
Strain tracking with uncertainty quantification
Younhun Kim1,2,3,7, Colin J. Worby3, Sawal Acharya2, Lucas R. van Dijk3,4, Daniel Alfonsetti5,

Zackary Gromko5, Philippe Azimzadeh6, Karen Dodson6, Georg Gerber2,7,8, Scott Hultgren6, Ashlee
M. Earl3, Bonnie Berger1,3,5,8,�, and Travis E. Gibson2,3,5,7,�

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA,USA
2Department of Pathology, Brigham and Women’s Hospital, Boston MA, USA

3Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
4Delft Bioinformatics Lab, Delft University of Technology, Delft, 2628 XE, The Netherlands

5Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
6Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington

University School of Medicine, St. Louis, MO, USA
7Harvard Medical School, Boston, MA USA

8Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
�bab@mit.edu or tegibson@bwh.harvard.edu

July 22, 2024

Abstract

The ability to detect and quantify microbiota over time has a plethora of clinical,
basic science, and public health applications. One of the primary means of tracking mi-
crobiota is through sequencing technologies. When the microorganism of interest is well
characterized or known a priori, targeted sequencing is often used. In many applica-
tions, however, untargeted bulk (shotgun) sequencing is more appropriate; for instance,
the tracking of infection transmission events and nucleotide variants across multiple ge-
nomic loci, or studying the role of multiple genes in a particular phenotype. Given these
applications, and the observation that pathogens (e.g. Clostridioides difficile, Escherichia
coli, Salmonella enterica) and other taxa of interest can reside at low relative abundance
in the gastrointestinal tract, there is a critical need for algorithms that accurately track
low-abundance taxa with strain level resolution. Here we present a sequence quality- and
time-aware model, ChronoStrain, that introduces uncertainty quantification to gauge low-
abundance species and significantly outperforms the current state-of-the-art on both real
and synthetic data. ChronoStrain leverages sequences’ quality scores and the samples’
temporal information to produce a probability distribution over abundance trajectories for
each strain tracked in the model. We demonstrate Chronostrain’s improved performance
in capturing post-antibiotic Escherichia coli strain blooms among women with recurrent
urinary tract infections (UTIs) from the UTI Microbiome (UMB) Project. Other strain
tracking models on the same data either show inconsistent temporal colonization or can
only track consistently using very coarse groupings. In contrast, our probabilistic outputs
can reveal the relationship between low-confidence strains present in the sample that can-
not be reliably assigned a single reference label (either due to poor coverage or novelty)
while simultaneously calling high-confidence strains that can be unambiguously assigned
a label. We also analyze samples from the Early Life Microbiota Colonisation (ELMC)
Study demonstrating the algorithm’s ability to correctly identify Enterococcus faecalis
strains using paired sample isolates as validation.
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Introduction
The human microbiome is involved in many aspects of human health and disease and exhibits
a great level of diversity within and across host environments [1]. One of the most basic
forms of analysis performed on any sample in a microbiome study is determining what bacteria
are present and at what abundance. Although some applications call for coarser-grained taxa
identification at the Operational Taxonomic Unit (OTU) or species level [2, 3], newer stud-
ies increasingly focus on more fine-grained resolution at the strain, or even Single Nucleotide
Variant (SNV) level [4], including: (1) tracking Clostridioides difficile (C. diff) infection trans-
mission events in Intensive Care Unit (ICU) patients through Single Nucleotide Polymorphism
(SNP) calls [5]; (2) studying the role that individual genes play in infant gut microbial com-
munity development following antibiotic treatments [6]; and (3) detailed phylogroup analysis
of Escherichia coli (E. coli) strains identified in longitudinal fecal samples from recurrent Uri-
nary Tract Infection (rUTI) patients [7]. Since these studies try to draw conclusions about
strain fitness, stability and/or competition, they rely on accurate quantifications of strains in
time-series.

The process of converting bulk shotgun sequencing reads to taxa abundances usually in-
volves some aspect of mapping or aligning reads to reference sequences [8–13]. An alternative
is to perform metagenomic assembly [14], though for low-abundance taxa including most gas-
trointestinal pathogens of interest, this is unlikely to generate scaffolds of sufficient quality
to produce reliable strain-level insights. Unfortunately, state-of-the-art methods quantifying
strain-level abundances have a multitude of shortcomings when used to track low-abundance
taxa, and these shortcomings become more evident when used to study longitudinal samples.

Only a select few methods report a statistic using the raw sample that can be directly
interpreted as a strain’s predicted abundance. Instead, many approaches typically report pile-
up statistics for SNPs across reference genomes or gene-specific loci [12, 15]. This then
still leaves a large gap between pile-up information and the interpretation of results as strain
dynamics in a longitudinal study. There are several methods that are specifically designed
to de-convolve corresponding allele counts from pile-ups into abundances [9, 16]. However,
per-locus pile-ups do not encode quality scores and no longer contain any information about
SNV co-occurrences.

No existing method simultaneously leverages the temporal information in a longitudinal
study design with the corresponding raw sequencing data. Indeed, base quality score informa-
tion is often only used for pre-filtering low quality reads in bioinformatics pipelines [10, 17,
18]. Furthermore, no method to date utilizes the fact that multiple samples may have come
from the same donor at different timepoints. Both sources of information can help overcome
ambiguity when mapping or aligning reads. Notably, there are only a few methods that provide
uncertainty quantification (e.g. confidence/credibility intervals) for abundance estimates. This
is typically accomplished through Bayesian modeling, but previous methods take only a single
sample as input. Meanwhile, recent works in other domains of computational biology have
successfully demonstrated that such techniques can help overcome data sparsity and improve
accuracy [19]. Furthermore, previous Bayesian methods that attempt to model read sequences
to be more sensitive to SNVs are computationally burdensome [17].

To address these unmet needs, we developed ChronoStrain: an uncertainty-aware, time-
series strain abundance estimation algorithm. It is, to our knowledge, the first fully Bayesian
algorithm that fits all the above specifications. Chronostrain takes as input raw reads with
associated quality score information and sample labels (host and time of collection) to output
mixtures of strain calls that quantifies uncertainty in the strain abundances over time. Fur-
thermore, Chronostrain works with any user defined set of marker genes for strain calls. To
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be precise, we define a strain as a cluster of subsequences from reference genomes, with a
representative reference genome used to name it [15, 17, 20]. The threshold used to define
these clusters is a user defined variable. In this work we use a range of thresholds from 0.998
similarity to just a single-nucleotide variant. We will use the words “strain cluster” and “strain”
interchangeably throughout the rest of this text.

We demonstrate the superior performance of our algorithm on semi-synthetic data as well
as data from two human studies. The first human study is the rUTI microbiome (UMB) project,
a year long longitudinal study of women with a history of rUTI with a matched healthy cohort
[7]. With the UMB study we focus on the increased utility and interpertability one has with
Chronostrain compared to other state of the art methods when tracking strains over time. The
second set of samples we apply Chronostrain to come from (what we are calling) the United
Kingdom - Early Life Microbiota Colonisation (ELMC) study, which collected and sequenced
between one and six fecal samples per subject (mean of 2.5) over the first few months of
a child’s life (PRJEB32631, PRJEB22252) [21]. With the ELMC data, we demonstrate an
improved lower limit of detection for Chronostrain for E. faecalis strains in fecal samples, using
isolates from the original ELMC study to aid in validating our method.

Results

Overview of ChronoStrain
ChronoStrain, outlined in Figure 1a, consists of three main components: (1) a custom database
that is constructed from user defined seed gene sequences, (2) a bioinformatics step for pre-
filtering and processing raw reads, and finally (3) the core Bayesian inference algorithm. The
software implementing ChronoStrain is written in Python and is available on Github (https:
//github.com/gibsonlab/chronostrain). ChronoStrain’s input is provided in three pieces:
the raw fastq files from sequencing, a metadata file containing sample host and temporal
information, and a database constructed from the FASTA-formatted seeds.

Each strain in our model is specified via a collection of marker sequences, where a marker
sequence is a subsequence of the genome that shares high sequence identity with a user-defined
list of seeds. In turn, a seed is any sequence that the user specifies as key for distinguishing
strains. We provide two example seed collections: one for E. coli and another for E. faecalis
(Methods - Database Construction). These sequence seeds need not be genes core to the
species, nor are expected to be single-copy, and thus may be chosen by the user depending on
what they wish to quantify. One strength of our database’s design is that the marker selection
can be guided by prior knowledge, which enables hypothesis-driven characterizations of strains.
For example, one can use strain-specific genes that encode antibiotic resistance, fimbriae or
toxin production which characterize pathogenicity; previous “marker” definitions often exclude
these useful, interpretable regions [12].

