypical.

4. Similar curvature has been observed in other large EM datasets from visual cortex.
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F A foundation for the multimodal study of cell types

Using these boundaries and previously computed nucleus centroids1, we identified all cells inside the columnar volume.

Coarse cell classes (excitatory, inhibitory, and non-neuronal) were assigned based on brief manual examination and rechecked

by subsequent proofreading and automated cell typing62. To facilitate concurrent analysis and proofreading, we split all false

merges connecting any column neurons to other cells (as defined by detected nuclei) before continuing with other work.

Proofreading. Proofreading was performed primarily by five expert neuroanatomists using the PyChunkedGraph53,54 infras-

tructure and a modified version of Neuroglancer128. Proofreading was aided by on-demand highlighting of branch points and

tips on user-defined regions of a neuron based on rapid skeletonization (https://github.com/AllenInstitute/Guidebook). This

approach quickly directed proofreader attention to potential false merges and locations for extension, as well as allowed a clear

record of regions of an arbor that had been evaluated.

For dendrites, we checked all branch points for correctness and all tips to see if they could be extended. False merges of

simple axon fragments onto dendrites were often not corrected in the raw data, since they could be computationally filtered for

analysis after skeletonization (see below). Detached spine heads were not comprehensively proofread, and previous estimates

place the rate of detachment at approximately 10–15%. Using this method, dendrites could be proofread in approximately ten

minutes per cell.

For inhibitory axons, we began by "cleaning" axons of false merges by looking at all branch points. We then performed

extension of axonal tips until either their biological completion or data ambiguities, particularly emphasizing all thick branches

or tips that were well-suited to project to new laminar regions. For axons with many thousand synaptic outputs, we followed

some but not all tips to completion once major branches were cleaned and established. For smaller neurons, particularly those

with bipolar or multipolar morphology, most tips were extended to the point of completion or ambiguity. Axon proofreading

time differed significantly by cell type not only because of differential total axon length, but axon thickness differences that

resulted in differential quality of autosegmentations, with thicker axons being of higher initial quality. Typically, inhibitory

axon cleaning and extension took 3–10 hours per neuron.

Manual cell subclass and layer labels. Expert neuroanatomists further labeled excitatory and inhibitory neurons into sub-

classes. Layer definitions were based on considerations of both cell body density (in analogy with nuclear staining) supple-

mented by identifying kinks in the depth distribution of nucleus size near expected layer boundaries62.

For excitatory neurons, the categories used were: Layer 2/3-IT, Layer 4-IT, Layer 5-IT, Layer 5-ET, Layer 5-NP, Layer 6-IT,

Layer 6-CT, and Layer 6b ("L6-WM") cells. Excitatory expert labels did not affect analysis, but were used as the basis for

naming morphological clusters. Layer 2/3 and upper Layer 4 cells were defined on the basis of dendritic morphology and cell

body depth. Layer 5 cells were similarly defined by cell body depth, with projection subclasses distinguished by dendritic

morphology following Gouwens, Sorenson, and Berg, 201914 and classical descriptions of thick (ET) and thin-tufted (IT) cells.

Layer 5 ET cells had thick apical dendrites, large cell bodies, numerous spines, a pronounced apical tuft, and deeper ET cells

had many oblique dendrites. Layer 5 IT cells had more slender apical dendrites and smaller tufts, fewer spines, and fewer

dendritic branches overall. Layer 5 NP cells corresponded to the "Spiny 10" subclass described in Gouwens, Sorenson, and

Berg; these cells had few basal dendritic branches, each very long and with few spines or intermediate branch points. Layer
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6 neurons were defined by cell body depth, but only some cells were able to be labeled as IT or CT by human experts. Layer

6 pyramidal cell with stellate dendritic morphology, inverted apical dendrites, or wide dendritic arbors were classified as IT

cells. Layer 6 pyramidal cells with small and narrow basal dendrites, an apical dendrite ascending to Layer 4 or Layer 1, and a

myelinated primary axon projecting into white matter were labeled as CT cells.

For inhibitory neurons, manual cell typing considered axonal and dendritic morphology as well as connectivity. Cells that

primarily contacted soma or perisomatic regions were labeled as basket cells (BC). Cells that made arbors that extended up to

layer 1 or formed a dense plexus and primarily targeted distal dendrites were labeled as putative SST cells. Cells that remained

mostly in layer 1 or had extensive arborization and many non-synaptic boutons were labeled as putative Id2 or neurogliaform

cells. Finally, cells with a bipolar dendritic morphology or a multipolar dendritic morphology and output onto other inhibitory

neurons were labeled as putative VIP cells. Several cells, particularly in layer 6, had an ambiguous subclass assignment,

typically when their connectivity was not basket-like but their morphology was also not similar to upper layer Martinotti or

non-Martinotti cells.

