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Abstract 

Src family protein kinases (SFKs) play a key role in cell adhesion, invasion, proliferation, survival, apoptosis, and angio-
genesis during tumor development. In humans, SFKs consists of eight family members with similar structure and 
function. There is a high level of overexpression or hyperactivity of SFKs in tumor, and they play an important role in 
multiple signaling pathways involved in tumorigenesis. FYN is a member of the SFKs that regulate normal cellular pro-
cesses. Additionally, FYN is highly expressed in many cancers and promotes cancer growth and metastasis through 
diverse biological functions such as cell growth, apoptosis, and motility migration, as well as the development of drug 
resistance in many tumors. Moreover, FYN is involved in the regulation of multiple cancer-related signaling pathways, 
including interactions with ERK, COX-2, STAT5, MET and AKT. FYN is therefore an attractive therapeutic target for vari-
ous tumor types, and suppressing FYN can improve the prognosis and prolong the life of patients. The purpose of this 
review is to provide an overview of FYN’s structure, expression, upstream regulators, downstream substrate molecules, 
and biological functions in tumors.
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Introduction
Tyrosine Kinases(TK) consists of 90 enzymes whose 
main function is to catalyze the transfer of ATP phos-
phate groups to tyrosine residues of target proteins [1]. 
According to their structures, they can be divided into 
receptor protein tyrosine kinases (RTKs) and non-recep-
tor protein tyrosine kinases (NRPTKs). RTKs include 
EGF receptor family, MET receptor family, ALK receptor 
family, FGF receptor family, RET receptor family, VEGF 
receptor family, Eph receptor family and DDR family etc. 
NRPTKs include SRC family, SYK family, FES family, FAK 
family, ABL1 and BCR-ABL family, and JAK family etc. 
The substrates are phosphorylated as a signaling mecha-
nism between the cell surface, cytoplasmic proteins, and 

nuclear activation [2]. When cells are exposed to external 
and internal stimuli, TKs participate in cell proliferation, 
survival, differentiation, and metabolism [3, 4].

The SRC family of kinases (SFKs) is one of the over-
expressed TKs in cancers. Previous studies identi-
fied eight SRC family kinases (SFKs) in Homo species, 
and several of these genes play crucial roles in cancer 
progression. The Oncomine platform contained 448 
unique analyses for FYN expression, which was overex-
pressed in 8 of 448 unique analyses. SRC had significant 
expression in 8 of 409 unique analyses, YES had sig-
nificant expression in 14 of 460 unique analyses, LCK 
had significant expression in 14 of 466 unique analy-
ses, LYN had significant expression in 33 of 459 unique 
analyses, HCK had significant expression in 18 of 432 
unique analyses, FGR had significant expression in 14 
of 452 unique analyses, and BLK had significant expres-
sion in 8 of 429 unique analyses (Fig.  1).They  have 
been proposed as molecular targets for treatment for 
decades [5]. FYN, also known as p59-FYN, SLK, SYN, 
is a 59  kDa protein containing 537 amino acids with 
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genetic information located on chromosome 6q21 and 
was originally identified as a member of the SFKs [6]. 
FYN is primarily localized to cytoplasmic leaflets in 
the cytoplasmic membrane, which phosphorylates 
tyrosine residues of the key molecules involved in dif-
ferent signaling pathways [7]. FYN is a tyrosine kinase 
involved in transporting various cell surface receptors 
from the cytoplasmic signaling cascade. FYN contains 
the N-terminal region required for plasma membrane 
binding, and two Src homology (SH) domains (SH2 and 
SH3) are involved in protein interactions and are highly 
conserved catalytic domains, including the adenosine 
triphosphate (ATP) binding site and the C-terminal tail, 

which contains a negative regulatory tyrosine site phos-
phorylation [8]. In between the SH2 and SH1 struc-
tural domain is a circular SH2-linked mediator with a 
pseudo-SH3 binding site containing a tyrosine residue 
(Y416), which is activated by autophosphorylation and 
is required for its optimal activity [9, 10]. The active site 
of the kinase is in the SH1 structural domain, followed 
by the C-terminal regulatory fragment. Dephosphoryl-
ation of tyrosine residue (Y527) activates SKFs because 
it exposes the SH1 region tyrosine site, which can be 
modified by phosphorylation [11]. FYN regulates cell 
growth, survival, adhesion, cytoskeletal remodeling, 
motility, axon guidance, synaptic function, and central 

Fig. 1  The mRNA expression levels of the SRC family in human cancers. The number of analyses that meet the thresholds was shown in the colored 
cells. The gene rank determines the cell color, which represents the importance of genes in cancer. The red and blue indicate over-expressed 
and under-expressed respectively, and the brighter red or blue implies a gene with a higher or lower level of expression that is more statistically 
significant
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myelin-forming nervous system, in addition to platelet 
activation and T-cell receptor signaling [12–17].

Regulatory mechanisms of FYN expression 
and activity
 Protein levels significantly impact protein kinase activity, 
which in turn greatly influences the biological significance 
of protein kinases. Thus, the main factors affecting FYN 
expression in cancer are transcription factors, miRNA, 
and ubiquitinated degradation (Fig. 2)
Transcription factors
During chronic myeloid lymphocytic leukemia (CML), 
the transcription factors SP1 and EGR1 bind to the FYN 
promoter, which reduces FYN expression [18]. FYN 
expression levels and downstream protein activation are 
decreased in pancreatic cancer cells where transcription 
factor PRDM14 is knocked down [19]. High levels of 
FYN and STAT5 are present in the positive feedback loop 
between basal breast cancer cells. FYN interacts directly 
with STAT5 and increases p-STAT5, which further acts 
as a transcription factor for FYN [20]. In Acute lympho-
blastic leukemias, FYN is a target gene for the transcrip-
tion factor RUNX2 [21]. Additionally, KLF5 binds to the 
FYN promoter region to induce its transcription, and 
overexpression of FYN improves lamellar pseudopod 

formation and migration in bladder cancer cells in which 
expression of KLF5 is reduced [22].