A database of reference genome-marker combinations is constructed from a catalog of
chromosomal assemblies (e.g. downloaded from NCBI’s assembly database) and high-identity
hits to marker seeds via BLAST (Figure 1c); this functionality is provided by our software.
ChronoStrain then clusters the references by a user defined level of marker sequence similarity,
arbitrarily close to 100%. These two functionalities provide the ability to specifically target
defined sequences/genes of interest, as well as the ability to differentiate reference sequences
by whatever level of nucleotide identity the user wishes to use to specify “different” strains
[22]. Finally, before passing the reads onto the core inference algorithm, our software filters
out reads that do not align to our custom database beyond a user defined identity (default:
97.5%), which helps protect against contamination; see Figure 1c and Methods - Read Filtering
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for more details.
Our Bayesian model, for a single time series, is shown in Figure 1b. Strains are modeled

using a stochastic process governing the latent taxa abundance vector Xtk
at time tk (which

is indexed by each strain s as Xtk,s), together with a model inclusion variable Z (which is also
indexed as Zs). Then, at each time point tk, the i-th read is modeled as a nucleotide sequence
ζtk,i with its corresponding quality score vector qtk,i. The sequence ζtk,i is modeled through
the variables Ftk,i (the source nucleotide sequence fragment of the read), ℓtk,i (the random
length for a sliding window along the markers that determines which fragment is measured)
and Atk,i (the fragment-to-read substitution/indel error profile). A complete description of
the model can be found in Methods - Bayesian Model.

Our model is closely related to a time-series topic model [23] with an extra component
that models measurement noise. The connection is best drawn using an analogy: strains are
topics; each abundance profile is a strain/topic mixture that produces a bag of fragments
(words), whereby each fragment/word is measured with some quantifiable error per nucleotide
(words are observed with mistakes). Both the time-series topic model and our model account
for dependencies across time using a latent Gaussian process, transformed into mixture weight
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Figure 1: Overview of ChronoStrain. (a) A high-level schematic of the ChronoStrain
pipeline. The pipeline constructs a database from marker sequence seeds, and uses it to
filter reads to be passed as input to a Bayesian inference algorithm. As output, it returns a
probability distribution over trajectories. (b) A graphical representation of the probabilistic
model (Methods - Bayesian Model) used by ChronoStrain. White circles are latent random
variables, gray circles are observations, squares are hyper-parameters (not all model param-
eters shown). (c) The “bioinformatics” step shown in panel (a) first generates a database
representation of strains’ marker sequences; a thorough search is performed to account for
all variants or similarities. A marker-similarity clustering is performed to address database
redundancy. Only reads with high alignment identity to this database are kept.
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vectors of topics/strains via a softmax function.
To achieve scalability for our Bayesian inference (a limitation in some previous works that

estimate Bayesian posteriors, see Supplement §A.4), we implemented Automatic Differentia-
tion Variational Inference (ADVI [24]) as opposed to slower sampling algorithms (especially for
large models such as ours) like Markov chain Monte Carlo. ADVI is a gradient-based optimiza-
tion method that is easily implementable on a graphics processing unit (GPU). For our model,
inference was further accelerated by compressing a component of the likelihood function into
a more efficiently computable one (Supplement §B.1).

ChronoStrain outputs a posterior distribution over abundance trajectories across database
strains. This is in contrast to algorithms which output point estimators (for instance, the
most likely trajectory calculated via Expectation-Maximization). Specifically, in the context
of longitudinal studies, ChronoStrain offers two big advantages in terms of interpretability.
First, the user no longer has to stitch together outputs of an algorithm that has been run on
each timepoint’s sample independently. ChronoStrain is capable of jointly modeling an entire
longitudinal dataset from a single host, and thus produces abundance estimates which are more
consistent throughout time than existing methods. Second, our posterior distributions offer
visualizations of uncertainty that illustrate when labels are possibly ambiguous (suggesting that
the sample contains a strain with a novel combination of SNVs) or if coverage is too small
when the variationally-fit variance is large.

ChronoStrain outperforms other methods in semi-synthetic ex-
periments
For benchmarking, we created a semi-synthetic dataset that combines in silico (simulated)
reads with real experimental data [15]. The in silico reads were created as follows: six Phy-
logroup A strains were selected at random, then ∼0.2% of the bases from those strains were
randomly changed, so that ground truth strains are not identical to strains in the reference
database. Then, noisy reads were simulated from those in silico mutant reference strains. The
simulated reads were then combined with the first six timepoint samples from UMB18 which
lack detectable phylogroup A strains1; these samples only contain phylogroup B2 and D E. coli
strains. With this setup, we have a ground truth subset of six strains from phylogroup A that
are not identical to strains in the database and where the algorithms must also contend with
other real experimental reads from a complex microbial background that includes distantly
related E. coli. The above process of in silico strain selection was repeated 10 different times;
for each set of strains we simulated two distinct sets of random reads per read depth, resulting
in 10 × 2 × 5 = 100 different read sets for benchmarking.

For comparison, we included StrainGST [15], StrainEst [20] and the mGEMS pipeline
[25]. For a discussion on methods that did not make it into the benchmark, refer to Supple-
ment §A. StrainGST identifies clusters by performing fast comparisons between read k-mer
counts and k-mer counts from a database of strain genome assemblies. StrainEst deconvolves
allele frequencies (generated from pile-ups against a small collection of reference genomes)
into abundance estimates by setting up a large linear regression problem. mGEMS first per-
forms pseudo-alignments using Themisto [26], then performs point estimation for a Bayesian
model of Themisto’s outputs using mSWEEP [27], which outputs a modal posterior estimate
assuming a Dirichlet prior on abundances. To ensure all metrics were on equal footing, each
database was tuned so that the number of phylogroup A strain clusters were roughly equal.

1Lack of phylogroup A was determined using StrainGST. Even if phylogroup A were actually present but
rare, any potential gaps in performance between the methods are expected to close as we add more synthetic
reads.
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Figure 2: Chronostrain outperforms other state of the art methods with semi-
synthetic data. All comparisons to Chronostrain in (b,c,d) are statistically significant at
level 0.05, after two-sided, paired Wilcoxon tests with Benjamini-Hochberg (BH) correction,
unless otherwise noted with an n.s. (a) Semisynthetic Data construction: Six phylogroup A
genomes were selected from our genome database. Those genomes were then mutated, from
which reads were generated with synthetic read counts 2500, 5000, 10k, 20k, 40k (0.02%,
0.05%, 0.09%, 0.18%, 0.36% of total reads, combined with UMB18 samples). The time-
series trajectory is fixed across the 20 experimental replicates. We evaluate RMSE for model
log-predictions (b) averaged over the six synthetic strains, and (c) averaged over all phy-
logroup A strains in the database which include false positives from the background (real)
reads. (d) AUROC for synthetic strain detection normalized over phylogroup A. (e) Compar-
ison of algorithm run-times.

Note that mGEMS’ output is meant to be post-processed using demix_check [28]. How-
ever, the scores were unusable due to the mismatch between the binned reads and the nearest
reference genome (see Methods - Semisynthetic).

We measured the algorithms’ performances using root-mean-square error (RMSE) of log
abundance estimates (RMSE-log), area under receiver operating characteristic (AUROC) for
detecting the in silico strains out of phylogroup A, and runtime (Figure 2). The RMSE-log
was calculated in two ways: (1) normalized across the six strain clusters that coincide with the
ground truth strains, and (2) normalized across the ∼340 Phylogroup A strain clusters.

ChronoStrain significantly outperforms all other methods for all simulated read depths
in terms of RMSE and AUROC, with the exception of one scenario, all while maintaining
a comparable runtime to the other methods (Figure 2, Supplemental Data Table 1). Note
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that StrainEst was unable to identify any of the in silico strains when 0.05% reads or less
were sampled from them. With the RMSE separated across the six target strains, the per-
formance trends were similar to the combined error metrics just discussed, with Chronostrain
significantly outperforming the other methods for a majority of the read depths (Supplemental
Figure S1, Supplemental Data Table 2). By binning the RMSE contributions according to the
synthetic strain’s sample abundance into four equal-width bins, one begins to see a distinct
significant advantage for Chronostrain in the lower-abundance bins (Supplemental Figure S2,
Supplemental Data Table 3).

A sensitivity analysis on free design parameters was performed for the top three performing
methods: Chronostrain, StrainGST, and mSWEEP (Supplemental Figure S3, Supplemental
Data Table 4). For Chronostrain, we varied the prior probability for strain inclusion in the model
π, where Zs ∼ Bernoulli(π), and the threshold π̄ on the posterior p(Zs | R) determining
whether s is given a zero or nonzero prediction. For StrainGST, we varied the score parameter
which is used as the metric for determining if a strain should be counted as present or not. For
mGEMS, the free design parameters we varied were the beta-binomial mean hyperparameter
µβ (“πk” in the paper [27]) that models pseudoalignment counts, and the post-inference
abundance threshold εLOD for filtering out false positives (see Methods - Semisynthetic).

For Chronostrain, varying the prior probability by several orders of magnitude, π ∈
{10−4, 10−3, 10−2, 10−1, 0.5} was largely insensitive and remained significantly better with
the three posterior probabilities we tested π̄ ∈ {0.90, 0.95, 0.99}. Decreasing mGEMS’ εLOD
threshold did not affect the RMSE-log when calculated across the six in silico strains, but
the RMSE-log increased when computed over all Phylogroup A predictions, suggesting that
mGEMS is less effective at distinguishing low abundance from noise. The mean parameter
µβ had a similar, but weaker effect. StrainGST performed best when score was set to zero.
Finally, we tested the sensitivity of the methods to varying levels of in silico strain mutation
rates (relative to the reference strain in the database) testing mutation rates of 0.2%, 0.6%,
1.0%, 1.4%, and 1.8% and Chronostrain significantly outperformed all other methods in this
experiment as well (Supplemental Figure S4, Supplemental Data Table 5).

