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Abstract 20 

Imaging-based spatial transcriptomics technologies such as MERFISH offer snapshots of cellular 21 
processes in unprecedented detail, but new analytic tools are needed to realize their full potential. 22 
We present InSTAnT, a computational toolkit for extracting molecular relationships from spatial 23 
transcriptomics data at the intra-cellular resolution. InSTAnT detects gene pairs and modules with 24 
interesting patterns of mutual co-localization within and across cells, using specialized statistical 25 
tests and graph mining. We showcase the toolkit on datasets profiling a human cancer cell line 26 
and hypothalamic preoptic region of mouse brain. We performed rigorous statistical assessment 27 
of discovered co-localization patterns, found supporting evidence from databases and RNA 28 
interactions, and identified subcellular domains associated with RNA-colocalization. We identified 29 
several novel cell type-specific gene co-localizations in the brain. Intra-cellular spatial patterns 30 
discovered by InSTAnT mirror diverse molecular relationships, including RNA interactions and 31 
shared sub-cellular localization or function, providing a rich compendium of testable hypotheses 32 
regarding molecular functions. 33 
 34 

Introduction 35 

A grand challenge in biology is to understand how molecules and cells cooperatively perform 36 

higher-level processes and how these processes are coordinated to perform life functions. An 37 

emerging approach to this question involves using single-cell sequencing technologies which 38 

allows profiling of cellular composition and states at unprecedented resolution1,2. Spatial omics 39 

technologies further bolster this approach by characterizing the spatial organization of molecules 40 

and cells, providing insights into their functional organization. Various analytic tools have been 41 

developed to extract biological insights from spatial data, such as detecting spatially variable 42 

genes3,4, identifying spatial domains and their cellular compositions5-7, reconstructing spatial 43 

gradients in developing organs8, or inferring cell-cell interactions9,10. Most of these efforts, 44 

however, have focused on cell-level or coarser resolution analyses. For grid-based spatial 45 

encoding technologies, such as Visium11 or DBiT-seq12, the resolution is limited by grid size, which 46 

is often larger than cells. Even with single-molecule resolution technologies13-17, tissue-scale 47 

analyses mostly set the unit of analysis to be a cell6,7. The focus on cell-level analyses is likely 48 

due to the straightforward interpretations they provide, such as cellular arrangements around 49 

diseased phenotypes18, cellular interactions9, and spatial context-dependent cell functions19. 50 

 51 

Analyzing subcellular patterns of transcriptome expression can add new dimensions to our 52 

understanding of cell functions. RNA localization underlies important cellular processes such as 53 

transcriptional regulation20-22, translational regulation23, and protein localization24,25. The few 54 

studies that perform subcellular analyses on spatial transcriptomics data show exciting potential. 55 

For instance, Xia et al26 estimated RNA velocity based on the relative distribution of genes in 56 

nuclei versus cytoplasm27,28 while Bento29, a recently proposed analytical toolkit, identifies 57 



subcellular domains where a gene tends to appear and was used to explore molecular 58 

interactions involving RNA Binding Proteins (RBP)30,31. 59 

 60 

Despite this initial progress, the subcellular spatial landscape of RNA molecules remains largely 61 

unexplored, especially for single-molecule resolution maps, which tap into a new dimension of 62 

spatial architecture: spatial organization of molecules in a cell. A facet of the subcellular spatial 63 

landscape that naturally merits attention is RNA-RNA proximity. Molecular interactions are 64 

mediated by physical contacts; thus, the distance profile of molecular pairs can be used to infer 65 

potentially interacting pairs. More broadly, RNA-RNA proximity may arise due to various reasons: 66 

direct interactions between molecules, interactions with common mediator molecules, and 67 

interactions with a subcellular structure, etc. Each of these sources of proximity in turn implicates 68 

biological functions and molecular mechanisms. Even though single-molecule resolution spatial 69 

transcriptomics data offer an unprecedented window into this world of sub-cellular organization, 70 

there are no analysis tools to probe these phenomena in a large-scale and unbiased fashion. 71 

 72 

Here, we introduce Intra-cellular Spatial Transcriptomics Analysis Toolkit (InSTAnT), a set of 73 

methods for extracting subcellular localization patterns of RNA. It identifies gene pairs whose 74 

transcripts tend to appear within distance d significantly more than by chance (“d-colocalized 75 

pairs”) and reports the cellular domains where they appear. Additional modules characterize the 76 

d-colocalized pairs by their cell-type specificity and tissue-scale spatial modulation, and also 77 

identify colocalizing gene modules. InSTAnT employs formal statistical procedures to account for 78 

various sources of confounding such as overall transcript abundance, which is critical for 79 

highlighting gene pairs whose transcript-proximity has biological implications. Demonstrative 80 

applications of the InSTAnT toolkit to MERFISH data on a human osteosarcoma cell line and on 81 

mouse hypothalamic preoptic region identified hundreds of d-colocalized gene pairs with low 82 

estimated false positive rates and high reproducibility between replicates and data sources. The 83 

identified gene pairs exhibit biologically relevant higher order characteristics such as specificity to 84 

cell types or non-random spatial distribution in the tissue sample. We also found evidence of their 85 

possible relationship to RNA-RNA or RNA-protein interactions, pathway-level co-functionality, 86 

and localization to domains such as nuclear speckles. Our results suggest that InSTAnT can 87 

recover known biology and generate new hypotheses about the functional role of RNA spatial 88 

localization. We believe that the statistical concept of d-colocalization introduced in this work will 89 

serve as a fundamental unit of subcellular spatial transcriptomics analyses, similar to how co-90 

expression analysis has served as a core concept of transcriptomics analysis.  91 



 92 

RESULTS 93 

 94 

Overview of InSTAnT 95 

InSTAnT is a suite of statistical tools for spatial transcriptomics analysis at sub-cellular resolution. 96 

It can discover intracellular spatial patterns involving transcripts of multiple genes, leading to 97 

hypotheses regarding their functional relationships. At its heart is a statistical test to detect 98 

"proximal pairs” of genes by analyzing the spatial coordinates of transcripts of a set of genes 99 

within that cell, available from single-molecule resolution spatial transcriptomics technologies13-17. 100 

Specifically, the “Proximal Pairs” (PP) test determines if transcripts of a gene pair, in a given cell, 101 

are located within a distance threshold d significantly more often than expected by chance (Figure 102 

1a). The null expectation may vary from cell to cell, depending on cell size and RNA density, so 103 

it is calculated empirically based on the distances between all detected pairs of transcripts in a 104 

cell regardless of gene identities. The test provides a p-value for each gene pair, representing its 105 

departure from this expectation (Methods). The scale parameter d is user-configurable, allowing 106 

the user to probe the spatial texture at different scales. The PP test can be implemented in either 107 

two- or three-dimensions (PP-3D), depending on whether or not data are available from multiple 108 

z-planes (Methods).  109 

 110 

We define a “d-colocalized” gene pair to be a pair that is detected as proximal pair by the PP test 111 

in significantly many cells. This gives us increased confidence in a spatial relationship between 112 

the two genes. Like other statistical phenomena such as differential expression of a gene or co-113 

expression of a gene pair, d-colocalization may serve as a starting point for discovery of 114 

underlying biological relationships. To detect d-colocalization, InSTAnT provides a test called 115 

“Conditional Poisson Binomial” (CPB) test that assigns a p-value to a gene pair based on the 116 

number of cells in which it is found to be a proximal pair. This test is based on a Poisson Binomial 117 

distribution and allows for the fact that different cells have varying numbers of proximal pairs due 118 

to varying transcript counts and spatial distributions (Figure 1b, Methods). Initially, we noticed 119 

certain genes to feature among the reported d-colocalized pairs far more frequently, due to their 120 

high expression (Supplementary Figure 1). The CPB test de-emphasizes pairs involving such 121 

genes by adjusting the null distribution of each pair to account for the global d-colocalization 122 

frequency of the involved genes (Methods).  123 



Through the PP and CPB tests, InSTAnT unbiasedly identifies gene pairs with a tendency for 124 

spatial proximity, at the level of individual cells (proximal pairs) and at the level of all cells (d-125 

colocalized pairs), respectively. The InSTAnT suite is available as a python package with routines 126 

that return PP test results for every cell and CPB test results across all cells, for each gene pair. 127 

To assist with biological interpretation of the detected spatial relationships, it can annotate each 128 

d-colocalized gene pair with the cellular regions where its proximal transcripts tend to be found: 129 

nuclear, peri-nuclear, cytosolic and peri-membrane. InSTAnT reports the primary and secondary 130 

regions that has most PP counts for each gene pair across all cells (Figure 1c, Methods). 131 