MicroRNA (miRNA)
It has been demonstrated that miR-125a-3p regulates 
FYN expression and contributes to the progression of 
multiple cancers [23–28]. FYN is a downstream target 
of miR-153-3p, and the downregulation of miR-153-3p 
levels promotes FYN expression for esophageal squa-
mous cell carcinoma (ESCC) proliferation [29]. The 
miR-381 inhibits MAPK signaling by downregulating 
FYN, thereby making breast cancer cells more sensi-
tive to doxorubicin (DOX) [30]. miR-369 also has been 
demonstrated to target the 3’UTR of FYN to regulate its 
expression [31]. Several proteins in the megakaryocyte 
GPVI signaling pathway, including FYN, are regulated by 
miR-15a-5p [32]. miR-140 inhibits FYN kinase mRNA to 
establish axon-dendritic polarity [33]. FYN is regulated 
by miR-431-5p in diffuse large B-cell lymphoma (DLBCL) 
[34]. Bioinformatic analysis revealed that FYN is a target 
gene of miR-122-5p[35]. miR-466 overexpression signifi-
cantly reduces the expression of a network of transcrip-
tion factor RUNX2 target genes, including FYN, and 
inhibits tumor growth and bone metastasis in prostate 
cancer [36]. A systematic analysis of miRNA-mediated 

Fig. 2  Major factors regulating FYN mRNA and protein expression. The main factors affecting FYN expression in cancer are transcription factors, 
miRNA, and ubiquitin E3 ligases
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gene regulation in tamoxifen-resistant breast cancer cell 
lines (TamRs) compared to their parental tamoxifen-sen-
sitive cell lines demonstrated that miR-33b, miR-342-5p 
were significantly associated with FYN and can directly 
regulate its expression [37]. FYN can also promote the 
biosynthesis of miR-5088-5p by inducing its hypermeth-
ylation to mediate breast cancer proliferation and metas-
tasis [38]. In the current study, several miRNAs were 
identified that could regulate FYN expression-medi-
ated role in cancer. More miRNAs associated with FYN 
expression will likely be discovered in the future.

Degradation of post‑translational ubiquitination
It has been demonstrated that endogenous Cbl medi-
ates the ubiquitination of FYN and determines the rate of 
FYN protein turnover [39, 40].

The upstream regulators of FYN
The upstream regulators of FYN

The function of FYN as a protein kinase in cancer is 
regulated by protein levels and its activity, and this sec-
tion will focus on its upstream regulatory molecules 
(Fig. 3).

By activating FYN, Integrin beta6 can trigger the Raf-
ERK/MAPK pathway to promote the progression of oral 
cancer [41]. SHP2 facilitates the localization and activa-
tion of FYN downstream of alpha6beta4 integrin to pro-
mote cancer invasion [42]. According to Akash Gulyani 

and colleagues, adhesion/integrin signaling influences 
cellular FYN activity [43]. Expressing constitutively active 
EGFR mutant EGFRvIII results in FYN phosphorylation, 
which promotes glioblastoma progression and invasion 
[44]. In breast cancer, the Ras oncogene significantly 
upregulates FYN mRNA, protein, and kinase activity [45]. 
The binding of platelet-derived growth factor (PDGF) to 
its receptor leads to activation of the protein tyrosine 
kinase FYN, which is phosphorylated on the N-terminal 
portion of Tyr28 after interacting with the intracellular 
structural domain of the PDGF β receptor. Subsequently, 
it is autophosphorylated on Tyr30, Tyr39 and Tyr420 
[46]. It has been displayed that FYN is phosphorylated 
by PKA on S21. This phosphorylation regulates FYN 
activity, adherent spot targeting and is required for cell 
migration, and mutating S21 to S21A blocks PKA-medi-
ated FYN phosphorylation and alters its tyrosine kinase 
activity [47]. Kinome analysis of human natural killer cell 
receptor-induced phosphorylation revealed that trigger-
ing CD16 resulted in phosphorylation of FYN at N-ter-
minal S21, S25, and S26, while adjacent Y28 depicted a 
trend towards dephosphorylation [48]. In the FYN/ Vav1 
complex, FYN can be phosphorylated at the Tyr-129 
[49, 50]. FYN kinase activity is inhibited by PTPa knock-
down, and elevated FYN activity in the presence of PTPa 
results from increased phosphorylation of FYN at Tyr-
528 and Tyr-417 [51]. CD5 activation induced tyrosine 
phosphorylation of FYN and inhibited phosphorylation 