Skeletonization. To rapidly skeletonize dynamic data, we took advantage of the PyChunkedGraph data structure that collects

all supervoxels belonging to the same neuronal segmentation into 2 µm × 2 µm × 20 µm "chunks" with a unique id and

precisely defined topological adjacency with neighboring chunks of the same object. Each chunk is called a "level 2 chunk"

and the complete set of chunks for a neuron and their adjacency we call the "level 2 graph," based on its location in the hierarchy

of the PyChunkedGraph data structure54. We precompute and cache a representative central point in space, the volume, and

the surface area for each level 2 chunk and update this data when new chunks are created due to proofreading edits. Using the

level 2 graph and assigning edge lengths corresponding to the distance between the representative points for each vertex (i.e.

each level 2 chunk), we run the TEASAR129 algorithm (10 µm invalidation radius) to extract a loop-free skeleton. Each of the

level 2 vertices removed by the TEASAR algorithm is associated with its closest remaining skeleton, making it possible to map

surface area and volume data to the skeleton. Typical edges between skeleton vertices are about 1.7 µm , and new skeletons

can be computed de novo in approximately 10 seconds, making them useful for analysis over length scales of tens of µm or

larger.

To represent the cell body, an additional vertex was placed at the location of the nucleus centroid and all vertices within an

initial radius and topologically connected to centroid were collapsed into this vertex with associated data mapping. The radius

was determined for each neuron separately by consideration of the volume of each cell body. A companion work62 computed

the volume of each cell body, and we generated an effective radius based on the sphere with the same volume. To ensure that our

values captured potentially lopsided cell bodies, we padded this effective radius by an additional factor of 1.25. Skeletons were

rooted at the cell body, with "downstream" meaning away from soma and "upstream" meaning towards soma. Each synapse

was assigned to skeleton vertices based on the level 2 chunk of its associated supervoxel. For each unbranched segment of the

skeleton (i.e. between two branch points or between a branch point and end point), we computed an approximate radius r based

on a cylinder with the same path length L and total volume V associated with that segment (r =
√

V/πL).
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F A foundation for the multimodal study of cell types

Axon/dendrite classification. To detect axons, we took advantage of the skeleton morphology, the location of presynaptic

and postsynaptic synapses, and the clear segregation between inputs and outputs of cortical neurons. For inhibitory cells, we

used synapse flow centrality130 to identify the start of the axon as the location of maximum paths along the skeleton between

sites of synaptic input and output. Two inhibitory neurons had two distinct, biologically correct axons after proofreading (Cell

IDs 258362 and 307059). For these cells we ran this method twice, masking off the axon found after the first run, in order

to identify both. For excitatory neurons that did not have extended axons, there were often insufficient synaptic outputs on

their axon for this approach to be reliable. Excitatory neurons with a segregation index130 of 0.7 (on a scale with 0 indicating

random distribution of input and output synapses and 1 indicating perfect input/output segregation) or above were considered

well-separated and the synapse flow centrality solution was used. For cells with a segregation index less than 0.7, we instead

looked for branches near the soma with few synaptic inputs. Specifically, we took identified all skeleton vertices within 30 µm

from the cell body and looked at the distinct branches downstream of this region. For each branch, we computed the total path

length and the total number of synaptic inputs in order to get a linear input density. Branches with a path length both more

than 20 µm and with an input density less than 0.1 synaptic inputs per µm were labeled as being axonal and filtered out of

subsequent analysis.

We further filtered out any remaining axon fragments merged onto pyramidal cell dendrites using a similar approach. We

identified all unbranched segments (regions between two branch points or between a branch point and end point) on the non-

axonal region of the skeleton and computed their input synapse density. Starting from terminal segments (i.e. those with no

downstream segments), we labeled a segment as a "false merge" if it had an input density less than 0.1 synaptic inputs per µm.

This process iterated across terminal segments until all remaining had an input density of at least 0.1 inputs per µm . Falsely

merged segments were masked out of the skeleton for all analysis.

Excitatory dendrite compartments. We assigned all synaptic inputs onto excitatory neurons to one of four compartments:

soma, proximal dendrite, distal basal dendrite, and distal apical dendrite. The most complex part was distinguishing the basal

dendrite from the apical dendrite. While easy in most cases for neurons in layer 3–5 due to the consistent nature of apical

dendrites being single branches reaching toward layer 1, this is not true everywhere. In upper layer 2/3, cells often have

multiple branches in layer 1 equally consistent with apical dendrites and in layer 6 there are often cells with apical dendrites

that stop in layer 4, that point toward white matter, or even that lack a clear apical branch entirely. To objectively and scalably

define apical dendrites, we built a classifier that could detect between 0–3 distinct apical branches per cell. Following the

intuition from neuroanatomical experts, we used features based on the branch orientation, location in space, relative location

compared to the cell body, and branch-level complexity. Specifically, we trained a random forest classifier to predict whether

a skeleton vertex belonged to an apical dendrite based on several features: Depth of vertex, depth of soma, difference in depth

between soma and vertex, vertex distance to soma along the skeleton, vertex distance to farthest tip, normalized vertex distance

to tip (between 0 and 1), tortuosity of path to root, number of branch points along the path to root, radial distance from soma,

absolute distance from soma, and angle relative to vertical between the vector from soma to vertex. We aggregated predictions

within each branch by summing the log odds ratio from the model prediction, with the net log-odds ratio saturating at ±200.
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Finally, for each branch i with aggregated odds ratio Ri, we compare branches to one another via a soft-max operation:

Si = exp(Ri/50)/
∑

j exp(Rj/50). Branches with a maximum tip length of less than 50 µm were considered too short to be

a potential apical dendrite and excluded from consideration and not included in the denominator. Branches with both Ri > 0

(evidence is positive towards being apical) and Si > 0.25 (allowing no more than 4 apical branches with equal weight to be

possible, and more likely 2-3 at most). Training data was selected from an initial 50 random cells, followed by an additional 33

cells chosen representing cases where the classifier did not perform correctly. Performance on both random and difficult cells

had an F1 score of 0.9297 (86 true positives, 599 true negatives, 2 false positives, and 11 false negatives) based on leave-one-out

cross validation, with at least one apical dendrite correctly classified for all cells.

Compartment labels were propagated to synapses based on the associated skeleton vertices. Soma synapses were all those

associated with level 2 chunks within the soma collapse region (see Skeletonization section). Proximal dendrites were those

outside of the soma, but within 50 µm after the start of the branch. Distal basal synapses were all those associated with vertices

more distant than the proximal threshold, but not on an apical branch. Apical synapses were all those associated with vertices

more distant than the proximal threshold and on an apical branch.

Inhibitory feature extraction and clustering. Many classical methods of distinguishing interneuron classes are based on

how cells distribute their synapses across target compartments. Following proofreading, expert neuroanatomists attempted to

classify all inhibitory neurons broadly into "basket cells," "SST-like cells", "VIP-like cells", and "neurogliaform/layer 1" cells

based on connectivity properties and morphology. While 150 cells were labeled on this basis, an additional 13 neurons were

considered uncertain (primarily in layer 6) and in some cases manual labels were low confidence. To classify inhibitory neurons

in a data driven manner, we thus measured four properties of how cells distribute their synaptic outputs:

1. The fraction of synapses onto inhibitory neurons.

2. The fraction of synapses onto excitatory neurons that are onto soma.

3. The fraction of synapses onto excitatory neurons that are onto proximal dendrites.

4. The fraction of synapses onto excitatory neurons that are onto distal apical dendrites.

Because the fraction of synapses targeting all compartments sums to one, the last remaining property, synapses onto distal basal

dendrites, was not independent and thus was measured but not included as a feature. Inspection of the data suggested two

additional properties that characterized synaptic output across inhibitory neurons:

5. The fraction of synapses that are part of multisynaptic connections, those with at least two synapses between the same

presynaptic neuron and target neuron.

6. The fraction of multisynaptic connection synapses that were also within 15 µm of another synapse with the same target,

as measured between skeleton nodes. Note that we robustness of this parameter and found that intersynapse distances

between from 5 to more than 100 µm have qualitatively similar results.
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F A foundation for the multimodal study of cell types

Using these six features, we trained a linear discriminant classifier on cells with manual annotations and applied it to all

inhibitory cells. Differences from manual annotations were treated not as inaccurate classifications, but rather a different view

of the data.

Excitatory feature extraction and clustering. To characterize excitatory neuron morphology, we computed features based

only on excitatory neuron dendrites and soma. The features were:

1. Median distance from branch tips to soma per cell.

2. Median tortuosity of the path from branch tips to soma per cell. Tortuosity is measured as the ratio of path length to the

Euclidean distance from tip to soma centroid.

3. Number of synaptic inputs on the dendrite.

4. Number of synaptic inputs on the soma.

5. Net path length across all dendritic branches.

6. Radial extent of dendritic arbor. We define "radial distance" to be the distance within the same plane as the pial surface.

For every neuron, we computed a pia-to-white-matter line, including slanted region in deep layers, passing through its

cell body. For each skeleton vertex, we computed the radial distance to the pia-to-white-matter line at the same depth. To

avoid any outliers, the radial extent of the neuron was defined to be the 97th percentile distance across all vertices.

7. Median distance to soma across all synaptic inputs.

8. Median synapse size of synaptic inputs onto the soma.

9. Median synapse size of synaptic inputs onto the dendrites.

10. Dynamic range of synapse size of dendrite synaptic inputs. This was measured as the difference between 95th and 5th

percentile synapse sizes.

11. Shallowest extent of synapses, based on the 5th percentile of synapse depths.

12. Deepest extent of synapses, based on the 95th percentile of synapse depths.

13. Vertical extent of synapses, based on the difference between 95th and 5th percentile of synapse depths.

14. Median linear density of synapses. This was measured by computing the net path length and number of synapses along

50 depth bins from layer 1 to white matter and computing the median. A linear density was found by dividing synapse

count by path length per bin, and the median was found across all bins with nonzero path length.

