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A B S T R A C T

Feature selection is one of the most important challenges in machine learning and data science. This process
is usually performed in the data preprocessing phase, where the data is transformed to a proper format for
further operations by machine learning algorithm. Many real-world datasets are highly dimensional with many
irrelevant, even redundant features. These kinds of features do not improve classification accuracy and can
even shrink down performance of a classifier. The goal of feature selection is to find optimal (or sub-optimal)
subset of features that contain relevant information about the dataset from which machine learning algorithms
can derive useful conclusions. In this manuscript, a novel version of firefly algorithm (FA) is proposed and
adapted for feature selection challenge. Proposed method significantly improves performance of the basic FA,
and also outperforms other state-of-the-art metaheuristics for both, benchmark bound-constrained and practical
feature selection tasks. Method was first validated on standard unconstrained benchmarks and later it was
applied for feature selection by using 21 standard University of California, Irvine (UCL) datasets. Moreover,
presented approach was also tested for relatively novel COVID-19 dataset for predicting patients health, and
one microcontroller microarray dataset. Results obtained in all practical simulations attest robustness and
efficiency of proposed algorithm in terms of convergence, solutions’ quality and classification accuracy. More
precisely, the proposed approach obtained the best classification accuracy on 13 out of 21 total datasets,
significantly outperforming other competitor methods.
. Introduction

Machine learning has recently become very important and one of
he most prominent research fields because it can be applied to various
omains, e.g. image and speech recognition, self-driving cars, traffic
nd stock market predictions, product recommendations, medical diag-
osis, spam email filtering, etc. In general, all machine learning tasks
efer to either classification or regression.

Besides machine learning, the concept of the internet of things (IoT)
as also recently emerged. According to one of the basic definitions,
he IoT refers to the next generation of engineered systems which are
omprised of connected devices that are able to collect, process, and
hare large amounts of data [1]. Moreover, the IoT concept has been
xtended with the new paradigm — brain-empowered IoT or cognitive
oT (CIoT) [2]. This paradigm broadens the capabilities of existing
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IoT systems and incorporates intelligence in them by using cognitive
computing.

However, the domain of IoT is confronting many challenges. To
efficiently and effectively run a complex network of interconnected
devices, challenges like link failures, coverage, scalability, security,
and interoperability may arise. Moreover, in the era of IoT and CIoT
in order to find patterns and derive conclusions from huge datasets
that are collected, artificial intelligence technologies such as machine
learning are needed. Thus, the machine learning models and algorithms
are very important aspects of IoT and CIoT in a way that they can be
used for improving the IoT and CIoT quality of service (QoS), as well as
for making intelligence decisions from massive datasets. It is said that
machine learning plays a vital role in driving the evolution of these
technologies [3,4].
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Like any other area, machine learning is facing many challenges
and open issues. From the data preprocessing perspective one of the
most important challenges is feature selection. Real-world datasets,
such are those that are acquired by IoT/CIoT systems, often include
many irrelevant and redundant features, which can even degrade the
performance of a classifier due to the relatively large search domain.
For that reason, especially in the IoT/CIoT context, to shorten the
training time and to enable real-time decision-making, feature selection
is of profound importance.

Feature selection belongs to the group of NP-hard combinatorial
optimization problems because of a large search space, e.g. in datasets
with 𝑁 features, 2𝑁 possible feature combinations exist. Many ap-
roaches were devised for tackling this challenge [5,6] however, meth-
ds like exhaustive search are practically inapplicable and traditional
lgorithms such is FOCUS are not able to generate satisfying results. It is
roven that when tackling NP-hard challenges such is feature selection,
he most promising results can be achieved by using metaheuristics-
ased approaches [7,8].

By surveying available literature, it can be seen that many meta-
euristics algorithms, especially from the group of nature-inspired ap-
roaches (swarm intelligence and evolutionary algorithms — EA), were
uccessfully adapted for solving feature selection [9], but it was also
bserved that there is still capacity for improvements in terms of clas-
ification accuracy, training time and the number of utilized features.
ne reason for that is that many of the proposed metaheuristics suffer

rom stagnation in sub-optimal domains [10,11].
The research question addressed in this paper can be formulated

s follows: Is it possible to obtain better classification accuracy and/or
educe the number of features by utilizing FA for feature selection in
omparison to other available contemporary methods? Consequently,
he, [12,13] major goal of the research proposed in this manuscript is
o address the feature selection challenge further by achieving better
lassifications accuracy and/or to utilize a smaller number of features
han other existing traditional and metaheuristics-based methods. From
he literature survey, it also can be concluded that the potential of
ne of the most efficient swarm intelligence approaches, the firefly
lgorithm (FA), was not fully investigated for feature selection. This
otivated authors to devise a novel FA method and to adapt it for

ackling this issue.
Contributions of the proposed research can be summed as follows:

roposing a new FA approach that is able to efficiently tackle feature
election in terms of classification accuracy, and computational time
nd overcoming deficiencies of original FA and outscoring performance
f other enhanced FA methods proposed in the modern literature by
sing genetic operators and quasi-reflexive-based learning.

It is noted that the proposed research represents an extension of the
revious investigation with FA adaptations for feature selection [14].
n [14,15] one more enhanced FA is shown, however method proposed
n this paper by a large amount outperforms the former FA version.
or the purpose of this study, the original FA and method proposed
n [14,16] are also implemented.