Analysis of UMB dataset with ChronoStrain provides interpretable
results with more consistent correlations over time
The UMB project monitored 31 women in two cohorts, “rUTI” (multiple UTIs in past year)
and “healthy” (no recent history of UTI), over the course of a full year [7]. Each participant
provided a stool sample once a month, with outgrowth cultures grown from rectal and urine
samples taken at the first month for all participants. For those participants who were clinically
diagnosed with a UTI, additional urine samples and outgrowth cultures were taken on the days
of diagnoses when possible. Beyond this, metadata about participants’ self-reported dates of
last known antibiotic administration and the dates of infection are available. In addition to
the original samples, we have added a new data modality. For specific samples from the rUTI
cohort for which blooms were identified by the original StrainGST analysis [7], cultures from
stool samples plated on MacConkey agar (favoring Gram-negative bacteria including E. coli)
were sequenced. We applied ChronoStrain and StrainGST to all 31 time-series in the UMB
study (Supplemental Data Trajectories U1-U31) with model outputs for UMB participant 18
shown in Figure 3. See Methods - UMB Analysis for details on the analysis pipeline.

The output of ChronoStrain (Figure 3b,c) suggests that the initial infection most likely
came from a Phylogroup D strain (closed circle on day 0) whose marker signature is given
by cluster WP7-S17-ESBL-01. After multiple rounds of antibiotics, the phylogroup D strains
(yellow) are no longer detectable in the urine but still persist in the GIT. Two of the Phylogroup
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D clusters are called across multiple timepoints (WP7-S17-ESBL-01: solid yellow line, and
SCU-313: dashed yellow line), where the dominant cluster is the same as the one called in the
urine sample and is also the most abundant strain in 13 of 17 timepoints. Another prominent
cluster is SF-166 (dashed red line) of phylogroup B2, which shows differing responses to the
antibiotics; this cluster is re-capitulated in both of the enriched MacConkey-culture samples
(x’s in Figure 3b with posterior abundance estimations in Supplemental Figure S5). The initial
dose of nitrofurantoin and the unknown antibiotic reported by the participant before day 55 fail
to clear this strain from the GIT; it is present with abundance above or near 10−5. Around the
time of the third and fourth round of antibiotics, which were beta-lactam inhibitors, all the B2
reference strains’ abundances drop well below 10−6. However, the fifth round of antibiotics is a
re-dosage of nitrofurantoin near day 300, for which ChronoStrain identifies the rapid growth of
both the old SF-166 cluster but also Eco-15 (solid red line) which is a newly dominant strain
but was previously undetected. These results suggest beta-lactam more effectively cleared
the B2 taxa in the GIT than nitrofurantoin. This is consistent with prior literature [29, 30]
suggesting nitrofurantoin has higher host bioavailability, and thus accumulates less in the GIT
in comparison to beta-lactam.
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Figure 3: A visualization of ChronoStrain’s and StrainGST’s outputs for UMB18,
a rUTI-positive participant. (a,d) Phylogenetic sub-trees of strains, computed using two
different metrics: marker-specific k-mer proportion distance, and whole-genome k-mer Mash
distance. (b,e) A scatterplot of strain detections across timeseries for the two respective
methods. Different markers indicate sample modality (Stool, MacConkey culture from stool,
urine). Solid vertical lines indicate dates of UTI diagnoses, dotted lines indicate self-reported,
last-known dates of antibiotic administration. (c,f) Plots of estimated overall relative abun-
dances in stool. Credible intervals are calculated using 5,000 posterior samples.
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Interpreting the output of StrainGST (Figure 3d,e) one sees adjacent timepoints call two
phylogroup D (yellow) clusters FDAARGOS_1291 and RIVM_C018576 in a mutually exclusive
manner. This time-series/temporal inconsistency (alternating presence absence over time) is
something that is absent in the joint analysis done by ChronoStrain. Furthermore, the fecal
sample analysis on day 187 suggests that SCU-123 is present in previous samples but not
on that date, yet the MacConkey culture sample on that same timepoint suggests otherwise.
Indeed, in ChronoStrain’s analysis the corresponding dominant B2 cluster SF-166 was still
detected on that particular date – which suggests that our method’s joint analysis had the
correct detection call. The lack of a coherent cross-sample consensus makes it difficult to
evaluate the sensitivity of different strains to antibiotics or to determine the presence of new
strains from a bloom. Furthermore, the lack of a credibility (or confidence) interval hampers
the interpretability of StrainGST.

In the analysis of UMB18 just presented, we defined distinct strain clusters as those with less
than 0.998 nucleotide identity over the database marker sequences. This choice in threshold
was so as to coincide with StrainGST’s level of nucleotide identity used to define clusters in
their original work [7]. To demonstrate the utility as well as interpretability of our method
we performed the same analysis as above (UMB18) but with reference genomes divided into
distinct strains for any single nucleotide difference over our markers, Supplemental Figure S6.
The overall story from before is the same: there is a dominant Clade D strain, a Clade B1 (or
C) strain blooms in the middle, and a second B2 strain becomes dominant. With this finer
resolution view, however, we do call more strain clusters. One can however directly see that
several of the strain’s credible intervals are entirely overlapping. This suggests that the model
is having trouble differentiating those strains, and that they should not be considered to be
distinct. Practically, one might consider collapsing those strains, which we would have done
had we not already started with a coarser strain clustering threshold in our direct comparison
to StrainGST.

In order to quantify ChronoStrain’s qualitatively observed increased temporal consistency in
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Figure 4: ChronoStrain provides time-consistent predictions. To quantify the improve-
ment in the consistency across time compared to state-of-the-art predictions, we computed
the time-delayed, phylogroup-specific correlation ρ for all participants (Spearman-ρ is com-
puted for each pair of adjacent timepoints, then averaged across time). For ChronoStrain, we
calculated ρ for the median trajectory of the posterior. (a) By aggregating across all partici-
pants, we performed paired, two-sided Wilcoxon tests for each phylogroup. Significance (red
brackets) was determined via BH correction at a 5% false discovery rate; adjusted p-values are
denoted. This result suggests that StrainGST’s output strains from phylogroups A, B1, B2,
D are inconsistent across time (b) For each phylogroup, we plotted ρ and maximal abundance
estimates for each participant. The size of each semicircle depicts a log-scale abundance level
for the corresponding method, relative to the entire sample (details in Supplement), while
the color depicts ρ. Yellow semicircles indicate NaNs.
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strain detection compared to StrainGST, we computed the time-lagged Spearman correlation
(the abundance rank correlation between adjacent timepoints) for all E. coli strains across all
participants in the UMB study, Figure 4.2 For the top four most abundant phylogroups (A,
B1, B2, D), ChronoStrain produced a significantly higher time-lagged correlation coefficient
(medians typically at or above 0.75) when compared to StrainGST’s outputs (approximately
0 correlation and sometimes even negative), Figure 4a. The other phylogroups (C, E, F,
G) were much rarer and thus were not statistically significant. Previous literature has used
temporal correlations to demonstrate that a healthy adult microbiome is stable3 over time at
the Operational Taxonomic Unit (OTU) level [32]. More recent work has shown that many of
the macro-ecological properties seen at the OTU and species level (like stability) also extend
to the strain level [33]. Thus, it should not be a surprise to find positive temporal correlations
for E. coli strains in the UMB cohort. Finding negative temporal correlations, on the other
hand, would be.

ChronoStrain calls isolates from infants with more accurate abun-
dance estimation and is more robust to database mismatch
The ELMC study collected and sequenced longitudinal fecal samples from 596 full term babies
during the neonatal and infancy period, with additional paired samples from a subset of the
mothers [21]. Each infant in this study had between one and six fecal samples collected with
a majority of the neonatal samples taken on days 4, 7, and 21. In this study, 805 isolates were
obtained from fecal samples of 189 infants, of which 349 isolates were E. faecalis (321 from
infants, 28 from mothers). We applied the mGEMS pipeline as well as ChronoStrain to the
subset of 189 infants’ time-series fecal samples with a database that incorporated the isolate
genomes.

The database for ChronoStrain was constructed with a collection of 2,026 European refer-
ence genomes [34] and all 349 ELMC E. faecalis isolate genomes, just like the mGEMS analysis
in [28], plus additional genomes from Enterococcaceae (see Methods - ELMC Analysis). The
genomes were then clustered at 0.998 similarity, the same as in previous sections. We also
re-ran the entire mGEMS pipeline, meaning that (1) we first ran a species-level analysis to
bin reads into the E. faecalis species (using a large 640,000-genome index [35]), then (2) we
used an index constructed from the same 2,375 (2,026 + 349) E. faecalis genomes for the
strain-level analysis. To ensure that both methods would be performing inference at the same
level of strain granularity we manually tuned PopPUNK [36] (used by mGEMS for clustering)
so that the number of strain clusters containing ELMC isolates was the same for both methods.