Fig. 3  An overview of FYN-interacting proteins. Multiple molecules can regulate FYN activation or inactivation through phosphorylation, and once 
activated, FYN interacts with and phosphorylates a wide variety of proteins serving as mitotic regulators, oncogenes or tumor suppressors
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of ZAP-70, and FYN activity was inhibited by phospho-
rylating its inhibitory C-terminal Tyr531 [52]. IEC18 cells 
transfected with K-ras have increased phosphorylation of 
FYN on Tyr-142 and elevated kinase activity than con-
trols [53]. SHP2 knockout cells demonstrated increased 
phosphorylation and reduced kinase activity at the 
inhibitory pY531 of FYN [54]. LL-37 and IG-19 inhibit 
IL-32/FYN kinase activity by inhibiting the Y420 of FYN 
phosphorylation mediated by interleukin-32 (IL-32) [55]. 
CD5-FYN phosphorylation is maintained at equilibrium 
and controlled by the kinase activity of FYN, which phos-
phorylates PAG-Tyr317. This phosphorylation allows 
docking of Csk, which in turn phosphorylates FYN at 
its C-terminal inhibitory tyrosine, leading to a decrease 
in FYN activity and thus closing this activation loop [52, 
56, 57]. Integrin-mediated hyperphosphorylation of FYN 
activation and new protein synthesis was observed after 
stimulation in highly metastatic cells [58]. By activating 
FYN, HGF/MET promotes the progression of prostate 
cancer [59, 60]. Both classical Wnt3a and non-classical 
Wnt5a pathways stimulate Fz2 phosphorylation, FYN 
activation by Fz2, and FYN-dependent phosphorylation 
of Stat3 [61]. Hyperphosphorylation of autophosphoryla-
tion site tyrosine in FYN was detected in protein tyros-
ine phosphatase N23 (PTPN23)-deficient breast cancer 
tumors, confirming that FYN could be a therapeutic 
target for PTPN23 heterozygous or pure deletion breast 
tumors [62]. Integrins are involved in triggering FAK-
Y397 phosphorylation, and a portion of FAK is located 
in the lipid raft/fossa structural domain where it interacts 
with FYN leading to elevated levels of FYN phosphoryla-
tion and elevated activity [63]. Microarray transcriptomic 
and bioinformatic analysis of ovarian cancer identified 
FYN as a key downstream target in the transcriptome of 
GNAi2/gip2 regulated tumor progression [64].

The downstream substrates regulated by FYN 
in tumors and its biologic functions
 Substrates regulated by FYN (Fig. 3)
FYN phosphorylates calmodulin h3 and calmodulin 
h1 at the Tyr261 and Tyr182 [65]. FYN was also found 
to phosphorylate AMPKa at Y436 and inhibit its enzy-
matic activity without affecting the assembly of the het-
erotrimer complex of AMPK [66]. FYN phosphorylates 
the IP(3) receptor at the Tyr 353 [67]. One study dem-
onstrated that FYN phosphorylates β-adducin at Tyr-489, 
located in its C-terminal tail structural domain [68]. The 
phosphorylation of Sam68 by FYN reverses this action 
and facilitates the selection of the Bcl-x(L) splicing site 
[69]. Phosphorylation of Nrf at Tyr-568 by FYN results 
in nuclear export of Nrf2, binding to Nrf2, and degra-
dation of Nrf2 [70, 71]. The selective regulation of Pyk2 
phosphorylation by FYN in  vivo correlates with FYN’s 

preferential phosphorylation of Pyk2 in  vitro [72]. FYN 
phosphorylates AMPK to inhibit AMPK activity and 
AMP-dependent activation of autophagy, and in addi-
tion, FYN directly phosphorylates LKB1 at Y261 and 
365, and mutations at these sites result in LKB1 export 
to the cytoplasm and increase AMPK phosphorylation 
[66, 73]. 32P radiolabeled in vitro kinase assays displayed 
phosphorylation of COX2 by FYN, and further stud-
ies revealed that phosphorylation of residue Y446 in the 
COX2 enzyme by FYN resulted in increased enzyme 
activity without altering the protein level of COX2, which 
is a direct substrate for phosphorylation by FYN. FYN 
constitutively associates with and phosphorylates Cas, 
suggesting that tyrosine phosphorylation of Cas may be 
catalyzed by FYN [74–76]. The Tyr-828 and Tyr-852 sites 
of the stem cell marker CD133 are phosphorylated in 
the cytoplasm by FYN tyrosine kinase [77]. It has been 
demonstrated that increased tyrosine phosphorylation 
of GSK-3beta directly corresponds to the increased asso-
ciation of FYN, suggesting that FYN may phosphorylate 
GSK-3beta or mediate phosphorylation of GSK-3beta 
[78]. Activated FYN kinase phosphorylates histone H3 
at Ser-10 [79]. FYN phosphorylates IP3R1 in Tyr353[80]. 
Phosphorylation of IFITM3 by FYN leads to a decrease 
in IFITM3 ubiquitination [81]. FYN kinase directly phos-
phorylates LKB1 at Y261 and Y365, and mutations at 
these sites result in LKB1 export to the cytoplasm and 
increased AMPK phosphorylation [73, 82, 83]. FYN 
phosphorylates Nrf2 Y568, leading to nuclear export 
and degradation of Nrf2 [84, 85]. Y420 is a major site 
of phosphorylation of RLK by FYN, and phosphoryla-
tion of this site activates RLK kinase [86]. In an in vitro 
kinase assay, Src and FYN were able to phosphorylate 
RSK2 directly at Tyr-529 [87].The differential potential 
of FYN to phosphorylate Sam68 can be controlled by the 
interaction of the kinase SH3 structural domain with the 
linker and Sam68, possibly based on competitive bind-
ing [88]. FYN phosphorylates and activates ZAP-70, two 
kinases that cooperate in TCR signaling [89]. FYN drives 
G6PD by phosphorylating STAT3 expression, leading to 
the promotion of tumor growth and inhibition of cellu-
lar senescence [90]. It has been demonstrated that FYN 
directly phosphorylates CD147 at Y140 and Y183, while 
CD147-FF (Y140F/Y183F) mutation impairs the interac-
tion between CD147 and FYN, and knockdown of FYN 
expression significantly attenuates the malignant pheno-
type of melanoma cells by downregulating CD147 phos-
phorylation [91, 92]. FYN interacts with ARHGEF16 to 
regulate the proliferation and migration of colon cancer 
cells, and knockdown of FYN expression decreases ARH-
GEF16 protein levels in colon cancer cells[93]. Inhibition 
of FYN blocks the phosphorylation level of FAK/N-
WASP, which in turn prevents hepatic stellate cell (HSC) 
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activation, proliferation, and migration[94]. In breast 
cancer cells, FYN knockdown led to reduced phospho-
rylation of zeta/delta (Thr232) and Cdc25A (Ser124) [95]. 
Upon EGFR activation, 6PGD is phosphorylated by FYN 
at tyrosine Y481, and this phosphorylation enhances 
6PGD activity, which activates NADPH and PPP of 
ribose 5-phosphate, thereby detoxifying intracellular 
reactive oxygen species (ROS) and accelerating DNA syn-
thesis [96]. Inhibition of FYN activity in pancreatic can-
cer is upregulated by P21-activated kinase 1 expression 
and promotes phosphorylation and nuclear localization 
of hnRNP E1, leading to the construction of a spliceo-
some complex that affects variable splicing of integrin 
β1 [97]. There is negative reciprocal regulation between 
SMAD4 and FYN in ovarian tumors, and knockdown of 
SMAD4 results in elevated levels of FYN expression, and 
FYN activation leads to dissociation of cell-cell junctions 
and adhesion, resulting in increased tumor metastasis 