InSTAnT also implements additional analyses to study d-colocalization in intact tissue, where a 132 

number of complex biological factors such as heterogeneity of cell types and interactions among 133 

neighboring cells are at play. These factors may influence, or be influenced by, RNA-RNA 134 

proximity patterns. InSTAnT can assess the cell-type specificity of d-colocalized gene pairs, 135 

characterize tissue-level spatial modulation of d-colocalization patterns, and identify modules of 136 

genes that are all frequently colocalized across multiple cells (Figure 1c).  137 

 138 

InSTAnT finds gene-gene relationships with high accuracy 139 

We first applied InSTAnT to the published MERFISH data on human osteosarcoma cells (U2-140 

OS), which profiles 130 genes in 3237 cells with an average of 1243 transcripts per cell32 141 

(Methods). Through the analysis, we identified ‘proximal pairs’ within each cell and ‘d-colocalized 142 

pairs’ across all cells with high accuracy. We calculated false positive rates (FPRs) by applying 143 

InSTAnT to a random baseline dataset established by permuting the gene labels of all transcripts 144 

within each cell, which recapitulates the spatial patterns of the original data but not the gene-gene 145 

relationships. As shown in Figure 2b (blue), the PP test identifies hundreds of significant proximal 146 

pairs with an estimated FPR below 10%. Smaller values of the scale parameter d yielded larger 147 

FPR values (red and lemon, Figure 2B), suggesting lower sensitivity of the test and/or lesser 148 

frequency of proximal pairs in this regime.  We found similar operating characteristics for the CPB 149 

test (Figure 2c). Throughout our paper, we use FPR to select p-value threshold for PP 150 

(FPR<10%) and CPB Test (FPR<1%). We arrived at similar estimates of accuracy through an 151 

entirely different approach that exploits presence of “blank” gene probes in the data (Methods and 152 

Supplementary Figure 2). Overall, our tests suggested that hundreds of gene pairs exhibit the 153 

d-colocalization phenomenon, out of all ~8,500 pairs possible with 130 genes.  154 

 155 



The CPB test had sufficient power to identify 404 d-colocalized gene pairs at an FPR of < 1% (p 156 

< 0.001), with d = 4 µm (~5% of the diameter of an average cell) (Supplementary Table 1). An 157 

example of a highly significant pair thus found is THBS1-COL5A1, with a p-value below ~1E-300, 158 

the smallest number reportable by the program. This pair appeared as a proximal pair (PP test p-159 

value < 0.01) in ~74% of the 3,147 cells where both genes were detected. Figure 2a shows the 160 

distribution of PP test p-values for this gene pair in all cells, compared to the distribution of the 161 

strongest p-value in each cell after shuffling gene labels. The comparison illustrates how the CPB 162 

test detects the persistent appearance of a proximal pair across many cells.  163 

 164 
Our next assessment focused on the replicability of d-colocalization findings across four biological 165 

replicates of the U2OS data set available from Moffit et al.32. We identified the most significant 166 

gene pairs (CPB test, d = 4 µm) in each replicate and observed that ~80% of the top 50 – 400 167 

gene pairs are common between replicates (Figure 2d), supporting the reproducibility of the 168 

reported pairs. The same assessment performed after randomizing each of the four replicate data 169 

sets yielded a baseline level of ~5% or less for the replicability expected by chance.  170 

 171 

We also tested the extent to which d-colocalization phenomena persist across independent 172 

MERFISH experiments. For this, we generated the spatial transcriptome map of U2OS cells using 173 

our home built MERFISH platform (Methods). We used InSTAnT to identify d-colocalized gene 174 

pairs from our dataset and compared the top K (for varying values of K) gene pairs between the 175 

Moffitt et al. and our data. As shown in Figure 2e, about 30-40% of the identified gene pairs are 176 

shared between these two studies, across the range of K examined. The same analysis with 177 

randomized versions of the two datasets reveals < 5% of the gene pairs to be shared between 178 

studies. As another reference point, a similar comparison of the top co-expressed gene pairs 179 

(detected using correlation of cellular transcript counts) shows similar or lesser extent of 180 

commonality between the two studies (Supplementary Figure 3). Taken together, these 181 

reproducibility analyses suggest that the d-colocalized gene pairs reported by InSTAnT capture 182 

real biological phenomena or relationships. 183 

 184 

 185 

InSTAnT constructs global d-colocalization maps 186 
 187 
The 404 d-colocalized gene pairs found using CPB test at d = 4 µm (Supplementary Table 1) 188 

constitute the global d-colocalization map. InSTAnT provides annotations of the cellular regions 189 

where each gene pair tends to colocalize, revealing perinuclear and nuclear colocalization as 190 



most frequent (Figure 3a-c, Supplementary Figure 4). We also noted many gene pairs to 191 

colocalize in the cytosolic (23) or cell periphery (16) regions (see Figures 3d,e for examples), 192 

though far less often than the other two categories. 193 

 194 

A d-colocalization map is expected to capture different biology at different values of d. The maps 195 

created from the published U2OS data at d = 1 µm (Supplementary Table 2) and 4 µm  revealed 196 

substantial complementarity (Figure 3f): while 152 pairs were common to the top 404 significant 197 

pairs of either map, 197 of the pairs in the d = 4 map had CPB test p-value > 0.1 in the d = 1 map, 198 

and 167 gene pairs were similarly exclusive to the d = 1 map. Two examples of such scale-specific 199 

pairs are FASN-DYNC1H1 (only with d = 4) and CENPF-PRKCA (only with d = 1). (See 200 

Supplementary Figure 5 for a more detailed report of their scale-dependence.) These results 201 

illustrate scale-dependence of the colocalization phenomenon and suggest that multiple types of 202 

biological relationships may underlie its detection. 203 

 204 

The d-colocalization map probes a new type of information and may represent yet-to-be-explored 205 

phenomena. Reconstructing gene-gene co-expression networks is a common analysis performed 206 

with non-spatial single cell RNA-seq data33. To test if the global d-colocalization map reflects such 207 

co-expression networks or if it reveals a different type of relationship, we derived a co-expression 208 

network from cell-level transcript counts in the same MERFISH data and found it to share ~ 30% 209 

of gene pairs with the colocalization map (Hypergeometric test p-value 6.3e-70) (Figure 3g, 210 

Supplementary Table 3). Over 70% of the pairs in either “co-expressed” or “colocalized” set 211 

were exclusive to that set, suggesting that d-colocalization relationships are not revealed through 212 

conventional co-expression analysis. 213 

 214 

In addition to constructing a basic global map, InSTAnT can run the PP test in a “intra-nucleus” 215 

mode where the analysis, including null distribution estimation, is limited to subnuclear transcripts. 216 

This mode is critical for detecting subnuclear phenomenon. The default (whole-cell) mode 217 

assumes the null distribution as uniform throughout a cell, disregarding the selective enrichment 218 

of certain genes in subcellular regions. Thus, nucleus-enriched genes, such as long noncoding 219 

RNAs (lncRNAs), often dominate detected co-localized pairs. For example, 89 of the 404 pairs in 220 

the U2-OS global co-localization map involved the lncRNA MALAT1, which is the most nucleus-221 

enriched gene (89% in nucleus). The intra-nucleus mode effectively removes such bias.  222 

As expected, many gene pairs detected by the whole-cell mode have far stronger p-values than 223 

the intra-nucleus mode due to the greater number of transcripts examined. (Supplementary 224 



Figure 6). However, we also observed a significant number of gene pairs that were assigned 225 

greater statistical significance in the intra-nucleus analysis. Such pairs promise to reveal 226 

biologically meaningful spatial patterns within nuclei, as might arise for instance from 227 

colocalization of a gene pair to subnuclear structures, organelles and domains. 228 

 229 

d-colocalization maps suggest functional relationships in U2OS cells 230 
 231 

One plausible mechanism for d-colocalization is direct or indirect interaction between two RNAs. 232 

To test this, we computed an RNA interaction score (“RRI score”) for all gene pairs using 233 

RNAplex34. To capture the greater proximity expected of interacting RNAs, we set d to 200 nm 234 