After ensuring that both methods’ databases were on equal footing, we performed inference
on the infant fecal metagenomic samples. For mGEMS, we used the same hyper-parameters as
described in [28] with εLOD = 0.01 and only reported calls with demix_check score 2 or better
(smaller). To compare the methods at roughly equal sensitivities, we tuned ChronoStrain’s
post-inference threshold so that the two methods reported the same number of infant E. faecalis
isolates, settling on a posterior threshold π = 0.95 and only retaining clusters with E. faecalis
abundance ratio at least 0.065 (Figure 5).

2By “temporal inconsistency”, we are referring to the fact that for the samples between 2016-02-23 and
2016-09-13, StrainGST shows an alternating presence-absence (mutually exclusive) pattern for two of the Clade
D strains in participant UMB18’s time-series (Figure 3f,g). The pattern for ChronoStrain is the opposite: we
do not see this alternating and mutually exclusive pattern for pairs of strain clusters over time.

3By “stability”, we mean “asymptotically stable”. This means perturbations do not cause an arbitrary
deviation in the system from its unperturbed state (equilibrium point) and upon removal of a perturbation, the
system returns to its prior equilibrium point [31].
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As intended, the number of strain calls per sample (Figure 5c) as well as the number
of strain clusters corresponding to a cultured isolate from the same time-point (Figure 5e)
were similar for both methods. However, we did notice a stark difference in the abundance
estimates. We illustrate this with example trajectories from three infants A01077, B00053, and
B02273 in Figure 5a,b (complete set in Supplemental Data Trajectories E1-E21). To provide
an independent comparison, we used Kraken2+Bracken (KB) [37, 38] and MetaPhlAn4 [39]
to estimate E. faecalis species abundances (triangles in 5a,b) which yield approximately the
same estimates for almost all samples. mGEMS often produces under-estimates relative to KB
across the ELMC infant dataset (5g, “All Samples”), with the largest discrepancy between KB
and mGEMS occurring for those samples where ChronoStrain makes a strain call to a paired
sample isolate but mGEMS does not (“CS-only"). To better understand this discrepancy, we
plotted E. faecalis abundance fold-changes relative to KB (and MetaPhlAn) for each sample
(Supp. Fig. S7). At approximately 0.01 relative abundance and below4, mGEMS readily outputs
zero (or near-zero) E. faecalis abundances, unlike KB, MetaPhlAn and ChronoStrain.
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Figure 5: ChronoStrain calls isolates from infants across time with more accurate
abundance estimation than mGEMS. (a1-a3) Example ChronoStrain E. faecalis strain
abundance estimates for infants A01077, B00053, B02273. (b1-b3) mGEMS estimates for
the same infants. For each cluster, we drew its trajectory only if it passed the method’s
respective filter in at least one sample. Each timepoint-specific strain call is denoted, de-
pending on whether the cluster contains an isolate culture from that timepoint (O) or not
(X). Blue triangles + horizontal lines are Bracken E. faecalis species abundance estimates,
Red triangles + lines are MetaPhlAn4 species estimates. (c, d) Number of clusters passing
the filter and total genomes within those clusters. (e) Number of strain calls with a paired
isolate in that same sample (321 total). (f) Number of strain calls with a paired isolate
in a different sample from the same time series, counting cross-timepoint predictions. (g)
For each category from (f), we checked how far the species predictions are from Bracken’s.
Wilcoxon test (paired, two-sided and BH-corrected) p-values above brackets.

4This is separate from the strain-level parameter εLOD = 0.01, which is only applied for strain calls after
inference. The behavior we are demonstrating occurs for the species abundance estimate, which occurs before
the strain-level analysis; the choice of εLOD appears to be a coincidence.

11

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 23, 2024. ; https://doi.org/10.1101/2023.01.25.525531doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.25.525531
http://creativecommons.org/licenses/by/4.0/


E.
 fa

ec
al

is 
iso

la
te

s r
ec

ov
er

ed
(M

at
ch

in
g 

tim
ep

oi
nt

)
108 109

117

45

a

1 2 3 4
mGEMS demix_check score

Co
un

t

89

0

28

57

0

48

0

12

b

(0.995,
1.0]

(0.985,
0.995]

(0.975,
0.985]

(0.95,
0.975]

(0.0,
0.95]

ChronoStrain posterior

Co
un

t

52 54

62

54

1 3
0 2 2 4

c

Methods
ChronoStrain ChronoStrain+mutation mGEMS mGEMS+mutation

Figure 6: Chronostrain more robust than mGEMS to mismatches between database
genomes and sample reads. We performed inference on the ELMC data where 117 of
the ELMC isolates were mutated (genome mutation rate 0.002) before including them in the
database (Supplement §B.6.1). (a) The raw number of isolate clusters called by each method
(filters used for a call - ChronoStrain: π = 0.95, ratio ≥ 0.065; mGEMS: demix_check score
1 or 2, ratio ≥ 0.01). Note that mGEMS calls more isolates due to the experimental design:
the 117 isolates were initially chosen using mGEMS predictions, even if ChronoStrain didn’t
call them. (b) We show the demix_check score distribution for all 117 isolate clusters; “1”
is best, “4” is worst. Each bar is divided into two sections with the solid upper region those
strains with an abundance ratio ≥ 0.01 and dashed lower region those strains with abundance
ratio < 0.01. The mutated genomes caused a precipitous increase in the demix_check scores.
(c) ChronoStrain’s posterior probabilities, solid upper region are those strain calls with an
abundance ratio ≥ 0.065 and dashed lower region those strain calls with abundance ratio
< 0.065.

Finally, we tested the robustness of the methods when the reference database no longer
contains genomes identical to the strains we are trying to track. Having the isolate genomes
gives us the opportunity to perform an experiment where we mutate isolates used in the
database (similar to the semisynthetic setting, but mutating the database instead of the reads)
while still maintaining a notion of ground-truth strain calls. Specifically, we mutated 117 of the
ELMC isolates, chosen from those already called by mGEMS (Supplement §B.6.1), and then
performed inference with both methods using the same hyper-parameters and thresholds as
before. The results from that experiment (Fig. 6 and Supp. Fig. S9, discussed in more detail in
Supplement §B.6.2) show that mGEMS calls decreased from 117/117 to only 45/117 strains,
but ChronoStrain’s results largely stayed the same (108/117 to 109/117). We emphasize
that we intentionally chose isolates with a paired sample that already had an mGEMS call,
regardless of ChronoStrain, which is why we report 108 calls for the original run instead of
the full 117 for CS. The drop in the number of strain calls by mGEMS is due to an expected
behavior: the demix_check scores became worse (increased) with mutated isolates in the
database; see Figure 6b. One can increase the number of correct strain calls by allowing larger
demix_check scores, but this comes at the cost of specificity. With the demix_check score
threshold increased from 2 to 4 mGEMS correctly calls 93/117 of the strains, but the median
number of calls per sample becomes six times larger than ChronoStrain (Supp. Fig. S9c).

These experiments demonstrate that ChronoStrain has more accurate abundance estimates
for lower abundance strains, and that it is more robust to database discrepancies when making
strain calls (without losing specificity). mGEMS is sensitive to having the strain of interest
being isolated and sequenced for database inclusion (Figure 6b) and the pipeline does not
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reliably estimate abundances below 0.01 (Supp. Fig. S7). These differences can affect how the
strain dynamics are interpreted in statistically significant ways. For instance, when looking at
strain turnover5 within E. faecalis, ChronoStrain estimates that twice as many infants had at
least one turnover occurrence in the first month compared to mGEMS (40/189 versus 19/189,
χ2-test p = 0.0046, Supplemental Data Table 6).

Discussion
There are two major differences between ChronoStrain and comparable methods. First,
ChronoStrain outputs a distribution over strain abundance trajectories, while the others pro-
vide a single point estimate. Since ChronoStrain is a full end-to-end Bayesian model of the
reads’ errors across multiple samples, it explicitly propagates measurement uncertainty and
temporal correlation. This allows for a qualitatively different approach to interpreting results
with ChronoStrain, making it possible to directly visualize uncertainty through the plotting of
credible intervals or to possibly use the entire posterior distribution in downstream analyses. It
also helps quantify the uncertainty induced by the database; for almost all real data applica-
tions, the database will not contain the full catalog of strains that encapsulate all strains in the
samples. Without isolates incorporated into the database, there will always be discrepancies
between the nearest strain in the database and the genomic variants present in the sample.

Second, our method specifically tracks variants and combinations of genes, and so has
applications where one wants to type strains beyond conventional genes (serotyping, sequence
typing, or species core genes). In this vein, our method makes a very purposeful trade-off: we
perform more computation per read to account for nucleotide and presence/absence variability,
but in return, we gain (1) accuracy for low-abundance (low-coverage) strains for which assembly
might not be possible and (2) a more customizable database that one can use to define strains
via interpretable features. In our example databases, each genome’s markers form around
1.5% of the median species-level genome length. It may be surprising/counter-intuitive that
the performance improvements seen in the benchmarks are being achieved with a far smaller
database than other methods. However, the insight that “compressed” views of the genome
(e.g. discriminatory genomic regions) confers significant statistical and algorithmic advantages
is a commonly occurring theme in computational biology [40].