Following the most commonly used practice from modern computer
cience and also to validate research premises and contributions, novel
A was firstly tested against the set of 18 standard unconstrained
enchmarks and compared with original FA and 4 other enhanced
tate-of-the-art FA implementations. Afterward, practical simulations
or feature selection with 21 well-known UCL , 1 COVID-19, and 1
icrocontroller dataset were conducted and comparative analysis with

ther state-of-the-art methods was performed.
The remainder of the manuscript is structured as follows. In Sec-

ion 2, basic theoretical background from machine learning, feature
election and swarm intelligence is given along with the review of
elevant literature. Proposed novel FA approach is described in Sec-
ion 3. Practical simulations with comparative analysis and discussion
re given in Section 4, while Section 5 provides final remarks and future
2

esearch perspectives from this very important domain.
2. Background and relevant literature survey

Machine learning is very promising field from the area of artificial
intelligence. In most basic terms, machine learning is the ability of a
computer system to learn without being explicitly programmed. At even
the most fundamental, machine learning employs pre-programmed al-
gorithms that collect and analyze input data in order to anticipate
output values within an acceptable range. As incoming data is fed into
these algorithms, they learn and optimize their processes to enhance
performance, resulting in ‘intelligence’ development throughout time.
Machine learning algorithms can be categorized as supervised, unsu-
pervised, semi-supervised and reinforcement. In the case of supervised
learning, where a labeled data is used for training the model, two most
common tasks are classification and regression.

As it was already noted in Section 1, one of the most important
challenges from machine learning domain is feature selection. The goal
of this task is to select subset of complementary features from available
pool of characteristics to establish better classification accuracy. Here,
the attribute ‘complementary’ plays an important role because there
may be two, or multi-way interactions among features [10]. For exam-
ple, individual relevant features may become irrelevant when working
with others. Similarly, individual redundant and not important features
may become significant when paired with others [17]. This problem
becomes exponentially harder for tackling when the number of features
is increasing. Moreover, feature selection challenge often encompasses
two contradictory objectives: maximizing classification accuracy and
minimizing the number of employed features.

Feature selection is a pre-processing method in data mining and
machine learning, that reduces the dimensionality of data by removing
the noise and irrelevant attributes and hopefully results in optimal or
near-optimal feature subset. Two key concepts in feature selection are
the criteria of evaluation and the strategy of selection. Considering the
criteria of evaluation, three main types of feature selection approaches
exist wrapper-based method, filter-based method, and embedded meth-
ods. The filter-based methods, such as Gini Index, Information Gain,
Relief, FOCUS, and Chi-Square [5] use statistical measures to assign
scores to each feature, and based on the scores, it makes the ranking
of features and chooses a subset. The wrapper-based method uses
machine learning techniques to select the optimal attribute subset. Most
commonly, regardless of higher computational costs, the wrapper-based
methods are employed in feature selection processes, because these
methods result in better classification accuracy. The embedded methods
are mixed with the filter and wrapper methods, and as such, they take
the advantage of wrapper-based and filter-based approaches.

Due to the large search space, the most promising methods for
tackling feature selection are metaheuristics, especially nature-inspired
such as EA and swarm intelligence. Metaheuristics are often used as
wrapper methods for feature selection challenges. For example, the
genetic algorithm (GA) proved an efficient wrapper-based method for
this task [18–20].

Swarm intelligence is a very efficient and robust optimizer for
many practical NP-hard problems from various domains [21–23]. These
methods emulate natural systems by performing exploitation and ex-
ploration processes. The basic idea behind this group of algorithms is
to apply and adopt guided random search mechanisms from nature
into the optimization process. Some of the most notable examples of
swarm intelligence include ant colony optimization (ACO) [24], parti-
cle swarm optimization (PSO) [25], artificial bee colony (ABC) [26],
bat algorithm (BA) [27] and the FA [28]. Recently, many swarm
intelligence approaches were applied for feature selection [29–31] and
a detailed survey can be seen in [9]. Several recent publications in
cutting-edge journals also deal with swarm intelligence methods to
reduce the number of features. Research published in [32] proposes
a hybrid brainstorm optimization method for feature selection, with

encouraging results. Another promising research by Zivkovic et al. [33]
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utilized an improved salp swarm algorithm to tackle this issue. Modi-
fied binary ant lion algorithm was used in the paper by Strumberger
et al. [34], while [35] applied the hybridized sine cosine algorithm for
the same task. Kareem et al. [36] suggested the grasshopper algorithm
for feature selection, and obtained excellent results on the intrusion
detection datasets. It is also worth mentioning that swarm intelligence
has also been adopted for other machine learning challenges, specifi-
cally hyperparameters’ optimization [22,37], artificial neural network
(ANN) training [38], as well as in for many others [39].

3. Proposed novel FA approach

The FA metaheuristics, introduced by Yang [28], is motivated by
the flashing and social characteristics of fireflies. Since the real-world,
natural system is relatively complex and sophisticated, the FA models
it by using several approximation rules [28].

Brightness and attractiveness of fireflies is used for modeling fitness
function in a way that attractiveness in most typical FA’s implemen-
tations depends on the brightness, that is in turn determined by the
objective function value. In the case of minimization problems, it is
formulated as [28]:

𝐼(𝑥) =

⎧

⎪

⎨

⎪

⎩

1
𝑓 (𝑥)

, if 𝑓 (𝑥) > 0

1+ ∣ 𝑓 (𝑥) ∣ , otherwise
(1)

here 𝐼(𝑥) represents attractiveness, and 𝑓 (𝑥) denotes the value of
bjective function at location 𝑥.