15. Median radius across dendritic skeleton vertices. To avoid the region immediately around the soma from having a

potential outlier effect, we only considered skeleton vertices at least 30 µm from the soma.
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Three additional sets of features used component decompositions. To more fully characterize the absolute depth distribution

of synaptic inputs, for each excitatory neuron, we computed the number of synapses in each of 50 depth bins from the top of

layer 1 to surface of white matter (bin width ≈ 20 µm). We z-scored synapse counts for each cell and computed the top six

components using SparsePCA. The loadings for each of these components based on the net synapse distribution were used as

features.

To characterize the distribution of synaptic inputs relative to the cell body instead of cortical space, we computed the number

of synapses in 13 soma-adjusted depth bins starting 100 µm above and below the soma. As before, synapse counts were z-

scored and we computed the top five components using SparsePCA. The loadings for each of these components were used as

additional features.

To characterize the relationship with branching to distance, we measured the number of distinct branches as a function of

distance from the soma at ten distances, every 30 µm starting at 30 µm from the soma and continuing to 300 µm . For

robustness relative to precise branch point locations, the number of branches were computed by finding the number of distinct

connected components of the skeleton found in the subgraph formed by the collection of vertices between each distance value

and 10 µm toward the soma. We computed the top three singular value components of the matrix based on branch count vs

distance for all excitatory neurons, and the loadings were used as features.

All features were computed after a rigid rotation of 5 degrees to flatten the pial surface and translation to zero the pial surface

on the y axis. Features based on apical classification were not explicitly used to avoid ambiguities based on both biology and

classification.

Using this collection of features, we clustered excitatory neurons by running phenograph75 500 times with 95% of cells

included each time. Phenograph finds a nearest neighborhood graph based on proximity in the feature space and clusters by

running the Leiden algorithm for community detection on the graph. Here, we used a graph based on 10 nearest neighbors

and clustered with a resolution parameter of 1.3. These values were chosen to consistently separate layer 5 ET, IT, and NP

cells from one another, a well established biological distinction. A co-clustering matrix was assembled with each element

corresponding to the number of times two cells were placed in the same cluster. To compute the final consensus clusters, we

performed agglomerative clustering with complete linkage based on the co-clustering matrix, with the target number of clusters

set by a minimum Davies-Bouldin score and a maximum Silhouette score. Clusters were then named based on the most frequent

manually defined cell type within the cluster and reordered based on median soma depth. The labeling of cells as layer 2 and

layer 3 was formed on the basis of soma depth and a morphology with a relatively flat morphology often with no distinct apical

trunk, although often apical-tuft-like branches emitting directly from the cell body. The L2c subclass was ambiguously defined

between the two categories, with cells that had a distinct apical trunk, but with connectivity and other properties seemed more

similar to layer 2 subclasses.

To compute the importance of each feature for each M-type, for each M-type we trained a random forest classifier to predict

whether or not a cell belonged to it using scikit-learn131. Because the classes were strongly imbalanced, we used SMOTE

resampling to over-sample datapoints from the smaller class. We used the Mean Decrease in Impurity metric, which quantifies

how often a given feature was used in the decision tree ensemble.
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F A foundation for the multimodal study of cell types

Inhibitory connectivity and selectivity. To measure intracolumnar inhibitory connectivity, we first restricted synaptic out-

puts to the axon of each inhibitory neuron as we have not observed any correctly classified synaptic outputs on dendritic arbors

in this dataset. One cell with fewer than 30 synaptic outputs was omitted due to size. All remaining synaptic outputs across

all interneurons were then filtered to include only those that target cells within the column, unless otherwise specified. Each

output synapse was also labeled with the target skeleton vertex, dendritic compartment, and M-type of the target neuron based

on the compartment definitions above.

For measuring the synaptic output budget across cell types across the dataset (i.e. inside and outside the column), we used

a hierarchical classifier based on a collection of perisomatic features that was trained on the data-driven clustering from the

column sample62. Only synapses onto object segmentation associated with a single nucleus and a cell type classification were

used. Although most of these additional targets are not proofread, estimates based on proofread neurons suggest that 99% of

non-proofread input synapses are accurate62.

To measure inhibitory selectivity within the column, we compared the M-type distribution of its synaptic outputs to the M-

type distribution of synaptic inputs according to a null model accounting for cell abundance, synapse abundance, and depth.