(MERFISH resolution between pixels is 167nm). For each gene, we tested if its transcript tends 235 

to have a higher RRI score for the RNAs of its d-colocalization partners (Methods) and found this 236 

to be the case for eight genes out of 130 (FDR <= 0.2) (Supplementary Table 4). An example is 237 

shown in Figure 3i, focusing on USP9X. In summary, this analysis suggests that RNA-RNA 238 

interactions may underlie some of the relationships in a global d-colocalization map at a suitably 239 

small value of the scale parameter.  240 

 241 

Furthermore, we found that the d-colocalized gene pairs were enriched with functionally related 242 

gene pairs, where we define a gene pair to be functionally related if both genes are present in the 243 

same KEGG pathway or are annotated with same biological process, molecular function, or 244 

cellular component GO terms (Methods) (Figure 3h). The highest enrichment happened with 245 

molecular function GO terms, where 461 functionally related pairs and 403 d-colocalized pairs 246 

had an overlap of 67 pairs. Interestingly, all 67 pairs in this intersection were annotated with the 247 

term “protein binding”. Overall, these results suggest that d-colocalization of a gene pair may have 248 

biological consequences such as colocalization of their protein products or protein binding to form 249 

a ribonucleoprotein (RNP) complex. 250 

 251 

The intra-nuclear analysis shows that a d-colocalization map can detect RNA-protein interactions 252 

as well as identify subnuclear domains. The most prominent pair in the intra-nucleus analysis at 253 

d=2 µm is MALAT1-SRRM2, with a CPB test p-value of 2.50e-16 (see Figure 3j), while the 254 

corresponding p-value in the whole-cell analysis is 0.51 (see marked point in Supplementary 255 

Figure 1c). It is detected as a proximal pair in 11% of the nuclei, the most for any pair involving 256 

either SRRM2 or MALAT1. Notably, the SRRM2 protein is a key marker of nuclear speckles (NS), 257 

organizing NS formation via liquid condensation35, and the lncRNA MALAT1 is well known to be 258 



localized to NS36, suggesting that the detected intra-nuclear d-colocalization of these two RNAs 259 

may be related to their colocalization in NS. This is an intriguing possibility though, since NS 260 

localization of SRRM2 protein does not imply or necessitate a similar localization of its mRNA. To 261 

see whether lncRNA MALAT1 and mRNA SRRM2 colocalize near NS, we co-stained MALAT1, 262 

SRRM2 mRNA, and SON in U2-OS cells using single molecule FISH and immunostaining (Figure 263 

3k-n). For SRRM2, the probes were designed separately for intron and exon to distinguish pre-264 

mRNA and mRNA. As expected, all the SRRM2 intron signals directly overlap with the SRRM2 265 

exon signals. Consistent with the InSTAnT result, most SRRM2 RNAs are d-colocalized with 266 

MALAT1 in SRRM2 positive cells (99±1%, N=13 cells). The overlaid SON signals show that most 267 

d-colocalized MALAT1-SRRM2 pairs are within 1 µm distance from NS (92±4% for SRRM2 exon 268 

and 88±8% for SRRM2 intron). It is well known that SRRM2 protein signals overlaps with SON 269 

signals35; thus, our result shows the d-colocalization of SRRM2 mRNA and pre-mRNA with 270 

SRRM2 proteins in nucleus. Further, these results suggest that d-colocalization maps can be 271 

used to infer subcellular domains, such as NS.  272 

 273 

InSTAnT analysis of brain MERFISH data reveals cell type-specific spatial patterns 274 
 275 
We next used InSTAnT to analyze MERFISH data37 on 5149 cells from the hypothalamic preoptic 276 

region in mouse. This brain dataset includes nine different cell types (Figure 4a), so InSTAnT’s 277 

d-colocalization maps can be used to give additional insight into cell type differences. The data 278 

feature seven z-planes and were thus analyzed with the PP-3D test of proximal pairs. We set the 279 

scale parameter d to 2 µm, corresponding to ~5% of average cell diameter. The analysis identified 280 

474 gene pairs with CPB test p-value < 1e-5 (Supplementary Table5) (estimated FPR < 1%). 281 

This map was further processed with downstream InSTAnT modules for cell type specificity and 282 

spatial modulation. 283 

 284 

InSTAnT uses a sequence of statistical tests (Methods, Figure 4b) to place d-colocalized gene 285 

pairs into one of three categories of cell type-specificity. Category 3 comprises pairs that were not 286 

associated with any cell type (Bonferroni corrected hypergeometric p-value >= 0.05, 287 

Supplementary Table 5). Pairs that did appear as proximal pairs more frequently in some cell 288 

types than expected were further divided into two classes – those where cell type specificity may 289 

arise simply because one of the genes in the pair is expressed specifically in that cell type 290 

(Category 1) and  those whose association goes beyond what would be expected from the cell-291 

type specificity of either gene’s expression (Category 2) (Methods). We identified 5 gene pairs in 292 



Category 2, specific to inhibitory neurons, excitatory neurons, and endothelial cells 293 

(Supplementary Table 6), while 203 pairs fell in Category 1. 294 

 295 

Gene pairs with strong d-colocalization signal in each category captured interesting biological 296 

processes involving their counterpart protein-protein interactions. In Category 1, the genes Aqp4 297 

(Aquaporin 4), Cxcl14 (CXC motif chemokine ligand 14) and Mlc1 (Modulator of VRAC current 1) 298 

show strong pairwise d-colocalization associated with astrocytes (CPB test p-value < 1.9E-149, 299 

Hypergeometric p-value of cell type association< 2.23E-12). As illustrated for the pair Cxcl14-300 

Mlc1 in Figure 4c, these pairs are frequently colocalized in cells of most types, but with a higher 301 

frequency in astrocytes, leading to the statistically detected specificity. Cxcl14 transcripts are 302 

known to be enriched in and possibly locally translated in peripheral astrocyte processes 303 

(PAPs)38. We speculate that Mlc1 transcripts are also subject to local translation in PAPs, leading 304 

to the d-colocalization of Cxcl14 and Mlc1. Additionally, MLC1 protein forms a complex with AQP4 305 

in cultured astrocytes39 and localizes to the cell membrane38,40 providing the functional implication 306 

of Mlc1-Aqp4 RNA d-colocalization.  307 

 308 

In Category 2 (Figure 4d), transmembrane proteins Gpr165 (G protein-coupled receptor 165) and 309 

uc011zyl.1 (adhesion molecule with Ig like domain 2) form the d-colocalized pair most significantly 310 

associated with inhibitory neurons, while Gpr165 and Omp (Olfactory marker protein, known to 311 

be involved in olfactory signaling processes41 form a d-colocalized pair specific to excitatory 312 

neurons (Supplementary Figure 7). This example illustrates that different d-colocalized pairs 313 

involving a common gene (Gpr165) can statistically mark different cell types. We observed 61 d-314 

colocalized pairs in Category 3. Aldh1l1-Mlc1 is the strongest pair (CPB test p-value: 1.6E-169), 315 

detected as a proximal pair in 7% of all cells, but these cells are not enriched for any one cell type 316 

(Figure 4e). This example suggests that d-colocalization can capture biological relationships that 317 

transcend any cell type-specific function of the constituent genes. 318 

 319 

 320 

We also identified d-colocalized gene pairs that marked cellular function, in particular inhibitory 321 

versus excitatory neurons (Supplementary Table 6). For instance, Esr1 (estrogen receptor 1) 322 

and Npy2r (Neuropeptide Y receptor Y2) are d-colocalized specifically in inhibitory neurons 323 

compared to excitatory neurons (p-value 5.9E-8, see Figure 4f). Prior work shows that the 324 

expression of these two genes underlies a social behavioral switch in virgin mice via activation of 325 



a specific subtype of neurons42, suggesting the functional implication of Esr1-Npy2r d-326 

colocalization. 327 

 328 

 329 

InSTAnT reveals tissue-level spatial modulation of d-colocalization patterns 330 
 331 
Brain tissue is well-known to be spatially heterogeneous, so we applied InSTAnT’s spatial 332 

modulation analyses to study how d-colocalization varies across the mouse hypothalamic preoptic 333 

region. Such tissue-level spatial modulation has been reported for individual gene expression3,4. 334 

In contrast, here we used InSTAnT to identify spatial patterns of transcript colocalization. 335 

 336 

The analysis is based on a probabilistic model for calculating data likelihood under the hypothesis 337 

of spatial modulated d-colocalization, for a specific gene pair. The probabilistic model (Figure 5a) 338 

examines whether the PP test detects significant colocalization in a cell and assumes that the 339 

probability of this happening depends on observed colocalization in neighboring cells, rewarding 340 

spatially clustered distributions of cells that support colocalization. Such a model is then 341 

contrasted with a null model lacking spatial dependence, resulting in a log likelihood ratio (LLR) 342 

score being assigned to each gene pair in the d-colocalization map. Pairs above a threshold 343 

(obtained using randomization of data) are then designated as spatially modulated. This yielded 344 

99 spatially modulated pairs out of the 474 pairs in the global map (Supplementary Table 7). A 345 

similar analysis for U2OS data yielded 11 gene pairs out of 404 d-colocalized pairs in the 346 

corresponding global map. The stark difference in extent of spatially modulation detected is 347 

expected, since intercellular communication plays a greater role in the biology underlying the brain 348 

data compared to cell line data. 349 

 350 

Forty nine of the 99 spatially modulated pairs in the brain data exhibited d-colocalization in a cell 351 

type-specific manner (p-value 5E-6, Bonferroni corrected p-value < 0.05). For instance, the gene 352 

pair Sgk1-Ttyh2 – the strongest spatially modulated pair (LLR 305, Figure 5f) – colocalizes far 353 

more frequently in mature oligodendrocytes than others (Hypergeometric test p-value 1.5e-248, 354 