Light intensity, hence the attractiveness of individual decrease, as
he distance from the light source increase [28]:

(𝑟) =
𝐼0

1 + 𝛾𝑟2
(2)

where 𝐼(𝑟) represents light intensity at distance 𝑟, while 𝐼0 stands
or the light intensity at the source. Furthermore, for modeling real
atural systems, where the light is partly absorbed by its surroundings,
he FA makes use of the 𝛾 parameter, which represents the light
bsorption coefficient. In most FA’s versions, the combined effect of
nverse square law for distance and the 𝛾 coefficient is approximated
ith the following Gaussian form [28]:

(𝑟) = 𝐼0 ⋅ 𝑒
−𝛾𝑟2 (3)

Moreover, each firefly individual also utilizes attractiveness 𝛽,
hich is directly proportional to the light intensity of a given firefly
nd also depends on the distance, as it is shown in Eq. (4).

(𝑟) = 𝛽0 ⋅ 𝑒
−𝛾𝑟2 (4)

here parameter 𝛽0 designates attractiveness at distance 𝑟 = 0. It should
e noted that in practice, Eq. (4) is often replaced by Eq. (5) [28]:

(𝑟) =
𝛽0

1 + 𝛾𝑟2
(5)

Based on the stated above, the basic FA’s search equation for a
random individual 𝑖, that moves in iteration 𝑡 + 1 to a new location
𝑥𝑖 towards individual 𝑗 with greater fitness is given as [28]:

𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 + 𝛽0 ⋅ 𝑒
−𝛾𝑟2𝑖,𝑗 (𝑥𝑡𝑗 − 𝑥𝑡𝑖) + 𝛼𝑡(𝜅 − 0.5) (6)

where 𝛼 stands for the randomization parameter, random number
drawn from Gaussian or uniform distribution is denoted as 𝜅 and 𝑟𝑖,𝑗
represents the distance between two observed fireflies 𝑖 and 𝑗. Typical
values that establish satisfying results for most problems for 𝛽0 and 𝛼
are 1 and [0, 1], respectively.

The 𝑟𝑖,𝑗 is Cartesian distance, which is calculated by using Eq. (7).

𝑟𝑖,𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ =

√

√

√

√

𝐷
∑

𝑘=1
(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2 (7)

where 𝐷 marks the number specific problem parameters.
3

3.1. Original FA’s deficiencies

Due to the fact that the FA exhibits satisfying performance for
many benchmark [40] and practical challenges [41], it has been thor-
oughly tested from both, theoretical and practical perspective by the re-
searchers. However, findings of some previous research suggest that the
basic FA manifest some deficiencies that can be summarized as the lack
of exploration and inadequate exploitation–exploration trade-off [42,
43].

Due to the lack of diversification power, in some runs, the algo-
rithm converges to sub-optimal parts of the search space and performs
exploitation within this region. This leads to the poor solutions quality
at the end of a run, and eventually to the worse mean values for a batch
of runs. Moreover, it can be noticed that the basic FA’s search equation
Eq. (6) does not include clearly emphasized diversification component.
Only the randomization parameter 𝛼 is used to control diversification
and balance with the exploitation, which is not enough.

Some researchers tried to address this issue by including dynamic
𝛼 parameter, that is at the beginning of a run larger (empowered
exploration), and afterwards it is being gradually decreasing with the
progress of iterations, moving gradually balance from exploration to-
wards exploitation [44]. However, based on the simulations conducted
for the purpose of this manuscript, it is observed that this behavior can
only slightly eliminated this issue and as such it does not represent the
final solution.

3.2. Proposed improvements

To address issues of basic FA metaheuristics, novel FA approach
proposed in this manuscript incorporates the following in its basic
version:

• genetic operators (GO) - uniform crossover and Gaussian muta-
tion and

• quasi-reflection-based learning mechanism (QRBL).

Motivated by introduced upgrades, proposed approach is referenced
as the genetic operators quasi-reflected FA (GOQRFA). Besides ad-
dressing the absence of explicit diversification and the inappropriate
balance between intensification and diversification, by introducing pro-
posed changes, exploitation process of the original FA is also further
improved.

By applying GO in early iterations by recombining solutions from
novel regions of the search space, the search process is less likely to
be trapped in sub-optimal domains and more efficient exploration is
performed. On contrarily, in later iterations, GO enable fine-tuning
around the domain where an optimum resides and final solutions’
quality is improved.

Implications of QRBL to the algorithm robustness are also two-fold.
Based on the findings of previous research, solutions diversity in early
iterations, as well as the convergence speed in later phases of execution,
can be dramatically boosted if QRBL mechanism is applied [45].

Besides, the GOQRFA also incorporates dynamically adjusted step
size parameter 𝛼 as suggested in [44].

In the context of GO, potential solutions is encoded as chromosome
that consists of genes, where each gene represents one parameter of
objective function. In the proposed approach, uniform crossover and
Gaussian mutation operators are applied on the gene level with gene
probability — GP. In the case of uniform crossover, each gene will be
exchanged between two parent solutions with probability 𝑝. If the 𝑝
is closer to 0.5, then the gene exchange will be more frequent and
exploratory (global) behavior will be exhibited. Conversely, when the
𝑝 is closer to 0 or 1, uniform crossover will be more locally oriented
and exploitation around the current solutions will be emphasized.

In GOQRFA, when uniform crossover is applied, for each pair of
parent solutions, only one offspring is created. As an example, when
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recombining current best solution 𝑥𝑏𝑒𝑠𝑡 and one random solution 𝑥𝑟𝑛𝑑 ,
for each parameter 𝑗, offspring 𝑥𝑜𝑓𝑓 is generated in the following
manner:

𝑥𝑜𝑓𝑓 ,𝑗 =

{

𝑥𝑏𝑒𝑠𝑡,𝑗 , if 𝜙 ≤ 𝑝
𝑥𝑟𝑛𝑑,𝑗 , otherwise

(8)

where 𝜙 is a pseudo-random number drown from the uniform distribu-
tion.