We first generated a baseline distribution of all 4,504,935 somatic or dendritic synaptic inputs to all column cells, where each

synapse was associated with a precise depth, target compartment, and an M-type. We discretized synaptic inputs into 50

depth bins spanning pia to white matter, each covering ≈ 20µm, and each of the five compartments: soma, proximal dendrite,

basal dendrite, apical dendrite, or inhibitory neuron. For each interneuron, we similarly discretized its synaptic output into

the same bins, compartments, and M-types. To generate a randomized output distribution preserving both observed depth

and compartment distributions, we randomly picked synapses from the baseline distribution with the observed depth bins

and compartment targets but without regard to M-type. We computed 10,000 randomized distributions per interneuron. To

get a preference index, we compared the observed number of synapses onto a given M-type to the median of the number of

synapses from the shuffle distribution. To get a significance for the preference index for a given M-type, we directly computed

the two-sided p-value of the observed number of synapses relative to the shuffle distribution for that M-type. P-values were

corrected for multiple comparisons using the Holm-Sidak method within each interneuron for those M-types with non-zero

potential connectivity. Selectivity was only measured within the column because we did not generate compartment labels for

unproofread dendrites outside of the column.

On connectivity cards, we also show a similar preference index based on compartment rather than M-type. In that case, the

shuffled distribution preserves observed depth and M-type output distributions, but not compartments.

Software and data availability. Data for this paper was analyzed at materialization version 795. Synapse tables for col-

umn cells, neuronal skeletons, and tables for manual and automatic cell types and connectivity groups are available at

https://doi.org/10.5281/zenodo.7641780. Analysis code will be made publicly available on an Allen Institute Github repos-

itory (forthcoming). EM imagery and an older version of segmentation is publicly available via https://www.microns-

explorer.org/cortical-mm3 and will be updated closer to publication. All analysis was performed in Python 3.9 using cus-

tom code, making extensive use of CAVEclient (https://github.com/seung-lab/CAVEclient) and CloudVolume132 to interact
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with data infrastructure, MeshParty133 to analyze skeletons, and libraries Matplotlib134, Numpy135, Pandas136, Scikit-learn131,

Scipy137, stats-models138 and VTK139 for general computation, machine learning and data visualization.
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Supplemental Information

Extended Data Figure 1

Extended Data Figure 1. Compartment classification pipeline. a) Description of the compartment classification pipeline. b–d) Pipeline
applied to an example layer 3 pyramidal cell. b) Apical probability per vertex. c) Branch-level apical classification. d) Final organization
into four dendritic compartments based on apical classification and distance rules. e) Quantification of quality of apical branch classi-
fication based on leave-one-out classification with a training set based on 50 randomly selected cells and 23 cells chosen to improve
difficult classifications. Each dot is a branch of a test pyramidal cell, colored red if apical and blue if not apical. X-axis is the net log-odds
of the branch being apical (capped at ±200) and the y-axis is the relative apical quality based on a soft-max operation (see Methods for
details). Branches in the upper right quadrant were classified as apical. The method was able to correctly classify at least one apical
branch for all cells, and "false positives" were often associated with borderline cases. f) Distribution of synaptic inputs onto excitatory
neurons with depth by dendritic compartment. Values are based on counting synapses in bins at a given depth, but at any location
laterally.
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F A foundation for the multimodal study of cell types

Extended Data Figure 2

Extended Data Figure 2. Closest distances between synapses in multisynaptic connectincs. a) Cumulative distributions of the closest
synapse onto the same target along the axonal arbor per manually labeled inhibitory neuron subclass. Excitatory (left) and inhibitory
(right) targets shown separately. Vertical gray line indicates the value used for "clumpiness" in the main text. b) Same as a, but for the
cluster-based labels and with log scale to highlight shorter distances. c) The "clumpiness" metric using different distance thresholds.
The qualitative relationships are extremely robust to distance thresholds.
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Extended Data Figure 3

Extended Data Figure 3. Inhibitory neuron properties. a) Projections of all analyzed interneurons (n=163) projected on a 3-d space
based on linear discriminant analysis (LDA) using connectivity features (shown in c). Fully colored dots indicate manually classified
cells used as training data for LDA, while dots with grey centers were labeled based on this classification. b) Matrix showing relationship
between anatomical subclasses and manual classifications. c) Individual connectivity features, organized by subclass. Colored dots
are individual cells, black dots indicate median with error bars showing a bootstrapped 95% confidence interval. d–g) Morphology of all
PeriTCs (d), DistTCs (e), SparTCs (f), and InhTCs (g). Scale bars are 500 µm . Dark and thick lines are dendrite, thinner and lighter
are axon. Cells are ordered by soma depth.
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F A foundation for the multimodal study of cell types

Extended Data Figure 4

Extended Data Figure 4. Diversity of compartment targeting within perisomatic targeting cells and distal dendrite targeting cells. a)
Among PeriTCs, the rank-ordered fraction of output synapses targeting somata as a fraction of synapses targeting either somata or
proximal dendrites (but not distal or apical dendrites). Boxes indicate the top and bottom five cells, shown below. b) The five PeriTC
cells with the lowest soma fraction, ordered as in a. c) The five PeriTC cells with the highest soma fraction, ordered as in a. d) Among
DistTCs, the rank-ordered fraction of output synapses targeting apical synapses among only those synapses targeting apical or distal
dendrites. e) The five DistTC cells with the lowest apical fraction, ordered as in a. f) The five DistTC cells with the highest apical
fraction, ordered as in a.
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Extended Data Figure 5