Figure 5b). Sgk1 is a serine/threonine-protein kinase that mediates oligodendrocyte plasticity in 355 

mouse in response to stress43,44 and regulates several ion channels45, while Ttyh2 is a chloride 356 

channel noted for its transcriptional response to chronic stress in mouse oligodendrocytes46. It is 357 

plausible that the oligodendrocyte-specific d-colocalization results from a co-functional 358 

relationship between these two genes. The pair Slc17a6-Syt4 is the second strongest spatially 359 

modulated d-colocalized pair (LLR 191), detected in six different cell types but highly specific to 360 



excitatory neurons (Supplementary Figure 8). In contrast to these two examples where d-361 

colocalization is significant in multiple cell types but more frequent in one cell type, the pair Cd24a-362 

Mlc1 exhibits spatially modulated d-colocalization (LLR 79, Figure 5g) that is significant only in 363 

ependymal cells (Figure 5c).  364 

 365 

We also found 15 spatially modulated gene pairs whose d-colocalization is not specific to any cell 366 

type (Hypergeometric test p-value > 0.05 for every cell type), the strongest being Col25a1-Gad1 367 

(LLR 97, Figures 5d,h). Col25a1 is generated by different types of neurons, i.e., inhibitory as well 368 

as excitatory, and interneurons in retino-recipient regions of the mouse brain, in a Gad1-369 

dependent pattern47. In summary, the above examples of spatially modulated d-colocalization 370 

provide a rich pool of potential functional relationships for future exploration.    371 

 372 

InSTAnT reveals modules of genes colocalizing with each other 373 
 374 
We asked if the significant gene pairs found by InSTAnT point to the existence of d-colocalization 375 

“modules”, i.e., sets of genes whose transcripts tend to occur in subcellular proximity, across 376 

many cells, drawing inspiration from co-expression module discovery48. Colocalized gene 377 

modules, if found, may reflect ribonucleoprotein complex formation29,49  or other shared functional 378 

relationships30. 379 

 380 

InSTAnT provides two complementary routines for gene module discovery. The first routine, 381 

called Global Colocalization Clustering (GCC), identifies modules by representing the CPB test 382 

results as a matrix of gene-gene d-colocalization strengths and clustering rows and columns of 383 

this matrix (Methods). Figure 6a shows the results of such clustering for U2OS data, revealing 384 

two modules (top left) whose compositions are shown in Figure 6b. Module M1 (spatially 385 

illustrated in Figures 6d,e) consists of 14 genes, with 85 of 91 pairs being significantly d-386 

colocalized and all but one of these significant gene pairs being assigned a perinuclear region 387 

annotation. Gene Ontology (GO) enrichment analysis of the module revealed shared annotations 388 

(p-value < 0.05, Figure 6c) related to cytoskeleton and ribonucleoprotein complexes. mRNA-389 

cytoskeletal associations have been long known to play a key role in mRNA transport and 390 

targeting to specific subcellular locations, partly mediated by RBPs and ribonucleoprotein 391 

complexes50,51. Module M1 includes gene pairs whose protein products are known to interact, 392 

e.g., FASN-SPTBN152 and PRPF8-SRRM253,54. Module M1 also shares four genes with the nine-393 

gene module called “Group II” found to colocalize (at a coarser resolution) in fibroblast MERFISH 394 

data13. The second module (M2) comprises eight genes, with 23 of 28 pairs being significantly d-395 



colocalized, mostly with perinuclear annotation. The module is significantly enriched for several 396 

GO terms, e.g., positive regulation of cell death and receptor complex (Supplementary Figure 397 

9), and its sub-cellular colocalization may thus mirror a co-functioning of its protein products.  398 

 399 

A module reported by GCC comprises gene pairs whose d-colocalization is supported by many 400 

cells, but these supporting cells differ for different gene pairs and very few cells may have the 401 

entire module colocalized. Motivated by this, InSTAnT includes a second module discovery 402 

routine, called “Frequent Subgraph Mining” (FSM)55, that seeks a network of genes “colocalized” 403 

in many cells. (Colocalization of a network in a cell means that every edge in that network is a 404 

proximal gene pair in that cell (Figure 6f).) FSM can be used to find networks with a pre-specified 405 

minimum size (numbers of nodes and edges) that are supported by a large number of cells 406 

(Methods). For illustration, we used FSM to search for fully connected networks (“cliques”) with 407 

at least four genes and found a single module – Sgk1, Ttyh2, Ndrg1 and Ermn (Figure 6g) – that 408 

is colocalized in 72 cells, far greater than the support of the next most frequent four-gene clique 409 

(12 cells) (Figures 6i-k). The six gene pairs comprising this module are d-colocalized individually, 410 

is specific to mature oligodendrocytes and the module is significantly associated (p-value 8.3e-3) 411 

with myelin sheath56-59 (Figure 6h). We speculate that their co-localization in specific partitions 412 

inside cell reflects coordinated transport and translation in mature oligodendrocytes.   413 

 414 

Discussions 415 

In this work, we present the InSTAnT toolkit to screen for subcellular colocalization patterns of RNA 416 

pairs and modules in an unbiased manner, through rigorous statistical analysis of single-molecule 417 

resolution spatial transcriptomics data. We define d-colocalization as a new statistical phenomenon 418 

that may point to biological relationships such as RNA-RNA interactions, formation of condensates 419 

and shared subcellular localization. InSTAnT is a suite of statistical tests, at the heart of which lie the 420 

Proximal Pair (PP) test that finds colocalized gene pairs in a single cell and the Conditional Poisson 421 

Binomial (CPB) test that aggregates results of PP test across cells and reports d-colocalized gene 422 

pairs. InSTAnT provides spatial region annotations for the reported gene pairs to aid biological 423 

interpretation. It also includes procedures to characterize a d-colocalized gene pair based on its cell 424 

type specificity or spatial modulation and to identify colocalized gene modules.  425 

 426 

We employed InSTAnT to detect hundreds of gene pairs with low false positive rate and high 427 

reproducibility on human U2OS cell line and mouse brain data. The InSTAnT analysis results suggest 428 

that d-colocalization map can provide insights into various types of molecular interactions: RNA-RNA 429 

interactions (Figure 3i), protein-protein interaction or shared pathway membership (Figure 3h) and 430 



RNA-protein interactions (Figure 3j-n). The RNA d-colocalized pairs can be used to infer detailed 431 

subcellular structures or characterize membrane-less organelles such as NS. These results indicate 432 

that the spatial distribution of RNAs has “texture” rather than being relatively random as previously 433 

perceived. Our brain data analysis shows that some RNA d-colocalized pairs have cell-type specificity, 434 

are spatially modulated, and share functional annotation with other colocalizing pairs. All these results 435 

suggest that RNA colocalization likely has biological consequences.  436 

 437 

InSTAnT allows us to represent a cell as a graph where nodes represent genes and edges represent 438 

proximal gene pairs. Such a graph, along with the transcript count vector commonly used to represent 439 

an individual cell, may prove powerful in single cell analytics, allowing us to discover novel cell types 440 

through a more nuanced clustering of cells than possible using count vectors alone. It will be exciting 441 

to apply InSTAnT functionalities on future data sets that profile orders of magnitude more genes26 442 

(~10K). There are straight-forward ways to adapt the toolkit to efficiently handle this scenario, such as 443 

by sampling of transcript pairs to estimate background probabilities in the PP test and by using a 444 

greedy approach to testing only a subset of gene pairs. We expect such applications to help us better 445 

characterize intracellular compartmentalization and provide complementary axes of information for 446 

discovering regulatory and signaling interactions with and between cells. 447 

 448 

 449 

Online Methods 450 

 451 

Code Availability 452 

The code is available at https://github.com/anurendra/InSTAnT. 453 

 454 

InSTAnT user guide 455 

InSTAnT tools have tunable parameters that can be selected based on the user’s requirement. We 456 

selected the scale parameter d based on the average cell’s diameter and threshold for CPB test based 457 

on False Positive Rate (1%) estimates. The user can also obtain region annotations of a gene pair’s 458 

colocalization if the data include masks for cell and nucleus boundaries. Similarly, they may run cell 459 

type specificity analysis if the data include cell type information. We advise caution when using 460 