[98]. FYN affects proliferation, apoptosis, migration, and 
invasion of pancreatic cancer cells through phosphoryla-
tion of GluN2b and regulation of the AKT signaling path-
way [99]. In angio-immunoblastogenic T-cell lymphoma 
(AITL) and peripheral T-cell lymphoma not otherwise 
specified (PTCL, NOS), the FYN-TRAF3IP2 fusion gene 
induces aberrant NF-κB signaling downstream of T-cell 
receptor activation, and inhibition of FYN-TRAF3IP2-
induced NF-κB signaling in tumors with an IκB kinase 
inhibitor provides potent anti-lymphoma effect [100].

Biological functions of FYN kinase in cancer
Current evidence indicates that FYN plays a pro-onco-
genic role in cancer development. The role of FYN in 
cell cycle, cell adhesion, proliferation, metastasis, drug 
resistance, and intrinsic immunity will be discussed in 
this section(Fig. 4).

Fig. 4  Multiple biological functions of FYN in cancer. Mainly includes the role of FYN in cell cycle, cell adhesion, proliferation, metastasis, drug 
resistance, and intrinsic immunity
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 FYN regulates the tumor cell cycle
FYN functions as a member of the Src family of kinases 
to prevent cytoplasmic division after mitosis utiliz-
ing anti-SH2, and as a result, cell division is inhibited 
[101, 102]. It has been demonstrated that FYN regulates 
mitotic spindle formation through its effect on micro-
tubule polymerization and stabilization.FYN promotes 
mitotic spindle formation through increased microtubule 
aggregation, leading to cell formation that accelerates 
M-phase progression [103]. Insufficient FYN activity has 
been reported to cause cytoplasmic division failure and 
prevent mitosis from proceeding [104]. During cytoplas-
mic division, FYN is localized to the cortical membrane-
bound domain depending on its N-terminal length [105]. 
Cortical FYN is thought to be involved in regulating 
cytoplasmic division [104]. The above findings suggest 
that FYN inhibits mitotic progression and blocks pericel-
lular progression.

 FYN regulates tumor cell adhesion
Intercellular adhesion was enhanced by inhibiting FYN 
activity with dasatinib or silencing FYN [106]. The ini-
tial adhesion of T cells follows activation, but it does not 
require the action of FYN kinase. However, in late cell 
adhesion, non-catalytically functional FYN is required 
[107]. Phosphorylated FYN (pTyr530) is upregulated 
in Integrin α6-deficient acute lymphoblastic leukemia 
(ALL) and mediates the development of chemoresistance 
through adhesion [108].

 FYN regulates tumor cell proliferation
FYN is a proto-oncogene belonging to the Src family, 
which has been reported in many studies to promote 
cancer cell proliferation and inhibit apoptosis. FYN is an 
important mediator and regulator of mitogenic signal-
ing cell cycle entry, growth, and proliferation [60]. FYN is 
upregulated in thyroid cancer at both mRNA and protein 
expression levels, which promotes cell proliferation and 
inhibits apoptosis in thyroid cancer [109]. FYN is a direct 
target of microRNA-125a-3p, which directly inhibits the 
expression and activity of FYN, and induces cell cycle 
capture and expression of FYN downstream proteins, 
which in turn inhibits cell proliferation. This suggests that 
FYN promotes tumor cell proliferation [23]. In chronic 
granulocytic leukemia, increased FYN expression and 
activity promote the transition from chronic granulo-
cytic leukemia to the acute phase and accelerate cell 
proliferation [110]. FYN induces osteoclast proliferation 
inhibiting osteoclast apoptosis [111]. FYN expression is 
dysregulated in acute myeloid leukemia (AML) patient 
samples, and FYN is associated with wild-type FLT3 and 
oncogenic FLT3-ITD. This correlation depended on the 
kinase activity of FLT3 and the SH2 structural domain of 