Extended Data Figure 5. Compartment targeting of Martinotti cells across layers. a) DistTC cells have differing fractions of synaptic
outputs in layer 1. For the purposes of this figure, we focus on cells with more than 20% of their outputs in layer 1 (gray region,
filled circles). b) For each DistTC with 20%+ layer 1 output, we measured the fraction of outputs onto apical dendrites among target
excitatory cells in the column as a function of synapse depth. The y-axis reflects the apical fraction among synapses in layer 1, while
the x-axis reflects the apical fraction among synapses in all deeper layers. For all such cells, the majority of layer 1 targets were onto
apical dendrites, while in 18/20 cells the output in other layers was majority of targets were onto basal dendrites. c). Target distributions
of individual cells. For each DistTC with 20%+ layer 1 output (morphology at left), we computed the histogram of synapses targeting
apical vs basal compartments on excitatory neurons. Note that for most cells with cell bodies in layer 4 and below, there is both a layer
1 arborization that primarily targets apical dendrites and a deeper arborization that largely targets basal dendrites.
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F A foundation for the multimodal study of cell types

Extended Data Figure 6

Extended Data Figure 6. Inhibition of inhibition. a) Connectivity dotplot between inhibitory neurons, organized by inhibitory subclasses,
organized by soma depth. For each panel, the scatterplot reflects the connectivity from cells in the presynaptic subclass (x-axis) to cells
in the postsynaptic subclass (y-axis). Each dot is a single connection, with larger dots having more synapses. The location of each dot
corresponds to the depth of the pre- and post-synaptic cell bodies. Stem plots on top and side indicate the net synaptic inputs and net
synaptic outputs of each cell in each subclass within the column sample. b) Same as a, but for InhTCPeri and InhTCDist onto PeriTCs
separately.
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Extended Data Figure 7

Extended Data Figure 7. A laminar-specific circuit for InhTCdist cells. a) Morphology of all InhTC that preferentially target DistTCs.
Cells are sorted by soma depth. b) Connectivity dotplot for synapses from InhTCdist onto DistTCs. In the grid, each dot represents a
connection from one InhTC onto one DistTC, with the number of synapses indicated by dot size. The location of the dot corresponds to
the soma depth of the pre- and post-synaptic cells. Stem plots on top and side indicate the net synaptic inputs and net synaptic outputs
of each InhTCdist and DistTC. Note that DistTCs in layer 2/3 receive little input from InhTCs, compared to those in layer 4 and upper
layer 5. c) Connectivity scatterplot for synapses from DistTCs onto InhTCdist, as in b. Note that the DistTCs in layer 2/3 also form few
synaptic outputs onto InhTCdist. d) Distribution across M-types of synaptic outputs across low-connection DistTCs and high-connection
DistTCs. e) Connectivity cartoon suggested by this data.
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F A foundation for the multimodal study of cell types

Extended Data Figure 8

Extended Data Figure 8. Additional InhTC targeting properties. a) Net synapse count onto subtypes of InhTCs. Red indicates
DistTCs, blue indicates PeriTCs, and the D and P indicate InhTCdist and InhTCperi respectively. Colored dots are individual cells, black
dots are mean, and error bars are bootstrapped 95% confidence interval for the mean. b) Cumulative distribution of synapse sizes
of InhTC cells onto different target inhibitory subclasses. Left: InhTCdist, Right: InhTCperi. c) Distribution of synapse location from
InhTC subtypes onto preferred targets. Lines indicate observed distribution of synapse distances from soma for the preferred targets
of InhTCdist and peri. Vertical dashed lines indicate median distances. Filled distributions indicate the synapse distance distribution of
all synaptic inputs for the two target Inhibitory subclasses. Synapse locations onto target cells are nearly identical in both average and
distribution between the two InhTC subclasses.
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Extended Data Figure 9

Extended Data Figure 9. Dendritic features — properties. Features used for classifying M-types, in addition to data-driven components
shown in Extended Data Figure 10. See Methods for full definitions of each feature. Colored dots are individual cells, black dots indicate
median, and error bars are a bootstrapped 95% confidence interval of the median. a) Median dendritic branch tip length. b) Median
tip tortuosity. c) Median input synapse distance from soma. d) Number of dendritic synaptic inputs (not including soma). e) Number
of synaptic inputs on soma. f) Net path length of the dendritic arbor. g) Radial extent of dendritic arbor, from slanted streamline. h)
Median size of input synapse onto soma. i) Median size of input synapse onto dendrites. j) Median linear input synapse density. k)
Range of synapse sizes, measured as difference between 95th to 5th percentile. l) Shallowest extent of synapse distribution, measured
as the 5th percentile of input synapse depth. m) Deepest extent of synapse distribution, measured as the 95th percentile of synapse
depth. n) Median dendrite radius. o) Height of synapse distribution, measured as the difference between 95th and 5th percentile of
synapse depth.
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F A foundation for the multimodal study of cell types