InSTAnT with small distance thresholds, such as 1 µm or less, as the false positive rates in this regime 461 

can be high. This is due to the fact that colocalization with small distance is relatively rare in MERFISH 462 

data and the estimate of null probability of a pair of transcripts being proximal, a key aspect of the PP 463 

test, is error-prone in such cases. We believe that higher number of transcripts and improved optical 464 

resolution17 may alleviate this problem.  465 



 466 

U2OS Dataset 467 

We obtained MERFISH data32 on a human osteosarcoma cell line (U2-OS) from 468 

http://zhuang.harvard.edu/MERFISHData/data_for_release.zip . We used the authors’ Matlab code to 469 

extract and output the data in table format. We filtered the data to retain transcripts having minimum area 470 

of 3	and intensity of 10!.#$. The dataset had 7 replicates. We were able to extract data for four replicates – 471 

rep2, rep3, rep4, rep5; the other replicates presented severe memory management challenges and were 472 

not analyzed. Most of the reported results are from analysis of rep3, which profiles 130 genes in 3237	cells 473 

with an average of 1243 transcripts per cell. Global d-colocalization maps were constructed for all four 474 

replicates and compared to assess reproducibility.  475 

 476 

Brain Dataset 477 

Data reported in Moffit et al.37 were obtained through personal communication with Dr. Jeffrey Moffitt.  The 478 

dataset contained 6325 cells with 553 average number of transcripts across 7 z-planes. We obtained cell 479 

type assignment from Supplementary Table1 from Moffit et al.37. We removed ambiguous cells leading to 480 

5149 cells with 9 cell types. Proximal pairs were detected in cells that have at least one z-plane with 20 or 481 

more transcripts.   482 

 483 

MERFISH imaging and Analysis  484 

General cell culture conditions: U2 OS cells were cultured in minimal essential medium (MEM) from 485 

ATCC with 1 mM sodium pyruvate, 10% fetal bovine serum (FBS), and 1% penicillin-streptomycin (Pen-486 

Strep). The cells were obtained from ATCC and maintained using the recommended protocol. 487 

MERFISH sample preparation: U2 OS MERFISH samples were prepared using a previously published 488 

method60. In brief, U2 OS cells were plated on a salinized 40mm #1.5 coverslip (Fisher Scientific). Plated 489 

cells were transferred to a 37 °C and 5% CO2 incubator overnight to grow. Cells were then fixed with 4% 490 

paraformaldehyde (Electron Microscopy Sciences) and permeabilized with 0.5% (vol/vol) Triton X-100 491 

(Sigma Aldrich). Samples were stained with encoding probes (10nM/probe) and anchor probes (1µM) for 492 

36 hours in a humidified incubator at 37 °C. To stabilize the cells during clearing, the stained cells were 493 

embedded in a thin, 4% polyacrylamide (PA) gel. Fiducial beads (Spherotech, FP-0245-2) were also 494 

included in the gel to align rounds of MERFISH images.  495 

Commonly used imaging solutions: The following solutions were used during imaging experiments 496 

described in this work. Readout wash buffer was adapted from Moffit et al.60 and contained 10% (v/v) 497 

ethylene carbonate (Sigma Aldrich), 0.1% Triton X-100 in 2x SSC. Imaging buffer adapted from Moffit et 498 

al.60  and contained 5mM 3,4-dihydroxybenzoic acid (PCA; Sigma Aldrich), 2 mM trolox (Sigma Aldrich), 50 499 

µM trolox quinone, 1:500 of recombinant protocatechuate 3,4-dioxygenase (rPCO; OYC Americas), 500 

adjusted to a pH of 7-7.2 using 1 N NaOH (VWR International) in 2x SSC. Cleavage buffer was adapted 501 



from60 and contained 0.05 M TCEP HCl, adjusted to a pH of 7-7.2 using 1 N NaOH, in 2x SSC. Stripping 502 

buffer was adapted from Eng. et al.14 and contained 55% formamide, and 0.1% Triton X-100 in 2x SSC. 503 

MERFISH imaging: All images were acquired using a Zeiss Axiovert-200m widefield microscope (Carl 504 

Zeiss AG) located in the IGB core imaging facility. The sample was placed into a flow cell (Bioptechs, 505 

FCS2), filled with RNAse free 2x SSC, and connected to a lab built automated flow system. Briefly, 506 

computer-controlled valves (Hamilton, MVP/4, 8-5 valve) are used to select which solution was pulled 507 

across the sample by a computer controlled pump (Gilson, Minipuls 3). All systems are controlled by a 508 

custom designed Python script that can communicate with the microscope to start imaging or start flowing 509 

after an imaging round is done. In brief, a single round of imaging involves staining with fluorescently labeled 510 

readout probes (0.4 mL/min for 6 minutes, and 0.34 mL/min for 6 minutes), washing with readout wash 511 

buffer (0.23 mL/minute for 9 minutes) to remove unbound probes, and imaging buffer was flowed into the 512 

flow cell prior to imaging (0.34 mL/minutes for 6 minutes) to reduce photobleaching. A single quad band 513 

excitation filter (Chroma, ZET402/468/555/638x) and dichroic (Chroma, ZT405/470/555/640rpc-UF1) were 514 

used to image all samples. Excitation was provided by a 7 laser system (LDI WF, 89 North). Alexa Fluor 515 

647 (Fisher scientific) labeled probes were excited using a 647 nm laser (0.5 W) with a ET700/75m 516 

(Chroma) emission filter, and 1.5 second exposure time. Atto 565 (Atto tec) labeled probes were excited 517 

using a 555 nm laser (1 W) with a ET610/75m (Chroma) emission filter, and a 0.75 second exposure time. 518 

Fiducial beads were imaged with a 405 nm laser (0.3 W) with a ET440/40m emission filter, and a 1 second 519 

exposure time. Samples were imaged with a 63x oil immersion objective (Carl Zeiss AG, 420782-9900-520 

000), and focus was maintained between imaging rounds using Definite Focus (Carl Zeiss AG). 9 z planes 521 

with 0.7 µm steps were taken for each FOV, and a total of 100 FOVs were acquired. After imaging is 522 

complete, a cleavage buffer (0.2 mL/minute for 15 minutes) was flowed across the sample to remove the 523 

fluorophores from the probes. The cleavage buffer was washed away using RNAse free 2x SSC (0.5 524 

mL/minute for 10 minutes). This process was repeated for a total of 8 rounds of imaging. PolyA probes 525 

were stained after the final imaging round using the same method as described above. 526 

MERFISH data processing: Individual FOVs were exported from czi format into 16 bit tiff format using Zen 527 

(Carl Zeiss AG) using the image export method. Images then were reformatted into image stacks by FOV 528 

and round. A modified copy of MERLIN61 was used to decode MERFISH spots. In brief, for each FOV, 529 

images from different rounds are aligned using fiducial beads that were imaged in each round. Aligned 530 

images are then normalized, decoded, and identified spots filtered using previously published methods26. 531 

Cell segmentation was done separately from MERLIN using Cellpose62 on PolyA and DAPI images for each 532 

FOV. To improve FOV alignment to neighboring FOVs, the DAPI channel was used with the restitching 533 

function found in Zen (Edge detection: on, minimal overlap: 5%, maximal shift: 15%, comparer: best, Global 534 

optimizer: best). Using the aligned images, segmented cells that cross FOV boundaries were merged into 535 

single cells, and global positions were generated for each spot. Spots are then assigned to cells based on 536 

their spatial coordinates. Spots were then filtered to remove any spot smaller than 3 pixels in size. 537 



smFISH probe design: All smFISH probes were designed using the Stellaris probe designer (Biosearch 538 

technologies). Probes were designed using the following settings: Masking level: 5, max number of probes: 539 

48, oligo length: 20, minimum spacing length: 2. SRRM2 exon probes were designed against SRRM2 540 

isoform ENST00000301740 (GRCh38.p13). SRRM2 intron probes were randomly selected from probes 541 

designed for three different introns defined by ensemble (SRRM2-230 intron 1, SRRM2-230 intron 2, and 542 

SRRM2-230 intron 10) (GRCh38.p13). MALAT1 probes were designed against MALAT1 isoform 543 

ENST00000534336 (GRCh38.p13). All probes were purchased from Biosearch modified with mdC (TEG-544 

Amino) at the 3’ terminus. The probes were dissolved in TE buffer and labeled using AF488/Cy3/Cy5 NHS 545 

esters for MALAT1, SRRM2 intron, and SRRM2 exon, respectively. The labeled probes were purified using 546 

the Bio-Rad Bio-Spin P-6 purification columns (Cat # 732-6221). 547 

smFISH sample preparation: Approximately 1.5-1.8 million U2OS cells were plated on a #1.5, 40 mm 548 

coverslip (Fisher Scientific) that has been UV treated before plating. The cells were then transferred to an 549 

incubator at 37 °C and 5% CO2, overnight for 12-16 hours. 550 

Modified from Fei et al.63, the sample was rinsed with 1x PBS (Corning), followed by fixation using 4% 551 

paraformaldehyde (PFA; Electron Microscopy Sciences) in 1x PBS for 10 minutes at room temperature 552 