FYN. Multiple FYN binding sites were present in FLT3, 
and FYN expression induced slightly enhanced phos-
phorylation of AKT, ERK1/2, and p38 and effectively 
enhanced STAT5 phosphorylation and colony forma-
tion. Moreover, higher expression of FYN in combination 
with FLT3-ITD mutation resulted in enrichment of the 
STAT5 signaling pathway and was associated with poor 
prognosis in AML. These results demonstrate that FYN 
promotes AML cell proliferation by selectively activating 
the STAT5 pathway in cooperation with oncogenic FLT3-
ITD in cell transformation [112]. LINC00152 promotes 
esophageal squamous cell carcinoma (ESCC) prolifera-
tion by downregulating miR-153-3p and promoting FYN 
expression [29]. In glioblastoma, FYN phosphorylates 
PIKE-A and thus promotes its binding to AMPK, inhib-
its the tumor suppressive effect of AMPK, and promotes 
tumor cell proliferation [113]. Inhibition of FYN activity 
inhibits pancreatic cancer cell proliferation [114]. Skin 
squamous cell carcinoma (SCC) cells, increased FYN 
activity decreases Notch1/NICD mRNA and protein 
expression levels and promotes STAT3 phosphorylation 
to induce proliferation and tumorigenesis [115]. FYN 
phosphorylates STAT3 and promotes G6PD expression, 
promoting malignant glioma growth and inhibiting cel-
lular senescence [90]. FYN interacts with ARHGEF16 to 
promote colon cancer cell proliferation [93]. The FYN/
STAT3 pathway inhibits melanoma cell growth [116]. 
FYN stimulates pancreatic cancer progression through 
phosphorylation of GluN2b and the regulated AKT 
protein kinase signaling pathway [99]. 5 ‘nucleotidase 
domain containing 2 (NT5DC2) promotes glioblastoma 
progression by upregulating FYN expression levels [117].

FYN regulates tumor epithelial‑mesenchymal transition 
(EMT) and metastasis
Epithelial-mesenchymal transition (EMT) is the 
transformation of acute epithelial cells into adjacent 
mesenchymal cells that occurs during embryonic trans-
differentiation and plays an extremely important role 
in cancer metastasis [118, 119]. FYN upregulates the 
expression of mesenchymal markers of breast cancer, 
epithelial-mesenchymal transition (EMT)-related tran-
scription factors, and downregulates the expression of 
epithelial cells to induce the development of EMT [120]. 
It has been revealed that epithelial integrin αvβ6 com-
plexes with FYN kinase in oral SCC promote EMT and 
migration [121]. miR-125a-3p inhibits epithelial-mesen-
chymal transition in pancreatic ductal adenocarcinoma 
(PDAC) by directly targeting FYN [26]. FYN has also 
been demonstrated to promote EMT and tumor metas-
tasis in colon cancer cells [122].It has been demonstrated 
that FYN promotes cell migration and invasion by regu-
lating the AMPK / mTOR signaling pathway in CCA cell 
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lines, and therefore knocking down FYN expression lev-
els is an effective option for anti-CCA therapy [123]. In 
thyroid cancer, FYN can also control tumor cell migra-
tion and invasion [109]. The expression of FYN by KLF5 
can increase tumor invasion and cell migration in blad-
der cancer[22]. The DEP-1-FYN reciprocal regulatory 
loop section promotes the migration of microglia in 
brain tissue [124]. Ras/PI3K/Akt signaling can increase 
FYN overexpression in cancer, thereby promoting tumor 
cell migration and invasion [45].FYN forms a molecu-
lar complex with Nck and PAK-2 and p-Tyr molecu-
lar complexes with Nck and PAK-2 and assembles in a 
p-Tyr1214-dependent manner. This triggers activation 
of the SAPK2/p38 MAP kinase module and promotes 
endothelial cell migration [125]. Chemoattractant recep-
tor binding induces FYN-dependent PI3K activation 
bound to LFA-1 and suggests that FYN is required to ini-
tiate and/or regulate chemoattractant-mediated LFA-1 
activation to promote targeted migration [126]. Inhibi-
tion of FYN activity inhibits metastasis in pancreatic 
cancer [114]. FYN and its downstream molecular signal-
ing pathway proteins are upregulated in prostate cancer 
expression [127]. FYN promotes the maintenance of the 
neuroendocrine phenotype of tumor cells in progressive 
prostate cancer as well as Vascular metastasis of cancer 
[60]. miR-125a-3p overexpression inhibits the activity of 
FYN, FAK, and paxillin, thus suppressing prostate can-
cer metastasis [27]. FYN is recruited to the α6β4/ SHP2 
complex by interaction with phospho-Y580 at the C-ter-
minus of SHP2 for activation, and this Y580-SHP2 inter-
action localizes FYN to the receptor binding site, which 
is required for α6β4-dependent promotion of invasive 
metastasis [42]. It has been demonstrated that upregu-
lation of FYN expression is associated with metastasis 
in human pancreatic cancer. Inhibition of FYN activa-
tion by kinase-inactivating FYN transfection in BxPC3 
pancreatic cancer cells reduced liver metastasis in nude 
mice [128]. At this stage, we have revealed that FYN in 
gastric cancer promotes proliferation and metastasis 
through phosphorylation of TOPK to enhance its onco-
genic activity and activation of TOPK downstream pro-
liferation and metastasis-related signaling pathways. FYN 
and ARHGEF16 interact to promote the migration of 
colon cancer cells [93]. Ampelopsins A and C induce cell 
metastasis by downregulating FYN expression in breast 
cancer cells [129]. IBSP promotes the growth and inva-
siveness of colorectal cancer (CRC) by a potential mecha-
nism of activating the FYN/β-catenin signaling pathway 
[130]. FYN expression is elevated in melanoma cells, and 
knockdown of FYN significantly inhibits the prolifera-
tion and migration of melanoma cells by downregulating 
CD147 phosphorylation [92]. FYN has been demon-
strated to promote gastric cancer metastasis by activating 

STAT3-mediated epithelial-mesenchymal transition 
[131]. A TCGA cancer database analysis based on genes 
related to lipid metabolism in colon adenocarcinoma 
found that FYN gene expression was associated with the 
activation of the EMT pathway [132]. It has been shown 
in another study that increased FYN expression may con-
tribute to hepatocellular carcinoma metastasis [133].The 
Wnt5-Fzd2-FYN-Stat3 axis contributes to the EMT pro-
gram, cell migration, and multiple tumor metastases, and 
the FYN inhibitor Dasatinib inhibits this process [122].