Extended Data Figure 10

Extended Data Figure 10. Dendritic features — compartment loadings. Several of the M-type features were based on data-driven
components in addition to the basic features shown in Extended Data Figure 9. a) SparsePCA components of synapse count across
50 depth bins (approximately 20µm per bin) across all excitatory neurons. b) Loadings of each resulting M-type cluster onto the
components in a. Each colored dot is a cell, black dots are median with error bars indicating bootstrapped confidence interval of the
median. c) Singular value decomposition (SVD) components of the number of distinct branches as a function of distance from the
soma in 30 µm increments. d) Loadings of each resulting M-type cluster onto the branching SVD components in c. e) SparsePCA
components of synapse count as a function of depth relative to the soma location, measured in 13 uniform bins from 100 µm below
the soma to 100 µm above the soma. f) Loadings of each resulting M-type cluster onto the soma-centric synapse components in e.
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Extended Data Figure 11

Extended Data Figure 11. Dendritic properties as a function of depth. For each plot, each dot is an excitatory neuron colored by
M-type. The depth of each cell is along the y-axis, while the value of the property is along the x-axis. Approximate layer boundaries
are shown with dashed lines. a) Individual cell properties. b) Synapse depth components. c) Branch distribution components. d)
Soma-centered synapse depth components.
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F A foundation for the multimodal study of cell types

Extended Data Figure 12

Extended Data Figure 12. See next page
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Extended Data Figure 12. (Previous page.) Morphology of all excitatory neurons, sorted by soma depth and colored by anatomical
class. Scale bar is 500 µm .
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F A foundation for the multimodal study of cell types

Extended Data Figure 13

Extended Data Figure 13. M-type clustering and manual labels. a) Matrix of manual labels (x-axis) vs M-types. b) UMAP represen-
tation of features, colored by manually labeled cell types. c) Co-clustering matrix of excitatory cells, indicating ther number of times
a pair of cells was clustered together by iterations of phenograph. Cells are ordered by subsequent agglomerative clustering on this
matrix. d) Feature importance for each M-type, based on training binary random forest classifiers to predict each M-type separately
and computing the mean decrease in impurity for each feature.
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Extended Data Figure 14

Extended Data Figure 14. Somatic versus dendritic synapses across all excitatory M-types. a) Median number of dendritic and
somatic synapses for excitatory neurons of all M-types. Pearson r=0.96, p=5 × 10−10. b) Number of dendritic and somatic input
synapses across all excitatory neurons, colored by M-type. Pearson r=0.86, p<1 × 10−10. Black line indicates linear fit with 95%
confidence intervals from bootstrapping. c) Individual ordinary least square fits (with 95% confidence interval) for each M-type of z-
scored dendritic synapses vs z-scored somatic synapses. With the exception of L5NP cells and deep layer 6b L6wm cells, all M-types
have a positive relationship between predominantly-inhibitory somatic synapses and mostly excitatory dendritic synapses. d) Number
of dendritic vs somatic input synapses for each M-type separately, linear fit line and 95% confidence interval.
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F A foundation for the multimodal study of cell types

Extended Data Figure 15

Extended Data Figure 15. Caption on next page.
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Extended Data Figure 15. (Previous page.) Additional characterization of motif groups. a–r) Morphology of all cells, organized by
motif group. Within each group, cells are ordered by soma depth. Colors indicate M-type, darker lines indicate dendrites. s) The arbors
of cells extend well beyond the columnar data. The scatterplot depicts a top-down view of soma locations of all synaptic targets of Cell
ID 260622. Black dots are cells within the column, red dots are cells outside the column sample; dot size is proportional to number of
synapses. t) The number of synapses from each interneuron onto target neurons within the column (black) and anywhere the dataset
(red). Interneurons were ordered by within-column synapse count. The mean cell had 5.49 times more synapses across the dataset
than onto column targets alone (black dashed line). Only targets passing basic quality control criteria were included. Note that while
cells outside the sampled column are not necessarily proofread, synapses onto unproofread dendrites are nearly always correct (see
Methods). u) Scatterplot of output synapse budget values within-column and dataset-wide (see v). The blue line indicates equality.
The Pearson correlation between within-column measurements with the dataset-wide measurements was R=0.9, not including trivial
zeros (see Methods). v) Output synapse budget for for each interneurons onto dataset-wide target M-types, using predictions from
perisomatic features from Elabbady et al.62. Note that the L6wm M-type was not included in predictions, and is thus trivially zero for all
interneurons.
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F A foundation for the multimodal study of cell types

Extended Data Figure 16

Extended Data Figure 16. Additional connectivity statistics within motif groups. Connection density (left) measures the fraction of cells
for a given M-type within the column targeted with at least 1 synapse. Synapses per connection (right) measures the average number
of synapses in each observed connection. Single cell values are represented by dots, median values are shown with bars.
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Extended Data Figure 17

Extended Data Figure 17. See caption on next page.
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F A foundation for the multimodal study of cell types