The two biggest limitation of our model are (1) that one needs to define a set of gene seeds
for the model to use when constructing its database and (2) that it is reference based. The
seeds should be chosen appropriately given the context of the problem (Methods - Analysis
Details). Moving beyond a reference database, it would be useful to adopt a methodology
for de novo assembly of short genes for inclusion in the database, which does seem feasible
given that we are not tracking an entire chromosome. In future work, we also plan to address
the use of long reads (e.g. Oxford Nanopore, PacBio Hifi) as these technologies become
commonplace in metagenomic studies. Even with state-of-the-art accuracy (e.g. 60% of reads
being Q30 or better, as recently attained by [41]) this still leaves 40% of reads with 50 errors
per 50000 kb6. Our model could also be used to overcome ambiguity for scenarios where the
forward and reverse reads overlap, which occurs in 16Sv4 Amplicon sequencing. In addition,
budget/experimental constraints typically enforce a limitation on sequencing depth, especially
if multiple samples in time-series are to be analyzed. ChronoStrain would be an appropriate
choice for overcoming ambiguity, especially in these use cases. We close by reemphasizing that
no method is a panacea. With ChronoStrain, we suggest always inspecting the full time-series

5Strain “turnover” is defined as an event where the most abundant strain at one timepoint is no longer the
most abundant strain at an adjacent timepoint, computed here only within the context of E. faecalis.

6For comparison, E. coli markers add up to ∼74k bases per genome in this work.
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posterior distribution. Similar strains having highly overlapping credible intervals suggests that
some strain clusters should be collapsed, as previously discussed with the fine-grained clustering
results for UMB18 (Supp. Fig. S6). With that in mind, having the strain clustering thresholds
learned jointly with the rest of the model could be an interesting and valuable addition to the
model.

Conclusion
Uncertainty quantification is an often overlooked concept in computational biology. Our
method, ChronoStrain, incorporates uncertainty and time-awareness throughout its Bayesian
probability model and exhibits significant performance improvements over current state-of-the-
art. This allows for a more interpretable representation of how raw reads were likely to come
from different genomes, and how that impacts our ability to estimate their abundances over
time. We believe these results will have direct impacts on biological insights on microbial sta-
bility and competition, while the performance improvements will have nontrivial implications
for the performance-to-cost ratio of time-series strain quantification experiments.

Code and Data Availability
The software and all analyses are available at https://github.com/gibsonlab/
chronostrain. All UMB-related sequencing data, including the new MacConkey-culture
sequencing experiments, are available under BioProject ID PRJNA400628. The ELMC se-
quencing reads were downloaded from the European Nucleotide Archive under accession PR-
JEB32631, and isolates under accession PRJEB22252. The ∼640k genome Themisto index
was downloaded from Zenodo (7736981). Databases and raw outputs for all real-data analyses
are available on Zenodo (10932690, 10932762). Databases and analyses can be reproduced
using our codebase.

Human Subjects
The UMB study [7] was conducted with the approval and under the supervision of the Insti-
tutional Review Board of Washington University School of Medicine in St. Louis, MO (IRB
No. 201401068). Informed consent was obtained from all participants. Further details on the
UMB cohort can be found in the Methods section of Reference [7] under the subheading Study
design and sample collection - Enrollment.
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Online Methods

Overview of ChronoStrain
ChronoStrain is a Bayesian inference algorithm that learns the posterior distribution of bacterial
strains’ relative abundances from metagenomic shotgun reads, by focusing on a subset of them
which map to particular sections of the genome (e.g. marker sequences). Precise details of
our model and its implementation is given in the next section; here we only give the high-level
overview and explain key modeling decisions.

As input, one provides a database S of strains and their marker sequences, a list of time-
points T and each timepoint t’s collection of Nt corresponding reads. For each timepoint
t ∈ T and i ∈ [Nt], each observed read rt,i = (ζt,i, qt,i) is specified as a (nucleotide sequence,
phred quality score vector) pair.

The core machinery of the algorithm is based on a Bayesian model describing the joint
distribution of (X, Z, R), where X = (Xt)t∈T is a latent representation of the unobserved
abundance profile at time t, Z is a vector that decides which strains are included in the
population, and R = (Rt)t∈T each is the sub-collection of reads of size Nt which align to our
database. The latent representation (Xt)t∈T is modeled using a standard Gaussian random
walk (Wiener process [42]). The model inclusion vector Z = (Z1, . . . , ZS) is a collection
of i.i.d. Bernoulli(π) random variables. These determine the abundance trajectory using a
sigmoidal function, resembling dynamic topic models [23]. Each read in Rt is modeled as being
conditionally independent, given X = (Xt)t∈T . For the reads, we use the Phred model with
random insertions and deletions, together with a model that considers a random choice of a
position on the genome from the latent population that the read is measuring. We believe that
the read model is especially important for strain-level resolution, since we care about single-
nucleotide variants of genes and thus one must consider the inevitability of reads mapping to
multiple genomes or loci with varying scores.

ChronoStrain performs variational inference to approximate the posterior distribution
p(X, Z | R). We note that the algorithm implemented in this paper is specifically opti-
mized and tailored for short Illumina reads; in the next section, we will point out exactly where
this assumption is encoded. This leaves room for a model variant that accommodates long
reads for future work.

The main difficulty for this task is in making the resulting algorithm scale efficiently with
model size, which depends on the marker lengths, strains, and reads. Indeed, if implemented
naively, practical computers would not have the required memory to store the full probabilistic
model (easily taking up to hundreds of gigabytes for the database that we used). Our solution
involves a heuristic sparsification of the data likelihood function (mathematically derived in
Supplement §B.1). We show, using provided benchmarks on semi-synthetic data (Figure 2),
that our heuristic works well in practice.

Bayesian Model
First, we model the unobserved abundances using latent representations Xt1 , . . . , Xt|T | ∈ RS

and a single vector Z ∈ {0, 1}S . The Xt’s are discretized observations of a Weiner process:

Xt1 ∼ N (0, σ2
0I)

Xtk
| Xtk−1 ∼ N (Xtk−1 , σ2(tk − tk−1)I).
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The scalar variance parameters σ2
0, σ2 are each assigned independent instances of Jeffrey’s

(improper) prior [43] for the variance of a Gaussian with known mean:

p(σ0) ∝ 1
σ0

and p(σ) ∝ 1
σ

This prior was chosen to fulfill the role of a “non-informative” prior, and for its transformational
invariance property. For users of our method, this means that the choice of measurement units
of time – whether it is minutes, hours or days – does not matter. The elements of vector
Z = (Zs)s∈S are independent Bernoulli(π). To transform the real-valued vectors Xt into
relative abundances, we take Yt(s) = Z(s)eXt(s)∑

ŝ
Z(ŝ)eXt(ŝ) , so that Yt ∈ ∆S−1, the S-component

probability simplex. This “exponential renormalization” mechanism (often called “softmax”)
is used in machine learning, and was previously used to capture time-series relationships in
continuous-time dynamic topic models [23, 44].

Next, we model the reads in two steps: the random position of the reads’ source fragments
and then the sequencing noise. We model reads rt,i = (ζt,i, qt,i) without a mate pair as being
a noisy measurement of a single randomly chosen fragment ft,i. The model for reads with
mate pairs is cumbersome to describe, so for this section we assume unpaired reads; full details
for the paired-read model are in Supplemental Text §B.2. In our model, a “fragment” is a
substring of a marker sequence, representing the nucleotides which later get measured into
reads. The primary assumption that we will make here is that each read’s source fragment
overlaps with some marker in the database, thus necessitating a filtering step as described in
Methods - Read Filtering. Conditioned on the Yt’s, we model the (timepoint t, index i) read
rt,i independent from all other reads as described below.

First, we introduce a few definitions. Allowing each marker sequence of strain genome s

to be padded with β|ζ| of “empty” nucleotides on both ends, let W(ℓ)
s be the collection of

all length-ℓ, position-marked sliding windows of markers of s for positive integers ℓ. We say
that w ∈ W(ℓ)

s induces f if f is the string obtained from w by removing all padded bases; in
particular, f is always at most as long as w (|f | < |w|). For instance, β = 0.5 guarantees
that we only consider fragments f induced by ≥ 50% of the (short) read. Let Σ(ℓ)

s denote the
set of all f induced by each w ∈ W(ℓ)

s . Finally, let nℓ
f,s = |{w ∈ W(ℓ)

s : w induces f}| be the
number of times f is induced, and let n

(ℓ)
s =

∑
f∈Σℓ

s
n

(ℓ)
f,s be its sum across all f .

Using the above definitions, we describe the fragment model. For each read rt,i, let ℓt,i

be NegBinomial(RNB > 0, PNB ∈ [0, 1])-distributed. We model ft,i as being sampled
proportional to the frequency at which it is represented in the population at time t. More
precisely (dropping the subscripts t, i to make it easier to read):

p(f | Yt, ℓ) ∝
∑
s∈S

Yt(s)n(ℓ)
f,s (1)

Note that this proportionality represents a normalization across all fragments f , and the nor-
malization denominator ∑f

∑
ŝ Yt(s)n(ℓ)

f,ŝ =
∑

ŝ∈S Yt(ŝ)n(ℓ)
ŝ is a function of Yt and ℓ. Algorith-

mically, a certain approximation of this (Supplement §B.1.2) results in an efficient correction
for strains whose markers are over-represented in the database. As an aside, we remark that
this is precisely the part of our method specially tailored for short reads. When operating
on long reads (typically ∼10-25 kb or longer), our approximation fails to hold and thus our
algorithm must be adapted to a different strategy. Furthermore, long reads can span multiple
markers, thus requiring an adjustment in the fragment count definition.