(RT). The sample was then washed three times with 1x PBS and permeabilized with 0.5% Triton X-100 553 

(Sigma Aldrich), 2 mM vanadyl ribonucleoside complexes (VRC; Sigma Aldrich) in 1x PBS for 10 minutes 554 

on ice, followed by three quick washes with 1x PBS. At this point, the sample can be stored in 70% Ethanol 555 

at 4 ℃ if the experiment needs to be paused temporarily. 556 

To prepare for smFISH hybridization, sample was rinsed with 10% formamide (Sigma Aldrich) in 2x saline 557 

sodium citrate (SSC; Fisher Scientific). smFISH probe hybridization buffer was prepared with 0.2 mg/mL of 558 

bovine serum albumin (BSA; Fisher Scientific), 2 mM VRC, 10% dextran sulfate (Sigma Aldrich), 1 mg/mL 559 

yeast tRNA (Fisher Scientific), 10% formamide, 1% murine RNase inhibitor (New England BioLabs) in 2x 560 

SSC. Avoid light exposure from this point forward. smFISH probes were then added to the FISH 561 

hybridization buffer at a final concentration of 14 nM for each targeted RNA (MALAT1, SRRM2 intron, and 562 

SRRM2 exon). 563 

A humidified chamber was made using an empty pipette box filled halfway with nuclease-free water 564 

(Corning) at the base and a UV-treated glass slide covered with a parafilm layer on top. A 100 μl drop of 565 

the FISH probe hybridization buffer was then added on top of the parafilm layer and the sample was casted 566 

over the drop with the cell side facing down. The chamber was then placed in an incubator in dark and 567 

wrapped entirely with aluminum foil overnight at 37 ℃ for at least 16 hours. The sample was quickly rinsed 568 

two times with 10% formamide in 2x SSC then stained with 4’,6-diamidino-2-phenylindole (DAPI; Invitrogen 569 

by Fisher Scientific) 1:1000 of 1 mg/mL stock solution and 1:5000 of Fluoro-Max Blue Aqueous Fluorescent 570 

Particles (fluorescent beads; Fisher Scientific) in 2x SSC. The sample was incubated with the DAPI and 571 

fluorescent beads solution for 5 minutes while rocking at RT, followed by a quick wash with 2x SSC, then 572 

stored in 2x SSC at 4 °C until ready for imaging. 573 



Protein staining: After smFISH imaging, the sample can be stored in 1x PBS at 4 ℃ for up to a week 574 

before protein staining. Samples were fixed a second time with 4% PFA in 1x PBS for 5 minutes at RT, 575 

then rinsed three times with 1x PBS. This was followed by incubation with a blocking solution of 1% BSA 576 

in 1x PBS for three consecutive times with 10 minutes each time at RT. 577 

The SON primary antibody (Anti-SON, Sigma Aldrich, HPA023535) was kept at -20 ℃ until ready for use. 578 

The primary antibody stock solution of 1:1000 was prepared with 1x PBS and kept on ice. A 1:5000 primary 579 

antibody dilution was prepared in blocking solution and the sample was incubated with 200 µl of the primary 580 

antibody solution for approximately 1 hour at RT in the dark. 581 

The sample was washed with blocking solution three consecutive times with a 10-minute incubation each 582 

time at RT, followed by three washes with 1x PBS, for 10 minutes each time at RT. 583 

Secondary antibody was conjugated to Alexa Fluor 647 (Goat anti-rabbit, Invitrogen, A21245). The 584 

concentrated secondary antibody was kept at 4 ℃ until ready for use. Sample staining was accomplished 585 

by 1:1000 dilution of the secondary antibody in blocking solution and casting of the sample on a 200 µl drop 586 

of the secondary antibody solution, with the cell side facing down. The sample was then incubated for 1 587 

hour in the dark at RT. The sample was re-stained with DAPI in 1x PBS with the same concentration and 588 

incubation time described in smFISH staining section. This was followed by a quick rinse with 1x PBS and 589 

the sample was stored in 1x PBS at 4 ℃ until ready for imaging. 590 

smFISH image acquisition: smFISH and protein imaging were done on the same MERFISH imaging and 591 

fluidic system described above (MERFISH imaging). After placing the sample into the flow cell, imaging 592 

buffer was flowed through the system (0.34 mL/minute for 5 minutes). Excitation and dichroic filters were 593 

the same as used above. The following dyes, lasers, and emission filters were used for smFISH imaging. 594 

Channel Target Laser line (power) Exposure time Emission filter 

DAPI Fiducial beads, nuclei 405 nm (0.3 W) 0.075 seconds ET440/40m 

Alexa Fluor 488 MALAT1 lncRNA 470 nm (1 W) 2 seconds ET525/50m 

Cy3 SRRM2 intron RNA 555 nm (1 W) 2 seconds ET610/75m 

Cy5 SRRM2 exon mRNA 640 nm (0.5 W) 3 seconds ET700/75m 

 595 

Samples were imaged with the same 63x oil immersion objective as above, and focus was maintained 596 

between imaging rounds using Definite Focus. 9 z planes were imaged with a step size of 0.7 µm. After 597 

imaging, smFISH probes were removed using a stripping buffer that was flowed through the system (0.34 598 

mL/minutes for 5 minutes) without removing the sample from the microscope. After stripping the sample 599 

was washed with 2x SSC (0.5 mL/minutes for 5 minutes). The sample was imaged a second time using the 600 

same settings as above. After imaging the sample was removed from the flow cell and placed into 1x PBS 601 

prior to protein staining (Protein staining). 602 

After protein staining was complete, sample was placed into the flow cell and filled with imaging buffer. The 603 

same region imaged during the smFISH experiment was found and reimaged using the same objective and 604 

z stack settings as above. The following imaging settings were used. 605 

Channel Target Laser line (power) Exposure time Emission filter 

DAPI Fiducial beads, nuclei 405 nm (0.3 W) 0.05 seconds ET440/40m 



Alexa Fluor 647 SON protein 640 nm (0.5 W) 1.5 seconds ET700/75m 

 606 

SRRM2 image registration and alignment: Individual FOVs were exported from czi format into 16 bit tiff 607 

format using Zen’s (Carl Zeiss AG) image export method. To align images from the same FOV across 608 

multiple rounds of imaging or experiment, blue fluorescent beads imaged in the DAPI channel were used 609 

as fiducial markers. We found that aligning images from the same experiment required a simple translation. 610 

To align protein images with mRNA images, an iterative rotation and translation process was developed. 611 

For each iterative round of alignment, the protein DAPI channel was rotated, then translated to best align 612 

with the mRNA image, this warped image was then used as the starting protein DAPI image for the next 613 

round of alignment. We found that it took between 2 and 5 rounds of alignment to align protein images to 614 

mRNA images. Chromatic aberration was corrected by aligning all channels to the Cy5 channel. Multicolor 615 

beads (Multi-speck bead slide, Carl Zeiss AG, 1783-455) that included dyes in the Alexa Fluor 488, Cy3, 616 

and Cy5 channels were used to correct Alexa Fluor 488 and Cy3 channels. The DAPI channel was 617 

corrected to the Cy5 channel using the fiducial bead cross talk between the DAPI and Alexa Fluor 488 618 

channels. This was done by calculating the shift between non-nuclear regions of the DAPI and Alexa Fluor 619 

488 channels, then adding the Alexa Fluor 488 to Cy5 shift to the DAPI to Alexa Fluor 488 shift. 620 

SRRM2 image preprocessing: To remove cross talk in DAPI and Alexa Fluor 488 channels caused by 621 

the fiducial beads, stripped Alexa Fluor 488 mRNA channel was subtracted from the stained Alexa Fluor 622 

488 channel. As fiducial beads are not affected by the mRNA stripping conditions, any spots that remain in 623 

the stripped Alexa Fluor 488 channel would be from the beads, not from MALAT1 mRNA. In order to reduce 624 

background in other images, round subtraction was also done on the other channels of the mRNA FOV. 625 

SRRM2 co-localization analysis: Co-localization analysis was done on a single z plane from each 626 

experiment stack. Images were then filtered using a high pass filter (5 pixel sigma) and Lucy–Richardson 627 

deconvolution (10 iterations, 9 pixel filter size, 1.4 pixel sigma). Filtered images are then converted to binary 628 

masks with manually defined thresholds. To remove false positives in the MALAT1 channel, the MALAT1 629 

mask was multiplied with the inverse of the stripped MALAT1 mask. Cell nuclei were identified using the 630 