When an offspring solution is generated, it is being subdued to
mutation. Among various types of mutations used in methods from the
modern literature, uniform, polynomial, and Gaussian are considered to
be classical ones [46]. Since the Gaussian mutation operator proved to
be very efficient for tackling NP-hard problems by preventing the loss
of diversity during the search process [46], this operator is utilized.

Introduced by Bäck and Schwefel, Gaussian mutation is founded
upon the Gaussian density function [47]:

𝑓𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,𝜎2)(𝜃) =
1

𝜎
√

2𝜋
𝑒−

𝜃2

2𝜎2 (9)

here the variance of candidate solutions is denoted as 𝜎2.
Gaussian density function can be reduced for the mean of 0 and

tandard deviation 𝜎 of 1. In the context of GOQRFA, Gaussian dis-
ributed random vector 𝐺(𝜃) can be generated and applied for each
arameter 𝑗 of solution ℎ𝑜𝑓𝑓 :

𝑜𝑓𝑓 ,𝑗 = 𝑥𝑜𝑓𝑓 ,𝑗 ⋅ (1 + 𝐺(𝜃𝑗 )) (10)

Basic assumption that served as an inspiration for incorporating
RBL mechanism in the FA is that when creating new solutions by
sing quasi-opposite numbers, there is a higher probability that such
ovel solutions will be close to optimum region, than simply sam-
ling random individuals from the search space. The QRBL [48] orig-
nates from the opposition-based learning (OBL) and quasi-opposition-
ased learning (QOBL) and it was proven that the QRBL is more
fficient in performing both exploitation and exploration than other
wo mechanism [48].

The quasi-reflected component 𝑗 of solution 𝑥 (𝑥𝑞𝑟𝑗 ) can be calculated
s:

𝑞𝑟
𝑗 = rnd

( 𝑙𝑏𝑗 + 𝑢𝑏𝑗
2

, 𝑥𝑗

)

(11)

here 𝑙𝑏𝑗 and 𝑢𝑏𝑗 represent lower and upper bound of 𝑗th component,

espectively,
𝑙𝑏𝑗 + 𝑢𝑏𝑗

2
indices arithmetic mean (center) of the inter-

al [𝑙𝑏𝑗 , 𝑢𝑏𝑗 ], while rnd
( 𝑙𝑏𝑗 + 𝑢𝑏𝑗

2
, 𝑥𝑗

)

generates uniformly distributed

pseudo-random from the interval
[ 𝑙𝑏𝑗 + 𝑢𝑏𝑗

2
, 𝑥𝑗

]

.
Finally, as the third upgrade of original FA, the GOQRFA incorpo-

rates dynamic step size 𝛼 with a greater value at the beginning of a
run, hence the more emphasized global search, which is further being
decreased moving balance towards exploitation. The random parameter
𝛼 starts from its initial value 𝛼0 until it reaches minimum threshold 𝛼𝑚𝑖𝑛
as iterations advance:

𝛼𝑡+1 = 𝛼𝑡 ⋅
(

1 − 𝑡
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

)

, (12)

where 𝑡 and 𝑡 + 1 denote current and next iterations, respectively,
while the 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is the maximum iteration number in one run of an
algorithm.

3.3. The GOQRFA implementation

As noted in Section 3.2, the GOQRFA addresses insufficient ex-
ploration and inadequate intensification–diversification balance of the
original FA by using GO and QRBL mechanism. According to practical
simulations, it is shown that by using both procedures, state-of-the-art
results can be obtained.
4

i

Since the exploration in early, while the exploitation in later iter-
ations should be amplified, two different crossover mechanisms were
employed. With this purpose, additional control parameters were in-
cluded in the GOQRFA: the number of replaced solutions 𝑛𝑟𝑠, which
s used for adjusting the number of worst solutions from the pop-
lation that are replaced with offspring solutions, and exploration
reak point (𝑒𝑏𝑝) that controls which of the above-mentioned crossover
echanisms will be triggered.

In the first 𝑒𝑏𝑝 iterations, the diversification uniform crossover
DUC) mechanism is triggered as follows: the 𝑛𝑟𝑠 worst solutions from
he population are replaced with offspring individuals generated by
erforming recombination between the completely random solution
𝑥𝑟𝑛𝑑) from the search domain and randomly chosen existing solutions
rom the population (𝑥𝑝𝑟𝑛𝑑) by using Eq. (8) with probability 𝑝 on the
ene level. A completely random solution is created in the same way as
n the initialization phase (Eq. (14)). The DUC mechanism is executed
n each iteration.