Each read rt,i = (ζt,i, qt,i) ∈ Rt is modeled in the following way, treating qt,i as a fixed
observation. Conditioned on ft,i, we model the per-base sequencing error given by indels
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and substitutions, which we represent using alignments. For any alignment At,i, meaning an
arbitrary alignment of ζt,i to ft,i represented by a 2 × K array of nucleotides (for some K)
and gap symbols ‘-’, we model

At,i | ft,i; qt,i ∼ PhredWithIndels(ft,i, qt,i).

We temporarily drop the subscripts for exposition. The PhredWithIndels(f, q) distri-
bution is supported over feasible alignments in the theoretical search space of the Needleman-
Wunsch dynamic programming algorithm [45]. In particular, A must satisfy max(|s|, |f |) ≤
K ≤ |s|+|f | and (# matches)+(# mismatches)+(# deletions) = |f |. Its likelihood function
is given by a formula assuming fixed indel error rates εins and εdel and the standard phred score
model:

p(A | f ; q)
= (εdel)(# deletions)(εins)(# insertions) ∏

j∈Matches(A)
(1 − 10−q(j)/10)

∏
j∈Mismatches(A)

(10−q(j)/10)

for any feasible alignment A. The parameters εins, εdel are specific to the sequencing machine
and may depend on whether the reads are forward or reverse in the mate pair.

Finally, conditional on At,i, each mismatched/inserted base in read rt,i is sampled uniformly
at random; the likelihood of the read’s nucleotides ζt,i is the product

p(ζt,i | At,i) =
(1

4

)# insertions (1
3

)# mismatches ∏
j∈Matches

1{ζ and f match at j}.

In its entirety, this model has hyperparameters π, RNB, PNB, β, εins, εdel. Our choices are ex-
plained in the supplemental text §B.3.

ChronoStrain’s Database
In ChronoStrain’s model, a strain s ∈ S is specified by a (multi-)set of markers Ms, where
a “marker” m ∈ Ms is simply a nucleotide sequence specific – but not necessarily unique
– to that strain. Such a sequence could be, for example, a variant of a known gene en-
coding a particular target function of interest. Qualitatively speaking, an ideal marker is a
gene, or any substring inside the genome, that has within-species variation (is not conserved
species-wide) and presence/copy number variation (including non-“single-copy core” genes).
Simultaneously, marker sequences from the target species should exhibit variation when com-
pared against members outside the target species (e.g. homology with mutations). However,
high sequence similarity outside the target species is inevitable — especially if we deviate from
the usage of “core” genes — and thus our database construction includes steps to mitigate
these confounders.

We pay no attention to markers’ ordering on the chromosome, but we do care about
their multiplicity and their exact nucleotide sequence. In a later section (Methods - Analysis
Details), we give a detailed explanation of the marker seeds used in our analyses. We also
provide example statistics (e.g. number of reference genomes used and number of resulting
clusters) and explain some of the idiosyncracies of the markers and the methodologies that we
chose.

A key assumption required of our database (implicitly encoded in Equation 1) is that each
Ms includes all substrings of s’s chromosomes that share sufficiently high % identity. Stated
another way: if a fragment f is in the genome of s, all occurrences of it in Ms must be
accounted for in the model, even if these mapped regions do not necessarily correspond to the
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same functional gene. Therefore, satisfying this constraint requires some careful consideration,
especially when seeds represent genes with multiple known copies and/or homology outside of
the species.

To construct such a collection, we require a FASTA file containing a reference sequence
(or a multi-fasta file containing many known variants or homologs) for each seed. We allow
for the seeds to represent genes which have homologs outside of the species of interest, and
also appear multiple times within the same genome. For instance, all of our markers are genes
specified by annotations or PCR primers. This comes with a myriad of complications: genes
may have homologs within other species, vary in copy number, are possibly mis-annotated, or
the PCR primers themselves may have mutations (known to be true for our E. coli genes [46]).

To account for these issues, our database construction begins by downloading all available
assemblies from the same family as our target species (e.g. Enterobacteriaceae when analyzing
E. coli). For each seed, we run a local BLAST query; the hits are thresholded by percent
alignment identity (by default, 75%) and minimum length 150 (a typical read length), with
--max_target_seqs = 10 × #(database genomes) to report a generous number of hits per
marker seed query. The “best” percent identity threshold is expected to vary by gene and by
target species. However, this is merely meant as a first-pass protection against out-of-species
confounders; the main mechanism is our read filtering step (Methods - Read Filtering) for
restricting reads which occurs after database construction.

Next, since the BLAST hits found above may overlap and/or may be contiguous, we process
these hits by merging all pairs of hits which overlap on the corresponding reference genomes.
For instance, if positions (35000-42000) and (41000-50000) are BLAST hits for genome g
on the same contig/chromosome, then we merge them into a single hit spanning positions
(35000-50000) forming a single marker on g. This is a crucial step: during our inference
algorithm, reads may map to overlapping regions. These theoretically should only count once
in the likelihood function, but if we were to use the raw BLAST hits they have the potential
to be counted multiple times.

Lastly, to reduce the redundancy of the collection of strain genomes, we cluster them.
Note that it is unclear how the markers constructed in the above steps are evolutionarily
related (e.g. which markers are homologous to which other markers), nor is there a clear
solution for forming a phylogeny when multiple copies of genes are present. Thus, it is impor-
tant that the clustering method does not rely on multiple sequence alignment. To evaluate
a distance metric d between each pair of reference sequences in an alignment-free manner,
we used the tool dashing2 [47] on the multi-fasta file of markers for each genome, which
computes approximations of multiplicity-aware k-mer (multi)-set distances. This tool is the
most compatible with ChronoStrain compared to other sketching methods such as Mash [48],
because it incorporates multiplicities of fragments that occur across the markers. Using the
pairwise distance matrix output by this tool, we ran scikit-learn’s implementation of agglom-
erative clustering with “complete” linkage; this is parametrized by distance threshold. Each
cluster C’s representative strain srep(C) was chosen as the strain whose distances most closely
resembles the whole cluster:

srep(C) = argmin
s∈C

∑
C′

|d(C, C′) − d({s}, C′)|

where d(C, C′) = 1
|C||C′|

∑
x∈C,y∈C′ d(x, y) is the average distance between two clusters. Overall,

assuming each strain contains O(1) sequences that approximately match each marker seed,
the database size grows linearly in the product (# Clusters) × (# Marker Seed Length).
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Read Filtering
The read collection R of reads that map to database marker sequences is determined via
alignment. In this step, we only require a one-sided test, in which we rule out all reads which
definitely do not map to some marker of a known strain. Out of speed considerations, we use
bwa-mem2 to obtain these hits. Note that this step merely serves as a first-pass filter; exact
analysis of these alignments and multiple mapping positions are left for a downstream step
(using bowtie2, Supplement §B.1.1). In principle, any alignment program which outputs a
standardized SAM/BAM file can be substituted in either step.

The alignment parameters were chosen specifically to suit our needs. More precisely,
the match/mismatch penalties were assigned the log2-odds ratio of errors from the Phred-
WithIndels model (assuming a rather pessimistic quality score of 20) in relation to a uni-
formly random sequence of nucleotides:

Match Bonus = 2 ≈ log2

(
1 − 10−2

1/4

)

Mismatch Penalty = −5 ≈ log2

(
(3/4) × 10−2

1/4

)

Assuming that indels are randomly distributed across each read according to indel error rates
εins, εdel (Supplement §B.3), we set the gap open penalty to zero and the extend penalties to
− log2(εins), − log2(εdel).

Based on these alignments, we only kept reads that aligned to some marker sequence,
where the alignment mapped with at least 97.5% identity. The % identity is calculated using
a fitting alignment of the entire read, even if the alignment program produced local align-
ments. Specifically, in the case of bwa which only produces local alignments, we complete the
alignment by re-attaching clipped bases.

Target Posterior Approximation
Based on the Bayesian generative model, we aim to estimate the posterior p(X, Z|R). We em-
ploy ADVI [24], which uses stochastic optimization on Monte-Carlo estimates of the evidence
lower bound (ELBO) objective. Using standard VI notation q to denote a generic approximate
distribution: we used the factorized family q(X)q(Z) of densities for our variational fit. For the
log-space variables X, we provide a fully-joint (|T ||S|)-dimensional Gaussian approximation
(a “full” covariance matrix) q(X); this is because we specifically wanted the time-associated
uncertainty to show up in the posterior samples. Such posteriors are typically avoided due to
their computational cost. However, we use a heuristic for pruning parts of the model based
on the data available (Supplement §B.4), and were still well within limitations of a personal
computer (Methods - Comp. Resources). For the scenario where memory is a limiting con-
straint, one can choose to factorize q(X) =

∏
t∈T q(Xt), which we used for longer time-series

(e.g. UMB stool samples). For the model inclusion posterior, we implemented a mean-field
factorization q(Z) = q(Z1) . . . q(ZS), where each q(Zi) is an independent “Gumbel-Softmax”
relaxation [49].