DAPI channel, and segmented using a manually defined threshold. 631 

The co-localization rate was calculated for each nucleus defined from the DAPI channel. To calculate the 632 

co-localization rate between two channels, each channel is multiplied against the nuclei mask. For each 633 

spot in the first mask, the spot was dilated by 2 µm and then compared against the second mask. If the 634 

dilated spot overlaps any spot in the second mask, it is considered to be colocalized. The colocalization 635 

rate was then calculated to be the following: 636 

																																															𝑐𝑜𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 	 %&'(&)*(+,-.	01&20	)2
3&2*(	01&20	)2

∗ 100%  637 

The colocalization percent was averaged across 13 cells. 638 

SRRM2 figure and generation (Figures 3k-n): SRRM2 exon and intron images were filtered using a high 639 

pass filter with 2 pixel sigma, while MALAT1 was filtered using high pass filter with 5 pixel sigma. Raw SON 640 

images were used in panels Figures 3 m,n.  641 



 642 
False Positive Rate (FPR) 643 

We generate random baseline dataset established by permuting the gene labels of all transcripts within 644 

each cell, which recapitulates the spatial patterns of the original data but not the gene-gene relationships. 645 

FPR is obtained by comparing the number of detected pairs obtained on randomized data with number of 646 

detected pairs on real data.  647 

Ten of the 140 genes probed in the U2OS MERFISH data set were “blanks”, meaning that they 648 

do not represent any particular RNA or other molecule. Any gene pair involving such blank “genes”, if found 649 

to d-colocalize, is clearly a false positive. This provided us another opportunity to assess 650 

the false positive errors in our global co-localization map. We recorded the fraction of such false positives 651 

among predicted pairs at varying levels of significance (Supplement Figure 2, blue). 652 

 653 

Hyperparameter selection 654 

Scale parameter d was chosen to be 4 microns in U2OS dataset and 2 microns for Brain dataset, as it 655 

corresponded to ~5% of average diameter of a cell in the respective datasets. The p-value threshold for PP 656 

test was chosen to be 0.01 for both the datasets which resulted in FPR~5%. p-value threshold for CPB test 657 

was chosen to be 1e-3 for U2OS and 1e-5 for Brain dataset as it resulted in FPR<1%. p-value threshold 658 

for frequent subgraph mining on Brain dataset was chosen to be 0.05 as threshold of 0.01 didn’t yield any 659 

subgraph. 660 

 661 

Proximal Pair (PP) test 662 

PP test reports proximal pairs of genes in a particular cell. A gene pair 𝑔+ , 𝑔4 is a proximal pair in a cell if 663 

their transcripts are proximally located (separated by distance	𝑑  or less) significantly more often than 664 

expected by chance. The null probability 𝑝 is estimated from the distances between all pairs of transcripts 665 

(regardless of gene identities) in the cell, by calculating the fraction of transcript pairs that are proximally 666 

located. Let 𝑡+ and 𝑡4 denote the transcript counts of genes 𝑔+ , 𝑔4 respectively in the cell, let 𝑇 = 𝑡+𝑡4 and let 667 

𝐾 be the number of proximally located transcript pairs of these genes.  The PP test performs a Binomial 668 

test providing a p-value for 𝑔+ , 𝑔4 	as 669 

 670 

p-value7𝑔+ , 𝑔48 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙	(𝑇, 𝑝, 𝐾) 671 

 672 

PP-3D test 673 

PP-3D is an extension of PP test to handle three-dimensional data in the form of 2D (x-y) locations of 674 

transcripts in each of multiple 𝑧-planes. We assume that data from different planes are independent and 675 

identically distributed. The new distribution is the sum of independent Binomial distributions (with the same 676 

parameter), which is also a Binomial distribution. The null probability of two transcripts being proximal is 677 

estimated as a weighted combination of estimated null probability for each of the z-planes, 678 



 679 

𝑝 ≡ ∑ 𝑙,𝑝,,

∑ 𝑙,,

 680 

where, 𝑝, denotes the null probability for 𝑧-th plane, 𝑙, denotes the total number of transcripts in 𝑧-th slice. 681 

𝑇 and 𝐾 are also aggregated across z-planes: 682 

𝑇 =	?𝑇,	
,

 683 

𝐾 =?𝐾,
,

 684 

where  𝐾, is total number of proximal transcript pairs and 𝑇,	is total number of transcript pairs (of 𝑔+ , 𝑔4) in 685 

𝑧-th plane. PP-3D calculates a p-value for each gene pair as p-value7𝑔+ , 𝑔48 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙	(𝑇, 𝑝, 𝐾). 686 

 687 

Conditional Poisson Binomial (CPB) test 688 

CPB test detects a 𝑑-colocalized gene pair, i.e., a gene pair that is a proximal pair in significantly many 689 

cells. It assigns a p-value to the number of cells in which a gene pair is found to be proximal pair detected 690 

using PP test. We first describe a simpler version of the test (“unconditional Poisson Binomial” or UPB) test 691 

that assumes that all gene pairs are equally likely to be proximal pair in a cell but allows for the fact that 692 

different cells may have different number of proximal pairs. Let 𝑋+4)  be a binary variable denoting if 𝑔+ , 𝑔4 	are 693 

a proximal pair in 𝑐-th cell. 𝑋+4)  is assumed to follow a Bernoulli distribution with parameter 𝑝!), which is 694 

estimated as the fraction of proximal gene pairs in the cell: 695 

𝑝!) =≡
∑ 𝑋5,() 	57(

∑ 157(

= ∑ 𝑋5,() 	57(

A𝑛2C
 696 

where 𝑛 denotes total number of genes. This estimate of 𝑝!) assumes that all gene pairs can be a proximal 697 

pair. To incorporate the fact that a gene pair cannot be a proximal pair if either of the genes is not expressed 698 

in the cell, the above estimate is modified as, 699 

𝑝!) ≡
∑ 𝑋5,() 	57(

∑𝐼57((𝑔5 , 𝑔() 700 

where 𝐼(𝑔5 , 𝑔() is an indicator function that equals to 1 iff both 𝑔5 and 𝑔( are expressed.  701 

 702 

CPB test is a modified version of the UPB test that accounts for the possibility that all gene pairs are not 703 

equally likely to be colocalized in a cell and sets the Bernoulli parameter (𝑝!)  above) to be gene pair-704 

dependent. Let 𝑧+ denote total number of proximal pairs having gene 𝑖 as one of the genes, aggregated 705 

across all cells, i.e., 706 

     𝑧+ =	∑ 𝑋+4)47)  707 

   708 

We use these global summary statistics to model the prior probability Π+4 that a proximal pair detected in a 709 

cell is the gene pair 𝑔+ , 𝑔4, as follows: 710 



     Π+4 ≡ ,!	,"

∑ ,!!#" ,"	
 711 

This model de-emphasizes gene pairs comprising genes that are frequently found to be in proximal pairs 712 

across cells. Now, the Bernoulli parameter for variable 𝑋+4)  is estimated as 713 

𝑝+4) ≡ 1 − 71 − Π+48∑ 9!"
%

!#"
 714 

 715 

The total number of cells where 𝑔+ , 𝑔4  is a proximal pair follows a Poisson Binomial distribution 716 

?𝑋+4)
:

);<

∼ 	𝑃𝑜𝑖𝑠𝑠𝑜𝑛	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙	(𝑝+4< , … , 𝑝+4:)	 717 

Spatial Annotation 718 

A d-colocalized pair is annotated by cellular region where the gene pair’s proximal pairs tend to be found. 719 

We define four categories – Nucleus (Nuc), Peri-Nucleus (PN), Cytosol (Cyto) and Cell Periphery (CP). 720 

Proximal pairs in each cell are annotated by cellular region and is aggregated across cells to yield primary 721 

and secondary category. Perinuclear (PN) region is defined as including x microns on either side of the 722 

nuclear membrane, while Cell Periphery (CP) is defined as regions within y microns of the cell membrane. 723 

Remaining regions are designated as Cytosol (Cyt) or Nucleus (Nuc). We chose x = 2.5 micron which 724 

corresponded to ~43% of nucleus transcripts being annotated as perinuclear, and y = 4 micron which 725 

corresponds to ~35% cytosolic transcripts being annotated as cell periphery. 726 

 727 

RNA-RNA Interaction (RRI) 728 

For RRI, we set distance d to be equal to the resolution of MERFISH data (200 nm). The small distance 729 

was chosen to capture gene pairs whose d-colocalization may be explained due to the binding of their 730 

transcripts.  We used RNAplex34 to compute the RRI scores. For this, we retrieved the nucleotide 731 

sequences from the Ensembl database64 and got the specific transcript id to get the correct spliced form. 732 

RNAplex has been shown to be among the most accurate tools while being fast enough to compute the 733 

scores for gene pairs with their full transcripts. Finally, we perform a gene-centric analysis for each of the 734 