After 𝑒𝑏𝑝, with the goal of improving exploitation around the cur-
ent best solutions, intensification uniform crossover (IUC) mechanism
s triggered as follows: 𝑛𝑟𝑠 worst solutions from the population are
eplaced with the offspring solutions generated by performing recom-
ination between the first best (𝑥𝑏𝑒𝑠𝑡1) and the second-best (𝑥𝑏𝑒𝑠𝑡2) so-
utions from the population by utilizing Eq. (8) with uniform crossover
robability 𝑝 on the gene level. If 𝑛𝑟𝑠 > 1, then for each replaced so-
ution, the new hybrid is generated. By conducting extensive empirical
imulations, it was observed that if the IUC is triggered too frequently,
he population may lose diversity and may converge to sub-optimal
olutions. As the iterations progress, the IUC frequency should increase
ecause the algorithm is progressing towards the optimum region of
he search space. To control this behavior, in each iteration, the IUC is
xecuted with probability 𝐼𝑈𝐶𝑝 (IUC probability), which is increasing
irectly proportionally to the current iteration from the initial value
𝑈𝐶𝑝0:

𝑈𝐶𝑝𝑡+1 = 𝐼𝑈𝐶𝑝𝑡 ⋅
(

1 + 𝑡
𝑀𝑎𝑥𝐼𝑡𝑒𝑟

)

(13)

In both cases (IUC and DUC) Gaussian mutation on the gene level
is executed for each offspring solution by applying Eq. (10). However,
different mutation probabilities are applied for each gene (solution’s pa-
rameter) - mutation probability for diversification (𝑚𝑝𝑑) and mutation
probability for intensification (𝑚𝑝𝑖) for offspring generated during DUC
nd IUC phases, respectively. Since stronger exploration is required
n the first 𝑒𝑏𝑝 iterations, the 𝑚𝑝𝑑 is higher than 𝑚𝑝𝑖. These values,
hich are empirically determined depend on the number of solutions
arameters’ 𝐷 and they are calculated as: 𝑚𝑝𝑑 = 1

𝐷 and 𝑚𝑝𝑖 = 1
2𝐷

.
The QRBL strategy is used along with the GO. This procedure is

ncluded in the initialization phases, along with the solutions’ up-
ate phase. In the initialization phase, each solution parameter 𝑗 for

the every solution 𝑥𝑖 from the initial population (𝑃𝑖𝑛𝑖𝑡 = {𝑋𝑖,𝑗}, 𝑖 =
1, 2, 3..., 𝑁𝑆; 𝑗 = 1, 2,… , 𝐷) is generated by using standard initialization
expression [49]:

𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + (𝑢𝑏𝑗 − 𝑙𝑏𝑗 ) ⋅ 𝑟𝑎𝑛𝑑 (14)

where 𝑟𝑎𝑛𝑑 is uniformly distributed random number from the interval
[0, 1].

Then, the QRBL is applied (Eq. (11)) to determine quasi-reflective
solution of each individual from the population, and quasi-reflective
initial population (𝑃 𝑞𝑟

𝑖𝑛𝑖𝑡 = {𝑋𝑞𝑟
𝑖,𝑗}, 𝑖 = 1, 2, 3..., 𝑁𝑆; 𝑗 = 1, 2,… , 𝐷) is

generated. Both populations are then merged together (𝑃𝑖𝑛𝑖𝑡 ∪𝑃 𝑞𝑟
𝑖𝑛𝑖𝑡) and

sorted in descending order according to fitness value and 𝑁𝑆 best
olutions are selected as the new initial population.

Similarly, during the update phase, in each iteration, quasi-
eflective population 𝑃 𝑞𝑟 of updated population 𝑃 is created. Also, like

𝑞𝑟
n the initialization phase, populations are then merged (𝑃 ∪ 𝑃 ) and
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Table 1
GOQRFA control parameters summary.

Parameter description Notation Type

Number of solutions in population 𝑁𝑆 FA standard (static)
Maximum iteration number 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 FA standard (static)
Absorption coefficient 𝛾 FA standard (static)
Attractiveness parameter at 𝑟 = 0 𝛽0 FA standard (static)
Randomization (step) parameter 𝛼 FA standard (dynamic)a

Initial value of step parameter 𝛼0 FA standard (static)
Minimum value of step parameter 𝛼𝑚𝑖𝑛 FA standard (static)
Exploration break point 𝑒𝑏𝑝 GOQRFA specific (static)
Number of replaced solutions 𝑛𝑟𝑠 GOQRFA specific (static)
Uniform crossover probability 𝑝 GOQRFA specific (static)
Intensification uniform crossover probability 𝐼𝑈𝐶𝑝 GOQRFA specific (dynamic)b

Initial value of intensification uniform crossover probability 𝐼𝑈𝐶𝑃0 GOQRFA specific (static)
Mutation probability for diversification 𝑚𝑝𝑑 GOQRFA specific (fixed)
Mutation probability for intensification 𝑚𝑝𝑖 GOQRFA specific (fixed)

aChanges according to Eq. (12).
bChanges according to Eq. (13).
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orted in descending order according to fitness value, and 𝑁𝑆 best
olutions are selected to propagate to the next iteration.

The GOQRFA employs the same basic search procedure as in the
riginal FA metaheuristics (Eq. (6)).

In summary, the GOARFA utilizes both static and dynamic param-
ters, among some of them are inherited from the original FA, while
thers are GOARFA specific. All parameters are shown in Table 1.

Detailed pseudo-code of proposed GOQRFA metaheuristics is given
n Algorithm 1.