The role of FYN in tumor drug resistance
The emergence of drug resistance remains a formidable 
challenge for the effective treatment of cancer patients, 
and several studies have found that FYN promotes drug 
resistance in tumors. Knockdown of FYN protein expres-
sion levels rather than inhibition of its activity sensitizes 
TKI-resistant cells to dasatinib, a dual BCR-ABL1/Src 
inhibitor [134]. Knockdown of FYN kinase by pharmaco-
logical inhibition or siRNA-mediated re-sensitization of 
chronic granulocytic leukemia (CML) cells to the BCR-
ABL inhibitor imatinib-resistant cell line (IM-R cells) to 
imatinib [135]. Concurrently, FYN overexpression in the 
tamoxifen-sensitive group reduced sensitivity to tamox-
ifen treatment. At the same time, knockdown of FYN 
expression restored sensitivity to tamoxifen, and mecha-
nistic studies suggested that FYN overcomes the anti-
proliferative effects of tamoxifen by activating important 
cell cycle-related proteins [95]. miR-381 promotes the 
chemosensitivity of breast cancer cells to DOX by down-
regulating FYN to inactivate MAPK signaling[30]. Over-
activation of FYN in dasatinib-resistant cell promotes 
the development of drug resistance [136]. FYN causes 
tamoxifen resistance in breast cancer (ER+), and knock-
down of FYN expression or use of FYN inhibitors signifi-
cantly inhibits the growth of tamoxifen-resistant cells and 
the association with poor prognosis in breast cancer [37]. 
The involvement of FYN in anticancer drug resistance 
has been demonstrated, where increased FYN expression 
was associated with resistance to imatinib in the K562 
cell [137]. FYN modulates imatinib resistance in prostate 
cancer patients through interaction with miR-128/193a-
5p/494 [138]. Thus, FYN is highly expressed in several 
cancer-resistant cell and is involved in developing cancer 
drug resistance.

FYN and intrinsic immune response
The FYN splice variant (FYNT) was first identified 
in T lymphocytes, and the development and activa-
tion of lymphocytes, macrophages, dendritic cells, 
and natural killer (NK) cells is enhanced by increased 
expression or activation of Src and its downstream 
protein PI3K [12, 17, 139, 140]. One study confirmed 
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that antigen-specific T cell activation depends on 
FYN activity and its knockdown severely impairs T 
cell responses [140]. Clinical studies in CML patients 
treated with dasatinib (a Bcr-Abl tyrosine kinase 
inhibitor that also inhibits SFKs) revealed transient 
immunosuppression characterized by IgE-dependent 
activation of hemophilic and T-cell receptor-depend-
ent activation of T lymphocytes [141]. Another study 
demonstrated SFK inhibitor effects on patients after 
dasatinib treatment. The loss of FYN binding to 
intraluminal leaflets accompanied by lipid perturba-
tion attenuated NK cell activation [142]. FasL overex-
pression enhances NK and T cell-mediated killing by 
recruiting FYN through proline-rich domains [143]. 
FYN in High expression of FYN in glioma cells reduces 
immune activation against glioma, and inhibition of 
FYN improves the efficacy of anti-glioma immuno-
therapy [144]. The FYN-ADAP pathway preferen-
tially regulates cytokine production in NK and T cells 
[145]. FYN directly binds and phosphorylates ADAP, 
SKAP55, and SHP-2, while SHP-2 interacts with PD-1 
to induce PD-1 + CTLA-4 + CD8 + TIL in tumors 
[146].

The value of targeted FYN inhibition in cancer 
therapy
Several compounds have been shown to inhibit the kinase 
activity of FYN in cancer and have also shown to be of 
great value in cancer therapy. Most of these compounds 
are SRC family kinase inhibitors, and some of them also 
target other kinases, however, there is sufficient evidence 

to confirm that they may be valuable targets in clinical 
therapy (Table 1).

SFKs inhibitors in clinical studies
Several highly specific FYN inhibitors have been devel-
oped and shown to be effective in clinical trials. These 
inhibitors include mainly Dasatinib, Saracatinib, etc. In 
the following section, we elaborate on the role that these 
inhibitors play in cancer treatment.
Saracatinib is a highly specific small molecule inhibi-

tor of SRC family kinases with an IC50 value of 10  nm 
against FYN. In a phase II clinical trial, Saracatinib was 
confirmed to act as a metastasis suppressor for prostate 
cancer in the initial stages [147].The anticancer drug sara-
catinib inhibits phosphorylation of invasion-associated 
substrates by inhibiting the SRC kinase, which results 
in a reduced invasive capacity for head and neck squa-
mous cell carcinomas (HNSCC) [154]. Combined with 
5-FU, saracatinib has also been shown to have enhanced 
antitumor effects in gastric cancer [155].It has shown a 
strong antitumor effect in preclinical models of Biliary 
tract carcinoma (BTC) [156]. Additionally, saracatinib 
can be used by itself or in combination with radiotherapy 
to treat malignant tumors, such as glioblastoma (GBM) 
[157].
Dasatinib is a novel and effective multitargeted inhibi-

tor of kinases of the SRC family, as well as several other 
kinases. In a phase II clinical trial in melanoma, dasat-
inib was not significantly effective due to poor patient 
tolerance and dosage reductions in the study [148]. An 
immunotherapy-plus-dasatinib treatment of mice with 

Table 1  Clinical trials in the context of SFKs. Data collected from clinicaltrials.gov on 10th Jan 2023