130 genes.  For each gene, we ask if top 10 d-colocalized  pairs (out of 130) has significantly higher number 735 

of pairs with RRI score greater than a fixed threshold (RRI>35). We perform a Binomial test whose success 736 

probability is obtained as follows. We model background distribution by fitting a Gaussian distribution to the 737 

RRI scores of the pairs with d-colocalization score greater than 0.01. The survival probability of RRI scores 738 

higher than the fixed threshold (RRI>35) serves as the success probability of Binomial test. Finally, we 739 

perform an FDR correction using the Benjamini-Hochberg procedure65. 8 of the genes pass this FDR 740 

correction showing that RRI may be a plausible mechanism for their d-colocalized pairs. 741 

 742 

Enrichment Analysis 743 

To understand the biological mechanism or consequences of d-colocalization, we tested if the compendium 744 

of d-colocalized gene pairs has significant overlap with functionally related gene pairs. We define a gene 745 



pair to be functionally related if both genes are present in same KEGG 746 

pathway or are annotated with same GO terms more than K times.  K was chosen such that 747 

number of gene pairs is similar across d-colocalized and functionally related set. In our analysis, K (MF) = 748 

2 , K (BP) =1 , K (CC) = 3, K (pathway) = 1.  We performed a hypergeometric test between d-colocalized 749 

pairs and functionally related set. 750 

 751 

Cell Type Specificity of a d-colocalized Gene Pair 752 

InSTAnT employs a series of statistical tests to categorize a d-colocalized pair based on its cell type 753 

specificity. First, it tests the association between cells where a gene pair was deemed a significant proximal 754 

pair and cells of a particular type (e.g., inhibitory neurons), using a Hypergeometric test. (This process is 755 

repeated for every cell type.) If such an association is found to be statistically significant, it is subjected to 756 

further tests to determine if the cell type specificity arises simply because one of the genes in the pair is 757 

expressed specifically in that cell type. For this, InSTAnT utilizes a version of the generalized 758 

Hypergeometric test that tests for an association between two sets conditional on a third set66, as described 759 

below. In this case, the third set comprises the cells with high expression of one of the genes in the pair.  760 

 761 

Let 𝑈 be the set of all cells, 𝑀 be the set of cells of a particular cell type, 𝑂 be the set of cells where a gene 762 

pair is deemed a proximal pair and 𝐸 be the set of cells with high expression of one of the genes in the pair. 763 

𝑀, 𝑂 and 𝐸 are subsets of 𝑈. The threshold for high gene expression used in defining 𝐸 is chosen such 764 

that size (𝐸) = size (𝑀). Let |𝑀 ∩ 𝐸| = 𝛾, |	𝑀 ∩ 𝑂| = 𝜆, |𝐸 ∩ 𝑂| = 𝛼	|. The Hypergeometric test p-value of 765 

association between 𝑀and 𝑂 is given by the probability that a random set of size |𝑂| has an overlap 766 

(intersection) of size greater than or equal to 𝜆	with 𝑀. However, we wish to test if the overlap between 𝑀 767 

and 𝑂 is significant beyond what is expected not from a random set of size |𝑂| but a random set of this size 768 

that respects the known overlap between 𝑀 and 𝐸 and between 𝐸 and 𝑂. For this, we calculate probability 769 

of the overlap between 𝑀 and a random set of |𝑂| being greater than or equal to 𝜆 conditional on the 770 

observed overlap between 𝑀 and 𝐸 and that between 𝐸 and 𝑂, as follows: 771 

 772 

∑ ∑ A𝛾𝛽CA
𝑚 − 𝛾
𝑘 − 𝛽CA

𝑛< − 𝛾
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 773 

 774 

This is an example of multivariate hypergeometric distribution. We use scipy.stats.multivariate_hypergeom 775 

package for multivariate hypergeometric distribution. 776 

 777 

For each gene pair that is associated with a cell type, InSTAnT performs the above test twice, each time 778 

conditioning on a set 𝐸 defined by the high expression cells for one of the genes of the pair. Significant p-779 

values in both tests thus performed indicate that the cell type-specificity of the d-colocalized gene pair is 780 



significant beyond what is expected from the specificity of either gene’s expression. Furthermore, InSTAnT 781 

tests if either gene of the pair is a marker of the cell type, defined as any gene among the top 10 by 782 

association between their expression and the cell type. A marker gene is found by conducting 783 

Hypergeometric test of overlap between 𝑂 and 𝐸.  784 

 785 

Using the above tests, InSTAnT categorizes a d-colocalized gene pair vis-à-vis its cell type specificity as 786 

follows: If the gene pair is significantly associated with a cell type (first test above), then it belongs to 787 

Category 1 if the association is significant by the Hypergeometric test conditional on high expression cells 788 

of both genes and neither gene is a marker of the cell type, otherwise it belongs to Category 2. Category 3 789 

comprises d-colocalized gene pairs that are not associated with any cell type (Bonferroni corrected 790 

hypergeometric p-value >= 0.05, Supplement Table 5). 791 

 792 

Probabilistic graphical model for Spatial Modulation 793 

 794 

InSTAnT uses a likelihood ratio test to determine if sub-cellular colocalization of a d-colocalized gene pair 795 

is spatially modulated at the tissue level. Informally, this means that the cells in which the gene pair is 796 

deemed to be a proximal pair are non-randomly distributed in the physical space.  797 

The probabilistic model is formulated around a graph with a node for each cell and edges between 798 

neighboring cells. Two cells are neighboring cells if they are located within a configurable distance (set to 799 

100 micron in our tests). Each node is associated with a binary variable 𝑠)  that indicates whether the 800 

specific gene pair (say 𝑔+ , 𝑔4) is a proximal pair in the corresponding cell 𝑐, as detected by the PP test. The 801 

variable 𝑠)	 is assumed to be a Bernoulli-distributed variable. The null hypothesis is that the Bernoulli 802 

parameter is a global constant 𝑝G(&H*( shared across all cells, i.e., it does not depend on the cell 𝑐 and thus 803 

on its spatial location: 804 

𝐻!:	𝑠) ∼ 𝐵𝑒𝑟(𝑝G(&H*() 805 

𝑝G(&H*(  is estimated as the fraction of cells where the gene pair  𝑔+ , 𝑔4  is a proximal pair, which is its 806 

maximum likelihood estimate. In the alternative hypothesis, the model assumes that the distribution of 807 

variable 𝑠)	 depends on the fraction of cells 𝑐′ in the neighborhood of 𝑐 for which 𝑠)′ = 1.		Let 𝑝(&)*( be the 808 

fraction of cells 𝑐′ in the neighborhood of 𝑐 for which 𝑠)′ = 1.  809 

𝐻<:	𝑠) ∼ 𝐵𝑒𝑟(𝑤	𝑝(&)*(	 + (1 − 𝑤)𝑝G(&H*() 810 

0 < 𝑤 < 1 811 

The parameters 𝑝G(&H*( , 𝑝(&)*( , 𝑤	are learnt by maximizing likelihood. Weight 𝑤 controls the contribution of 812 

local neighborhood. InSTAnT calculates the log likelihood ratio (LLR) for each gene pair in the d-813 

colocalization map and pairs with LLR above a threshold are designated as spatially modulated. The 814 

threshold is obtained by random permutation of the of 𝑠)	values of cells, repeating the above test and 815 

selecting the highest LLR score (over all gene pairs) seen on the randomized data. This allows us to detect 816 

spatially clustered distributions of cells supporting 𝑔+ , 𝑔4 colocalization.  817 



 818 

 819 

Module Discovery: Global Colocalization Clustering (GCC) 820 

GCC is a procedure to analyze a d-colocalization map to identify subsets of genes that exhibit a high 821 

frequency of pairwise d-colocalization relationships. To this end, it represents the d-colocalization map as 822 

an 𝑛 x 𝑛 matrix (𝑛 = number of genes) whose entries are the negative logarithm of p-values of gene pairs 823 

from the CPB test and performs a hierarchical clustering of rows and columns using Euclidean distance 824 

with Ward criterion. (The constant 1e-64 is added to all the p-values to handle zero p-values prior to taking 825 

logarithms.) 826 

 827 

 828 

Module Discovery: Frequent subgraph mining (FSM) 829 

FSM seeks a network of genes that is “colocalized” in many cells, where colocalization of a network in an 830 

individual cell means that every gene pair connected by an edge in that network is a proximal pair in that 831 

cell. It constructs a colocalization graph for each cell with genes as nodes and edges representing proximal 832 

gene pairs from PP test. It then uses an efficient graph mining tool called gSPAN55 to detect subgraphs 833 

with a pre-specified minimum size (numbers of nodes and edges) that are supported by a pre-specified 834 

minimum number of cells. 835 

 836 

 837 

 838 
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