Algorithm 1 The GOQRFA pseudo-code

Initialize main metaheuristics control parameters 𝑁𝑆 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟
Initialize search space parameters 𝐷, 𝑢𝑏𝑗 and 𝑙𝑏𝑗
Initialize GOQRFA control parameters 𝛾, 𝛽0, 𝛼0, 𝛼𝑚𝑖𝑛, 𝑛𝑟𝑠, 𝑒𝑏𝑝, 𝑝, 𝐼𝑈𝐶𝑝0, 𝑚𝑝𝑑 and 𝑚𝑝𝑖
Generate initial random population 𝑃𝑖𝑛𝑖𝑡 = {𝑋𝑖,𝑗}, 𝑖 = 1, 2, 3..., 𝑁𝑆; 𝑗 = 1, 2, ...𝐷 using
Eq. (14) in the search space
Generate quasi-reflective initial population 𝑃 𝑞𝑟

𝑖𝑛𝑖𝑡 by using QRBL strategy
Intensity of light 𝐼𝑖 (fitness) at position 𝑥𝑖 is defined by 𝑓 (𝑥)
Create population 𝑃 by merging populations 𝑃𝑖𝑛𝑖𝑡 and 𝑃 𝑞𝑟

𝑖𝑛𝑖𝑡, calculate fitness of all solutions,
sort individuals in descending order according to quality and select best 𝑁𝑆 individuals
while 𝑡 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do
for 𝑖 = 1 to 𝑁𝑆 do
for 𝑘 = 1 to 𝑖 do
if 𝐼𝑘 < 𝐼𝑖 then

Move solution 𝑘 in the direction of individual 𝑖 in 𝐷 dimensions (Eq. (6))
Attractiveness changes with distance 𝑟 as exp[−𝛾𝑟] (Eq. (4))
Evaluate new solution, replace the worse individual with better one and update
intensity of light (fitness)

end if
end for

end for
if 𝑡 ≤ 𝑒𝑏𝑝 then

Execute 𝐷𝑈𝐶 mechanism and replace 𝑛𝑟𝑠 worst solutions with hybrid between 𝑥𝑟𝑛𝑑
and 𝑥𝑝𝑟𝑛𝑑 individuals using Eq. (8) and apply Gaussian mutation (Eq. (10)) with
𝑚𝑝𝑑 probability

else
Execute 𝐼𝑈𝐶 mechanism with probability 𝐼𝑈𝐶𝑝(𝑡) and replace 𝑛𝑟𝑠 worst solutions
with hybrid between 𝑥𝑏𝑒𝑠𝑡1 and 𝑥𝑏𝑒𝑠𝑡2 individuals using Eq. (8) and apply Gaussian
mutation (Eq. (10)) with 𝑚𝑝𝑖 probability

end if
Generate quasi-reflective population 𝑃 𝑞𝑟 by using QRBL strategy
Merge populations 𝑃 and 𝑃 𝑞𝑟, calculate fitness of all solutions, sort individuals in
descending order according to quality and select best 𝑁𝑆 individuals
Update dynamic parameters 𝛼 and 𝐼𝑈𝐶𝑝 for next iteration 𝑡+1 according to Eqs. (12)
and (13), respectively

end while
Return the best individual 𝑥𝑖 from the population

3.4. The GOQRFA complexity and limitations

The number of objective function evaluations is usually taken to
calculate swarm intelligence algorithm complexity [40]. In the basic
FA algorithm, fitness is calculated in the initialization phase and in
5

c

the solutions’ updating phase. In the updating phase, basic FA has
one main loop for iterations 𝑡 and two inner loops going through 𝑁𝑆
solutions [40].

Thus, including the initialization phase, the complexity in the worst
case of basic FA metaheuristics is 𝑂(𝑁𝑆) + 𝑂(𝑁𝑆2𝑡). However, if 𝑁𝑆
s relatively large, it is possible to use one inner loop by ranking the
ttractiveness or brightness of all fireflies using sorting algorithms, and
n this case complexity is 𝑂(𝑁𝑆) + 𝑂(𝑁𝑆𝑡 log (𝑁𝑆)) [40].

The complexity of the GOQRFA is higher than the original FA
ue to the application of the QRBL mechanism. The UCD and UCI
echanisms are not counted since in these phases, objective function

valuations are performed only 𝑛𝑟𝑠 times in each iteration, and 𝑛𝑟𝑠 is
ypically small (1 or 2). The QRBL is applied in the initialization phase
nd after the solution’s update phase in each iteration, and in both
ases, an additional 𝑁𝑆 number of function evaluations are performed.
herefore, the complexity of the proposed GOQRFA in the worst-case
cenario can be expressed as: 2 ⋅ 𝑂(𝑁𝑆) + 𝑂(𝑁𝑆2𝑡) + 𝑂(𝑆𝑁𝑡).

Limitation of proposed GOQRFA is additional number of control
arameters which makes relatively hard for the researcher to find a
roper values of control parameters for a specific problem. This issue
s similar to hyperparameters’ optimization challenge from ML learning
omain.

However, additional number of control parameters is justified be-
ause the GOQRFA shown substantial performance improvements over
he original FA for benchmarks challenges and also for the practical
eature selection problem in ML domain, as it is shown in Section 4.

. Simulations and discussion

Following the good practice from modern computer science litera-
ure, practical (experimental) section of the manuscript is divided into
wo parts. In the first part, validation of proposed method for standard
et of unconstrained benchmarks is shown along with comparison
etween proposed GOQRFA and other most recent improved FA imple-
entations, which are presented in [50]. Afterwards, in the second part

f this section, adaptation of GOQRFA for feature selection challenge
long with simulation results on standard datasets and comparative
nalysis with most recent metaheuristics are presented.

To validate improvements of GOQRFA over the original FA, both
etaheuristics are implemented and tested. Both implementations are

reated in Python by using core (built-in), as well as specific data
cience and machine learning Python libraries: numpy, scipy, pandas,
cikitlearn, pyplot and seaborn.

All experiments were conducted on Intel® CoreTM i7-8700K CPU
nd 32 GB of RAM running under Windows 10 x64 operating system
omputer platform.
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Table 2
Setup of GOQRFA control parameters.