Inhibitor/Drug Condition(s) Phase Clinical Trials ID Refs
of trial

Saracatinib prostate cancer II NCT01267266 [147]

Dasatinib melanoma II NCT00700882 [148]

JNJ-26483327 solid tumors I NCT00676299 [149]

TPX-0046 Non Small Cell Lung Cancer I, II NCT04161391 NA

Medullary Thyroid Cancer

RET Gene Mutation Metastatic Solid Tumor

Advanced Solid Tumors

AZD0424 Advanced Solid Tumors I NCT01668550 [150]

Saracatinib Small Cell Lung Cancer II NCT00528645 [151]

TPX-0022 Advanced NSCLC, Gastric Cancer or Solid Tumors I, II NCT03993873 NA

AZD0530 Non Small Cell Lung Cancer, Epithelial Ovarian Cancer I NCT01000896 NA

Ponatinib Acute Lymphoblastic Leukemia II NCT05306301 NA

Bosutinib Advanced Breast Cancer I NCT03854903 NA

KX2-391 Bone-Metastatic, Castration-Resistant Prostate Cancer II NCT01074138 [152]

Repotrectinib Locally Advanced Solid Tumors/Metastatic Solid Tumors I, II NCT03093116 [153]

ON123300 Solid Tumors I NCT04739293 NA
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liver metastases from colorectal cancer significantly 
increased immune cell infiltration into the tumor, there-
fore enhancing anti-tumor immunity [158]. Chemother-
apy combined with dasatinib is also significantly more 
effective in treating tumors than chemotherapy alone 
[159–161]. As a result of its inhibition of multiple tar-
gets, dasatinib produces anti-growth, anti-angiogenic, 
and pro-apoptotic effects in oral cancer [162]. Dasatinib 
has also been shown to be effective in breast cancer [163, 
164]. According to another clinical trial, Dasatinib inhib-
its T-cell receptor signaling and is therapeutic for Angio-
immunoblastic T-cell Lymphoma [165]. An exploratory 
study in melanoma cell lines found that Dasatinib is anti-
proliferative and anti-metastatic, and its combination 
with chemotherapy may improve responses [166].
Ponatinib is a multitarget inhibitor that targets pri-

marily on Abl, PDGFRα, VEGFR2, FGFR1 and SRC, with 
an IC50 of 5.4 nM for SRC. It was found that chemo-
therapy and ponatinib together achieved early and sus-
tained remissions for newly diagnosed Philadelphia 
chromosome-positive acute lymphoblastic leukaemia 
and improved the prognosis for patients [167].Another 
study of Philadelphia chromosome-positive leukemias 
also demonstrated significant anti-leukemic activity of 
ponatinib in terms of disease stage and mutation status 
[168]. Additionally to its therapeutic effects in CML and 
Ph + ALL, ponatinib has shown significant antitumor 
effects in some solid tumors [169, 170].
Bosutinib is a novel dual SRC/Abl inhibitor with 

an IC50 of 1.2 nM against SRC. A phase 4 clinical trial 
found that Bosutinib was more effective than TKIs for 
patients with Ph + CP CML [171, 172]. Bosutinib com-
bined with Pemetrexed would be significantly more effec-
tive than either agent alone in metastatic solid tumors 
[173]. According to another clinical study, bosutinib in 
combination with chemotherapy significantly enhances 
antitumor activity in locally advanced or metastatic 
breast cancer [174]. Bosutinib inhibits the activation of 
EGFR, therefore reducing the progression of head and 
neck cancer [175]. In HeLa Cells,Bosutinib produces 
tumor suppressive effects by inhibiting Src/NF-κB/Sur-
vivin expression [176]. Bosutinib also inhibited the pro-
liferation and migration of non-small cell lung cancer 
(NSCLC) in another study [177].
Repotrectinib is an ALK/ROS1/TRK inhibitor [153] 

and also a potent SRC inhibitor with an IC50 of 5.3 nM. 
A significant antitumor effect is observed in non-small 
cell lung cancer patients treated with repotrectinib [178]. 
Repotrectinib showed significant antitumor effects in 
neuroblastoma models and was more effective when 
combined with chemotherapy [179, 180].