The objective function was implemented and optimized using the JAX library [50] and the
Adam gradient descent algorithm. The default settings, equivalent to the settings that we used
for this paper, are as follows. The posterior approximation of X is initialized to have mean
zero (corresponding to a uniform abundance profile for all timepoints) and covariance equal
to the identity matrix. The learning rate decay schedule η(t) was initialized to η(0) = 0.0005.
This was set to decay by a factor of 0.1, down to a minimum of 10−7, when the ELBO
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value (a Monte-Carlo estimate using n = 100 samples) no longer improved between epochs (1
epoch = 100 iterations) after at least five epochs. The Gumbel-Softmax is parametrized by a
temperature parameter τ , initialized to 10.0 and is annealed by a factor of 0.95 every epoch,
down to a minimum of 10−4. The optimization was set to stop after 1000 epochs, or sooner if
the ELBO stopped improving by a multiplicative factor of 10−7. These settings were decided
empirically, based on whether or not the gradient optimizer reliably improved the ELBO across
real and semisynthetic data. We calculated all statistics using n = 5000 samples from this
estimated posterior.

Detection Classifier
For all real data analyses, we applied the following post-hoc method to interpret the approx-
imated posterior p(X, Z | R). First, we computed the collection of strain clusters S where
each s ∈ S satisfies p(Zs | R) > π. We chose π = 0.99, equivalent to a Bayes Factor
threshold of 105 when the prior is π = 10−3. Then, we sampled from the conditional posterior
p(X | Z = 1S̃), meaning that we conditioned on only S appearing in the model; the partial
factorization of the variational solution makes this sampling trivial. For each timepoint tk in
the time-series, a strain s is marked as “detected” (as in Figures 3b and 5) if the resulting
database-normalized relative abundance estimate median(Yt(s)) exceeds a cutoff ρ. Unless
stated otherwise, ρ was chosen to be 5%; the “optimal” cutoff is database- and dataset-specific
and we found that this simple value often yields a reasonable tradeoff.

Analysis Details
Here, we describe the analysis details for each dataset (UMB, ELMC and semisynthetic),
including marker seeds for the two databases used in this work7 and the settings that were used
for each method. The precise database construction workflow for ChronoStrain is implemented
as a Jupyter notebook for each dataset, available to view in our codebase. Analysis on real
data for all methods (including the background reads from UMB18 for semisynthetic) were run
on trimmed and de-contaminated data – see Methods - Sequencing & Real Data Processing.

UMB Analyses (E. coli quantification)

For E. coli strain abundance estimation found in this work, our database seeds were:

1. genes from all E. coli MLST schemes on PubMLST [51],
2. genes used by the ClermonTyping tool [52] for phylotyping,
3. the O-antigen gene cluster, flanked by the JumpSTART and gnd primers [53],
4. H-antigen encoding (flagellar) genes annotated with names fliC, flk*, fll*, flm*,
5. annotated fimbrial genes fim*, and
6. annotated Shigatoxin genes stx*.
7 When building the reference genome catalog, out of caution, we preferred to use complete chromosomal

assemblies for our reference database (e.g. downloaded from NCBI’s Assembly database). The primary reason
was that retrieval of scaffolds or contig-level assemblies often also included MAGs. In general, MAGs are often
mis-assembled or contain contaminations (e.g. from the human host). In theory, for bacterial quantification,
using bacterial-specific markers and filtering metagenomic reads by alignment at 97% similarity should provide
some protection; however, our seed construction step was “loose” enough at 75% identity threshold that we
could not rule out these as potential confounders.
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We note that there are currently two ST schemes for E. coli on PubMLST; we simply included
all of the genes from both. Our catalog of reference genomes consisted of 5,405 whole-
chromosome assemblies from the Enterobacteriaceae family, of which 2,063 were E. coli. After
the BLAST and redundancy & overlap correction, our markers make up ∼1.5% of the genome
when averaged across E. coli entries. For both UMB and semisynthetic analyses, we chose a
99.8% weighted marker k-mer frequency similarity (dashing2 with ProbMinHash sketching)
as a cutoff for the agglomerative clustering heuristic. After this process, we ended up with a
database of 2,325 Enterobacteriaceae strain cluster representatives and their marker sequences;
842 are E. coli.

The systematic BLAST search & overlap correction steps were critical. For 2, 4, 5 and 6,
we relied on genbank annotations; we found that several genes suffered from mis-annotations
and/or unconventional naming schemes (e.g. stx1A versus stxA1), and thus the overlap
correction helped correct for redundancies. Furthermore, the primers for the O-antigen gene
cluster are known to have mutations in different sub-clades of E. coli [46], so the systematic
BLAST search helps identify genes missed by the in-silico primer matching step (we used
EMBOSS primersearch [54] which helps, but does not guarantee, finding all hits).

We ran ChronoStrain using this database with default inference settings, with prior π =
0.001. Results were interpreted using posterior threshold π = 0.95 for semisynthetic and 0.99
for UMB; the latter was more stringent to aid visualization for a subset of the cohort. We
ran StrainGST with default settings (k-mer length 23, n = 5 iterations and score threshold of
0.02) and using a database of Escherichia & Shigella genomes. We did not run the next tool
in the StrainGE pipeline (StrainGR) which characterizes novel SNVs from the reads, since our
goal was only to compare abundances. Note that while StrainGR does take multiple inputs
simultaneously (across timepoints), it is not a tool designed for abundance estimation (although
existing versions of the software do report estimates based on raw alignment/mapping counts
using e.g. bwa-mem).

ELMC Analysis (E. faecalis quantification)

For E. faecalis strain abundance estimation, our database seeds were:
1. genes from all E. faecalis MLST schemes on PubMLST [51],
2. PCR primer-specified pathogenicity/virulence-marking/polymorphic genes from [55],
3. a subset of 39 genes from the infants’ E. faecalis isolates.
To determine the genes to be used for #3, we first performed database construction and

clustering at 1 − 10−8 similarity using just #1 and #2 (resulting in ∼450 E. faecalis clusters
out of ∼660 total). Using these genes, many of the isolates across different infants are co-
clustered even at this extreme of a threshold. It is possible, but less likely, that distinct infants
have identical strains. Therefore, we operated on the assumption that most pairs across infants
were indeed genetically distinct on some level, but #1 and #2 alone were not sufficient to
distinguish them. In order to locate genes which finely separates the isolates, we annotated
all of the isolate assemblies using NCBI’s pgap tool [56], and then for each gene name g we
computed a multiple alignment using MAFFT [57]. For each gene g, cluster C and for each
pair of infants i, j whose isolates were in C, we computed a certain metric d

(C)
g (i, j) which

quantifies how well g splits them. To explain it, let C[i] denote the set of isolates from infant
i contained within C, and for any isolate x, let g[x] denote the aligned sequence of the gene g
in x (if x has multiple copies of g, then pick the last one in the GFF annotation; if x has zero
copies of g, then take a sequence of gap characters). The formula for d

(C)
g is

d(C)
g (i, j) = min

x∈C[i],y∈C[j]
Hamming(g[x], g[y]).
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Finally, we picked the top k = 3 genes g1, . . . , g3 maximizing the number of nonzero entries
of the distance matrix d

(C)
gi ; repeating this for each C gave us 39 genes for marker group #3.

The intent here is that genes g with many nonzero distances d
(C)
g are those genes that will

distinguish isolates from different infants. We made no attempt to “optimize” k in this work;
the above scheme was a heuristic simply to get the analysis to run while having reasonable
runtime and memory constraints.

Our reference genomes consisted of 1,087 complete chromosomal assemblies from the
Enterococcaceae family (excluding RefSeq E. faecalis) to account for sequence similarity-
induced confounders, plus the 2,026 + 350 E. faecalis isolates from Europe and ELMC as
in the original mGEMS analysis [28]. Averaged across E. faecalis entries, our markers make
up ∼1.6% of the genome. We used a 99.8% marker similarity cutoff, which resulted in 533
Enterococcaceae strain cluster representatives, of which 387 are E. faecalis. Of these, 83
contain at least one ELMC isolate.

We ran ChronoStrain using the above database and default inference settings, with prior
π = 0.001. Results were interpreted using posterior threshold π = 0.95. For the sake of
comparison, we re-ran the mGEMS pipeline (themisto + mSWEEP + mGEMS bin extraction)
in a hierarchical style as in [28]. This means that we first ran the pipeline to bin reads by
species, then a sub-analysis on the E. faecalis bin, and finally demix_check to check the
quality of the strain bins. Finally, we only kept strain bins with abundance greater than 0.01,
and removed bins with poor confidence scores (3 or 4).