Parameter and notation Value

Absorption coefficient 𝛾 1.0
Attractiveness parameter at 𝑟 = 0 𝛽0 1.0
Randomization (step) parameter 𝛼 Eq. (12)
Initial value of step parameter 𝛼0 0.5
Minimum value of step parameter 𝛼𝑚𝑖𝑛 0.1
Exploration break point 𝑒𝑏𝑝 𝑀𝑎𝑥𝐼𝑡𝑒𝑟∕3
Number of replaced solutions 𝑛𝑟𝑠 1
Uniform crossover probability 𝑝 0.5
Intensification uniform crossover probability 𝐼𝑈𝐶𝑝 Eq. (13)
Initial value of intensification uniform crossover probability 𝐼𝑈𝐶𝑃0 0.2
Mutation probability for diversification 𝑚𝑝𝑑 1∕𝐷
Mutation probability for intensification 𝑚𝑝𝑖 1∕2 ⋅𝐷
b
c
5

l
(
m
u
t
d

p
𝑂
a
a

s
d
a
s

i
g
t

a
i
o
b
s
e
o
t

4.1. Standard unconstrained benchmarks simulations

In this subsection, we first show benchmark functions details that
were utilized in simulations along with GOQRFA control parameters’,
followed by comparative analysis with other FA versions, results’ visu-
alization, and discussion.

4.1.1. Benchmark details and GOQRFA settings
Since the GOQRFA metaheuristics employs more control parameters

than the standard FA, extensive simulations on classical unconstrained
benchmarks were conducted to determine the best parameter setup.
The goal is to find control parameters’ values that will on average for
all test instances accomplish satisfying results. Unfortunately, the only
way to find these values is by employing the ’trial and error’ strategy,
which is very time-consuming. However, based on authors’ previously
acquired domain experience with the FA [41,49], as well as other
swarm algorithms [23], proper parameters’ values were determined
relatively easy.

The GOQRFA control parameter values that were used in experi-
ments are summarized in Table 2.

It is noted that the parameter 𝑝 is hard-coded in the GOQRFA and it
is not adjustable. In this way, the adjusted balance between exploration
and exploitation for a uniform crossover operator is maintained during
the whole run of the algorithm. Also, the 𝑛𝑟𝑠 is set to 1 regardless
of the number of solutions in the population (𝑁𝑆) and maximum
iterations (𝑀𝑎𝑥𝐼𝑡𝑒𝑟). It was empirically discovered that if the value of
this parameter is higher, then before 𝑒𝑏𝑝 iterations, the exploration–
exploitation balance will be exceedingly moved towards exploration,
and after 𝑒𝑏𝑝 iterations search process will be too much unbalanced
towards exploitation.

Unconstrained benchmark instances details utilized in simulations
are shown in Table 3. The same test-beds as in [50] were utilized
to make a comparative analysis with improved FA approaches shown
in [50] more realistic.

Test instances 𝑓1, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓14 and 𝑓15 are retrieved from
the Congress on Evolutionary Computation (CEC) benchmark suite,
while other functions are standard test instances utilized to evaluate
algorithms’ convergence and solutions’ quality.

Functions shown in Table 3 have different characteristics. Bench-
marks 𝑓1, 𝑓2, 𝑓5, 𝑓7, 𝑓8, 𝑓12 and 𝑓14 are complex unimodal functions

ith only global optimum and they are primarily used to test the
onvergence speed of an algorithm. However, other test functions
3, 𝑓4, 𝑓6, 𝑓9, 𝑓10, 𝑓11, 𝑓13 and 𝑓15 belong to the group of multi-

modal benchmarks with many local optima and they are used to test
the algorithm’s exploration ability to jump out of the local extreme
value. Additionally, the proposed method is tested on highly com-
plex two-dimensional functions 𝑓16, 𝑓17 and 𝑓18 with multiple local
6

minima. I
4.1.2. Comparative analysis and discussion
As noted above, in the comparative analysis original FA metaheuris-

tics along with the following improved versions is included: dynamic
adaptive weight firefly algorithm (WFA) [51], chaotic firefly algorithm
based on logistic map (CLFA) [52], Levy flights FA (LFA) [53], variable
step size firefly algorithm for numerical Optimization (VSSFA) [54]
and dynamically adaptive firefly algorithm with global orientation
(GDAFA) [50].

For the purpose of proposed research and to analyze and evaluate
improvements of the GOQRFA over original FA, the basic FA version
is implemented and tested, while test results for other improved FA’s
implementations were retrieved from [50]. In conducted experiments,
basic FA with dynamic parameter 𝑎𝑙𝑝ℎ𝑎 (Eq. (12)), is used, and much
better results than those that are reported in [50] were obtained.

Control parameters’ of opponent metaheuristics included in the
comparative analysis can be seen from [50].

Simulations with 10, 30 and 100-dimensional (𝐷 = [10, 30, 100])
enchmark instances 𝑓1–𝑓15 shown in Table 3 were performed and
ompared best, mean (average) and worst metrics were generated in
0 independent runs.

Algorithms in [50] were tested with 20 solutions in the popu-
ation (𝑁𝑆=20) and maximum number of 1,000 iterations per run
𝑀𝑎𝑥𝐼𝑡𝑒𝑟=1000). However, since the GOQRFA employs the QRBL
echanism, its complexity in terms of number fitness function eval-
ations (𝐹𝐹𝐸) is slightly larger than other algorithms. Due to this,
he number of solutions in the population for GOQRFA simulations is
ecreased, while using the same number of iterations, as in [50].