Conclusions and future perspectives
In tumors, FYN is expressed at elevated levels and is 
involved in many signaling pathways. It phosphoryl-
ates downstream signaling proteins, which promotes 
tumor growth. FYN has been studied in prostate can-
cer, pancreatic cancer, leukemia, breast cancer, thyroid 
cancer, bile duct cancer, and other tumors. FYN expres-
sion levels of both mRNA and protein were significantly 
higher in prostate cancer cells than in normal cells. 
Clinical samples from prostate cancer patients demon-
strated that FYN, FAK and PXN expression levels were 
both increased with significant correlations, hence, FYN 
might be a prostate cancer molecular target [127]. FYN 
is downstream of the HGF/MET signaling loop, and 
HGF can effectively regulate FYN activity, which pro-
motes prostate cancer biology by promoting cell growth 
and regulating targeted chemotaxis-translocation com-
ponents in prostate cancer biology [59]. However, it has 
been demonstrated that the FYN tyrosine kinase gene at 
chromosome 6q21 is a novel candidate tumor suppres-
sor in prostate cancer and that FYN is downregulated 
by chromosomal deletion and promoter hypermeth-
ylation and expression in prostate cancer [181]. FYN 
increases prostate cancer cell COX2 activity regardless 
of changes in COX2 or COX1 protein expression levels. 
The results of this study depict that FYN phosphoryl-
ates human COX2 on Tyr 446 and that the correspond-
ing phosphorylated COX2 activating mutation promotes 
COX2 activity, and the phosphorylation inactivating 
mutation prevents the FYN-mediated increase in COX2 
activity, which is known to be overexpressed in prostate 
cancer [182]. Computational analysis of FYN expression 
in the prostate cancer cell line database demonstrated a 
correlation between neuroendocrine (NE) markers such 
as CHGA, CD44, CD56, and SYP expression. FYN con-
tributes to vascular metastasis in progressive prostate 
cancer [60]. Studies of FYN in prostate cancer have not 
been entirely consistent, with some studies suggesting 
that FYN is proliferative and metastatic in prostate can-
cer, while others suggest that FYN expression is down-
regulated in prostate cancer and is a tumor suppressor 
in prostate cancer. However, current studies mainly 
favor FYN as a proto-oncogene in prostate cancer with 
oncogenic activity. Second, in breast cancer, detection 
of FYN levels in clinical samples using immunohisto-
chemical techniques (IHC) revealed that FYN expres-
sion levels are significantly higher in breast cancer than 
in adjacent normal tissues and are an important factor 
in the poor prognosis of breast cancer [183]. Overex-
pression of FYN in breast cancer has been reported in 
the literature, and FYN overexpression promotes cell 
proliferation, migration, and invasion. In addition, FYN 
upregulates the expression of mesenchymal markers and 
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epithelial-mesenchymal transition (EMT)-related mark-
ers. It downregulates the expression of epithelial markers, 
and the results suggest that FYN mediates FGF2-induced 
EMT through FOXO1 transcriptional regulation and 
via PI3K/AKT and ERK/MAPK pathways [120]. Protein 
tyrosine phosphatase N23 (PTPN23) is a key player in 
breast epithelial cells and an inhibitor of cell motility and 
invasion in breast cancer cells. Knockdown of PTPN23 
expression detects tyrosine hyperphosphorylation at the 
autophosphorylation site in FYN. The overexpression of 
FYN in breast cancer has been documented, and thus the 
proliferative phenotype of breast cancer disappears upon 
inhibition of FYN expression, suggesting that FYN is a 
downstream molecule of PTPN23 mediating breast car-
cinogenesis [62]. FYN is required to maintain the basal 
breast cancer subtype, which is the most aggressive and 
has mesenchymal features with high metastatic capacity. 
It has been demonstrated that FYN enhances NOTCH2 
activation in basal breast cancer cells through STAT5-
mediated upregulation of Jagged-1 and DLL4 NOTCH 
ligands, thereby contributing to the mesenchymal phe-
notype. FYN and STAT5 are present at high levels in 
the positive feedback loop between basal breast cancer 
cells. FYN directly interacts with STAT5 and increases 
p-STAT5, which further acts as a transcription factor for 
FYN [20]. In addition, FYN is associated with tamoxifen 
resistance in breast cancer, and the above studies estab-
lish the role of FYN in promoting tumorigenesis and 
invasive metastasis in breast cancer. In pancreatic can-
cer, FYN is associated with tamoxifen resistance. In pan-
creatic cancer, FYN coordinates with HnRNPA2B1 and 
Sam68 to regulate apoptosis and promote proliferation 
and metastasis of pancreatic cancer [184]. Upregulation 
of FYN expression in pancreatic cancer is associated with 
pancreatic cancer metastasis, and in pancreatic cancer 
cells, reduced or absent FYN activity significantly inhib-
ited liver metastasis in nude mice. Active FYN promotes 
pancreatic cell metastasis by regulating proliferation and 
apoptosis[128]. It has been demonstrated that Inhibi-
tion of FYN activity and/or hnRNP E1 overexpression 
decreased metastasis in pancreatic cancer cells, and FYN 
/ hnRNP E1 signaling regulated pancreatic cancer metas-
tasis by affecting variable splicing of integrin β1 [97]. 
Inhibition of FYN expression in pancreatic cancer sig-
nificantly inhibited proliferation, migration, and invasion 
of pancreatic cancer cells [29]. In prostate cancer, FYN 
overexpression, in turn, promotes thyroid cancer cells in 
colon cancer, and FYN induces early adhesion in colon 
cancer cells [63]. The next study confirmed that FYN pro-
motes metastatic invasion in colon cancer [122]. In acute 
lymphoma, FYN interacts with FLT3-ITD to selectively 
activate STAT5 and induce the transformation of lym-
phoma cells, and inhibition of FYN may assist in treating 

patients with acute lymphoma [112]. In addition, FYN 
expression is associated with acute and chronic leukemia. 
FYN knockdown or downregulation inhibits the migra-
tion and invasion of cholangiocarcinoma cells [123]. 
However, the relationship between FYN and apoptosis 
is controversial, and some studies have demonstrated 
that FYN promotes apoptosis in tumor cells [185]. In 
advanced neuroblastoma, FYN levels are downregulated 
and positively correlate with survival in patients with 
advanced neuroblastoma [186].

However, the current research on the biological role 
of FYN in tumor inhibition is mainly pro-cancer, but we 
do not know whether FYN also plays a anti-cancer role 
in other unstudied tumors. Considering that different 
tumors have different specificities, studying the role of 
FYN in other tumors is of great importance. Currently, 
multiple clinical trials are underway to evaluate inhibi-
tors of FYN/SRC, which not only improve chemotherapy 
efficacy, [159–161, 174], but also significantly enhance 
the therapeutic response to immunotherapy and radio-
therapy[157, 158]. A variety of preclinical studies have 
also demonstrated that FYN/SRC inhibitors inhibit mul-
tiple tumor progressions[155, 156, 162, 166, 175]. Hence, 
in order to better understand the activation and inactiva-
tion of FYN, as well as the regulation of FYN expression 
in additional molecules, future studies are needed. The 
use of FYN inhibitors in patients with high expression or 
elevated FYN activity will help improve survival rates in 
cancer patients.
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