Extended Data Figure 17. (Previous page.) Selectivity and null models for inhibitory connectivity. a) Number of synapses per M-
type, compartment, and depth bin. These values were used as a the baseline against which to compare synaptic output distributions
for each inhibitory neuron. b) Expected value of each presynaptic inhibitory neuron according to an increasingly complex set of null
models. Each row represents the fraction of synaptic outputs from a given inhibitory neuron (ordered as in Figure 5e), distributed
across excitatory M-types. From the left: 1) Synaptic outputs were proportional to the number of cells in a given M-type, regardless of
location in space. This approach accounts for the differing cell frequency for each M-type. 2) Synaptic outputs were proportional to the
net number of input synapses for a given M-type, regardless of location in space. This approach accounts for the diversity in synaptic
inputs for each M-type. 3) Synaptic outputs were distributed across compartments for each inhibitory cell as observed, and distributed
across M-types for each compartment separately. This approach accounts for the observed differences in compartment targeting for
different interneurons. 4) Synaptic outputs were distributed across M-types within each of 50 depth bins, matching the observed depth
distribution of synaptic outputs for each inhibitory neuron. This approach accounts for the spatial distribution of synapses, but not
compartment targeting. 5) Synaptic outputs were distributed across M-types within both depth bins and compartments, matching the
observed distribution of both. This approach accounts for both the spatial distribution of synapses and compartment targeting, and is
the most complete model considered here. At the far right, the observed distribution on the same scale, repeating the data in Figure
5. c) Selectivity index (SI) for all cells, as described in the main text. Purple values have the observed number of output synapses
significantly higher than a null model with matched compartment and depth targeting, while green are significantly less. Non-significant
SI values are treated as 1. d) Difference between the observed distribution and the null model distribution for each cell as measured
by the Kullback-Leibler divergence (from observed distribution to null distribution), by inhibitory subclass. Each colored dot is a cell,
black dots are median with error bars indicating a 95% confidence interval based on a bootstrap. e) Comparison between the most
complete null model across inhibitory subclasses. The PeriTCs have the lowest KL divergence of all types, indicating that the null model
best predicts their connectivity. Note also that the individual cells exhibit a range of specificity relative to null models. f) Similarity of
M-type synapse distributions in space, using the Bhattacharyya distance between the depth distribution of synaptic inputs onto soma
and proximal dendrites (left) and distal and apical dendrite (right). Values closer to 1 indicate more similar distributions, values closer
to 0 indicate more distinct distributions. g) All Bhattacharyya distance comparisons in e, with colored dots indicating pairs of distinct
M-types, black dots indicating the median, and error bars showing a bootstrapped 95% confidence interval. Across all pairs, synaptic
inputs onto the perisomatic and somatic compartments are more spatially segregated across different M-types than synaptic inputs
onto distal and apical dendrites (p = 3.0 × 10−19, Mann-Whitney U test).
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Extended Data Cell Atlas

Extended Data Cell Atlas 1. Atlas of morphology and connectivity of all inhibitory neurons, organized by motif group. Cards depicting
the connectivity and morphology of all inhibitory neurons in the column data, ordered first by motif group and then by soma depth. First
row, left: Morphology of the cell, dendrites in red and axon in blue. Title reflects the subclass, cell id, and cell neuroglancer root id.
First row, center: Violin plot showing the density of input synapses (red) and output synapses (blue) as a function of depth. Text labels
give the total number of pre- and postsynaptic sites in the reconstruction. First row, right: Scatterplot depicting all synaptic outputs of
the cell onto identified neurons in the dataset. Each dot is a synaptic output, the x-axis location reflects the depth of the target cell, and
the y-axis reflects the depth of the synapse itself. Color indicates cell status: purple are excitatory neurons in the column, green are
inhibitory neurons in the column, and gray are neurons outside the column. Second row, left two panels: Scatterplots showing synaptic
outputs onto column excitatory cells (left, purple dots) and inhibitory cells (right, green dots), with the x-axis indicating the distance
from soma of the synapse on the target neuron and y-axis indicated the depth of the synapse. Color indicates target compartment,
with dots from darkest to lightest indicating soma, proximal dendrite, distal dendrite, and apical dendrite. Below, histograms of target
distances from root (colored line) with cumulative distribution function indicated in gray. Second row, center: Compartment distribution
of synaptic targets. Below, histogram of number of synapses by compartment. Above, SI for each compartment, accounting for the
depth distribution of synapses and cell type targeting of the inhibitory neuron. Orange indicates significantly more synapses than a
random shuffle, blue indicates significantly fewer, and gray indicates no significant difference. Error bar indicates 95% confidence
interval. Second row, right panels: Cell type distribution of synaptic outputs. Left panel shows number of synapses per cell type,
with colors indicating compartments as in the center panel. Right side, SI per target cell type, accounting for synapse depth and
compartment targeting of the inhibitory neuron. Dot colors and error bars as in center panel.
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