We re-ran the mGEMS analysis so as to have access to the intermediate outputs (the
species-level estimates and read bins) when running Themisto v3.2.1, mSWEEP v2.0.0 and
demix_check. We first reproduced the original results using the original database used in
[28], but due to a version incompatibility, we used an updated pair of pre-compiled indices.
For the species-binning step, we used the recently published index of ∼640,000 genomes [35]
compatible with Themisto v3.2.1. For the strain-binning step, we used a faithful reproduction
of the E. faecalis index of (a subset of) the original 2,026 European isolates plus 350 ELMC
isolates. Both were provided by the authors of [28]; we verified that using the above reproduced
the original results before proceeding.

We note that the above E. faecalis index contains only 1,229 of the 2,026 European
assemblies (due to an undocumented filtering step in [28]). Furthermore, only 37 out of
168 clusters contains ELMC isolates, so the clustering is quite coarse. Thus, for our main
results, we compiled a third index for E. faecalis quantification using all 2,026 European
isolates. To create it, we re-ran PopPUNK using the threshold method with threshold
0.00036; this was tuned manually, so that PopPUNK produces exactly 83 clusters contain-
ing at least one infant isolate just like ChronoStrain. Interestingly, this produced 808 to-
tal clusters (much larger than ChronoStrain’s 533), confirming that our earlier gene-picking
heuristic successfully produced markers that are particularly discriminative for ELMC iso-
lates. Additional species-level quantification was done twice, once using Kraken2 v2.1.3 +
Bracken v2.9 (database:k2_standard_16gb_20240112), and once using MetaPhlAn4 v4.0.6
(database:202307). We found that both third-party method outputs agreed for many samples
on E. faecalis and the results are largely similar regardless of which of the two we chose. Finally,
we re-ran both methods using a mutated database to test their robustness to the database on
real data; refer to Supplement §B.6 for details.

Semisynthetic benchmark

For the purpose of benchmarking, we generated a “semi-synthetic” dataset by merging syn-
thetic reads with real ones. We created a database for each method using their own provided
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(or documented) algorithm for creating strain clusters. For ChronoStrain, we provided the same
database as in the UMB analysis. To ensure that all clustering methods ended up with the same
granularity for the benchmark, we tuned each method’s distance threshold so that they yielded
roughly the same number of phylogroup A clusters (341 ± 2) as ChronoStrain. Specifically,
for mSWEEP we ran PopPUNK [36] with distance thresholding (--fit-model threshold)
to control the granularity of the Enterobacteriaceae assembly catalog. For StrainGST, we
ran its built-in clustering on the Escherichia and Shigella genomes (the program is designed
to warn the user if we simultaneously include other genomes that are not closely related).
For StrainEst, we ran their database construction method, which requires picking two sets of
representative genomes: (1) a core list of ten genomes, which are used build a list of SNV
loci via whole-genome multiple alignment, and (2) a clustering of all genomes and their rep-
resentatives, to characterize the nucleotides observed at these pre-calculated loci. For (1), we
used the authors’ suggested method of performing hierarchical clustering by Mash distance and
picking a cutoff that results in ten genomes. For (2), the recommended method is to again
perform mash clustering; to reduce some variability between clusterings (which affects the
dataset generation), we re-used the clusters generated by PopPUNK. Though the PopPUNK
metric is more intricate than the Mash metric, both are k-mer-based; thus, we had little reason
to suspect it would be particularly disadvantageous for StrainEst.

Overall, our dataset is made up of ten “genome” replicates (sampling six genomes and
random mutations), times two “sequencing” replicates (Art is re-run with a different seed),
across five possible simulated read depths, totalling 100 distinct overall replicates. We describe
this process now. First, we sampled six phylogroup A E. coli genomes at random for each
“genome” replicate, that are not a part of the original database. To do so, we first ensured
that each cluster is fairly represented across the replicates by assigning to each genome a
probability weight proportional to the reciprocal of the root-mean-square of the respective
databases’ cluster sizes (so that each cluster is chosen with roughly equal weight regardless
of the method used). We pick six random genomes one at a time without replacement using
these weights, and for each we remove all other genomes that share a cluster with it (for all
clustering schemes) at each step, so that no cluster is chosen twice. To each chosen real
genome, we introduced random mutations by flipping a coin of bias p(Heads) = 0.002 for each
base. If Heads, we chose one of the three remaining nucleotides at random to substitute.

For each “sequencing” replicate, we took these six synthetic genomes and simulate reads
using Art [58] and its built-in HiSeq (length 150) error profiles. The reads were sampled
according to the counts given by a Multinomial(N, y⃗t) distribution, where N is the chosen
simulation read count and y⃗t are the abundance ratios for the six synthetic genomes for
timepoint t. The time-series ratios y = (y⃗1, . . . , y⃗6) were chosen and fixed beforehand; these
trajectories span a wide range from 0.1 to 10−3, where some strains fluctuate between different
orders of magnitude. The simulated reads span six timepoints, and they were merged with
the first six timepoints from UMB18’s stool sample sequences. This choice was made based
on a preliminary analysis using the methods, which suggested that phylogroup A was either
absent or undetectable in these samples. What makes this dataset extra challenging is that
there are several trajectories that dip into an “ultra-low” species-level ratio (10−3). At the
lowest simulated read count (N = 2500), this approximately amounts to ∼10−7 overall relative
abundance, after accounting for the ∼10 million real reads.

Due to the difficulty & expectations of this benchmark, we were required to make some
changes to the settings of all methods except ChronoStrain. First, StrainGST calls at most 5
clusters by default; to allow this method to infer strains beyond what it would have returned
on the background samples alone, we raised this value to 20. For StrainEst, we noted that
when run on default settings, the program failed to recall any of the simulated clusters when
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N < 20000, so we raised its sensitivity slightly (-p 5 -a 3) which incurs runtime cost. We
ran mGEMS using the hierarchical approach described in [28]; we first used a large bacterial
genome catalog to bin reads by species, then ran E. coli strain analysis on the E. coli binned
reads. The species binning step used a large ∼640k genome index, which is also used in
the ELMC analysis. When we ran demix_check on the E. coli bins, all scores were 4 (the
worst possible score) for all bins, including the ground-truth bins. Note that this is expected
behavior for sufficiently in-silico mutation rates: these scores are between 1 (best) to 4 (worst)
and measure novelty of the binned reads compared to the database; the scores are biased in
favor of bins which already contain the sample’s latent genomes. Thus, thus we did not factor
these scores into the analysis.

For measuring the error in abundance estimation, we computed the RMSE-log after re-
normalizing across a subset of clusters (the six source clusters, or the all clusters labeled as
phylogroup A). For an estimate ŷ, the RMSE-log metric is given by the formula

RMSE-log(y, ŷ) =

√√√√ 1
NT

N∑
i=1

T∑
t=1

(
log(yt(i) + ε) − log(ŷt(i) + ε)

)2

where ε = 10−4, an order of magnitude smaller than the smallest ratio in y.
For mGEMS, the raw mSWEEP estimate contains a considerable amount of noise, coming

from the fact that many reads pseudo-align to a majority of database strains. We built an
estimator ŷ using mGEMS outputs to help it minimize the RMSE-log error (which is sensitive
to noise at or above ε), in the following manner. Starting with the raw mSWEEP estimate ỹraw,
we build the phylogroup-only vector (or the target-only, length-six vector) ỹsubset by restricting
the vector to the desired entries and renormalizing. Then, we zeroed out all entries below
εLOD and renormalized once more; this helps remove the effect of noise from the RMSE-log.
Since this threshold is applied after an initial re-normalization on the target subset, we chose
εLOD = 0.001 so that the lowest ground-truth ratio ∼ 0.0025 was allowed to appear. This
parameter is necessary to control the RMSE-log error for mSWEEP (Figure 2b,c), because the
error tends to be large when false positives are not accounted for (Supplemental Figure S3b).

To evaluate the classification metric (AUROC), we turned each method into a classifier
by applying an abundance threshold to determine “detection”. For ChronoStrain specifically,
we varied the abundance threshold ρ described previously (Methods - Detection Classifier),
keeping the posterior threshold π = 0.99 fixed. Note that the varying the abundance threshold
for mSWEEP here means controlling the limit of detection parameter εLOD.

Computational Resources
For benchmarking, all four methods were run on stock Alienware Aurora R15s (Intel 12900KF
with 128 GB of RAM). ChronoStrain’s inference step, in particular, was run on a single RTX
3090; other benchmarked methods were not designed with GPU hardware in mind. GPU
memory size is the primary limiting factor that requires us to cluster the database. If one
includes many more markers, more database clusters and/or more samples, a GPU with more
memory is required. All benchmark analyses were able to fit on the RTX 3090 (typical CPU
memory footprint was less than ∼10GB CPU RAM).

Sequencing & Real Data Processing
MacConkey-cultured samples were sequenced in the same manner outlined for the original UMB
dataset [7]. Starting with the raw reads, we used the demultiplexed, whole-genome portion
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of the UMB dataset for all participants. Just prior to analysis, all reads from UMB were
preprocessed using the KneadData pipeline (v0.11.0, https://huttenhower.sph.harvard.
edu/kneaddata/), which invokes Trimmomatic v0.39 [59] to trim adapters and low-quality
bases at the ends (phred ≤ 10) and invokes Bowtie2 [60] to discard reads which align to the
human genome. The ELMC metagenomic reads available online did not require trimming and
decontamination.
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