The worst-case complexity in terms of FFEs of all opponent ap-
roaches is 𝑂(𝑆𝑁)+𝑂(𝑆𝑁2𝑡), and in the case of GOQRFA is 𝑂(2𝑆𝑁)+
(𝑆𝑁2𝑡) + 𝑂(𝑆𝑁𝑡). Mathematically was derived that with 1,000 iter-
tions, the 𝑁𝑆 of GOQRFA should be set to 18 for fair comparative
nalysis.

Simulation results with 10, 30 and 100 dimensional problems are
hown in Tables 4, 5 and 6, respectively. The obtained results for 2-
imensional function (𝑓16–𝑓18) are presented in the Table 7. If there is
n algorithm that obtains the best results for some performance metric,
uch results are marked bold with a slightly larger font in all tables.

From Table 4, which shows simulation results with 10-dimensional
nstances, can be seen that the GOQRFA and GDAFA managed to find
lobal optimum relatively easy and in almost all tests for all runs found
he global best solution.

Similarly, as in the tests with 10-dimensional problems, GOQRFA
nd GDAFA proved to be the two best-improved FA metaheuristics
n simulations with 30-dimensional problems (Table 5). The GOQRFA
utscored GDAFA for all three metrics in 𝑓13 instance and obtained
etter worst and mean metrics in 𝑓1, 𝑓2, 𝑓4, 𝑓5, 𝑓7 and 𝑓8 in-
tances. In all benchmark tests, except 𝑓13, both algorithms showed
qual performance when comparing the best metrics. The GDAFA
utperformed the proposed GOQRFA in the worst indicator for 𝑓3
est, and the mean indicator in the case of 𝑓6 and 𝑓15 instances.

n the case of simulation for 𝑓9 benchmark, GDAFA obtained better
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Table 3
Unconstrained benchmark function details.

ID Name Search range Formulation Optimum

f1 Sphere [−100, 100]𝐷 min 𝑓 (𝑥) =
∑𝐷

𝑖=1 𝑥
2
𝑖 0

f2 Moved Axis Function [−5.12, 5.12]𝐷 min 𝑓 (𝑥) =
∑𝐷

𝑖=2 5𝑖𝑥
2
𝑖 0

f3 Griewank [−100, 100]𝐷 min 𝑓 (𝑥) =
∑𝐷

𝑖=1
𝑥2𝑖
4000

−
∏𝐷

𝑖=1 𝑐𝑜𝑠(
𝑥𝑖
√

𝑖
) + 1 0

f4 Rastrigin [−5.12, 5.12]𝐷 min 𝑓 (𝑥) = 10𝑛 +
∑𝐷

𝑖=1[𝑥
2
𝑖 − 10 cos(2𝜋𝑥𝑖)] 0

f5 The Schwefel’s Problem 1.2 [−100, 100]𝐷 min 𝑓 (𝑥) =
∑𝐷

𝑖=1
∑𝑖

𝑗=1 𝑥
2
𝑗 0

f6 Ackley [−32, 32]𝐷 min 𝑓 (𝑥) = −𝑎 × 𝑒𝑥𝑝(−𝑏
√

1
𝑛

∑𝑛
𝑖=1 𝑥

2
𝑖 ) − 𝑒𝑥𝑝( 1

𝐷

∑𝑛
𝑖=1 cos(𝑐𝑥𝑖)) + 𝑎 + 𝑒𝑥𝑝(1) , where 𝑎 = 20, 𝑏 = 0.2 0

f7 Powell Sum [−1, 1]𝐷 min 𝑓 (𝑥) =
∑𝐷

𝑖=1|𝑥𝑖|
𝑖+1 0

f8 Sum Squares [−10, 10]𝐷 min 𝑓 (𝑥) =
∑𝐷

𝑖=1 𝑖𝑥
2
𝑖 0

f9 Schwefel 2.22 [−100, 100]𝐷 min 𝑓 (𝑥) =
∑𝐷

𝑖=1 |𝑥𝑖| +
∏𝑛

𝑖=1 |𝑥𝑖| 0
f10 Powell Singular [−4, 5]𝐷 min 𝑓 (𝑥) =

∑𝐷∕4
𝑖=1 [(𝑥4𝑖−3 + 10𝑥4𝑖−2)2 + 5(𝑥4𝑖−1 − 𝑥𝑥𝑖)2 + (𝑥4𝑖−2 − 2𝑥4𝑖−1)4 + 10(𝑥4𝑖−3 + 𝑥4𝑖)4] 0

f11 Alpine [−10, 10]𝐷 min 𝑓 (𝑥) =
∑𝐷

𝑖=1
|

|

|

𝑥𝑖 sin
(

𝑥𝑖 + 0.1𝑥𝑖
)

|

|

|

0

f12 Inverse Cosine-Wave Function [−100, 100]𝐷 min 𝑓 (𝑥) =
∑𝐷−1

𝑖=1 (𝑒𝑥𝑝(− 𝑥2𝑖 +𝑥
2
𝑖+1+0.5𝑥𝑖𝑥𝑖+1

8
) × cos(4

√

𝑥2𝑖 + 𝑥2𝑖+1 + 0.5𝑥𝑖𝑥𝑖+1)) −D+1

f13 Pathological [−100, 100]𝐷 min 𝑓 (𝑥) =
∑𝐷−1

𝑖=1

(

0.5 +
sin2

(√

100𝑥2𝑖 +𝑥
2
𝑖+1

)

−0.5

1+0.001(𝑥2𝑖 −2𝑥𝑖𝑥𝑖+1+𝑥2𝑖+1)
2

)2

0

f14 Discus [−100, 100]𝐷 min 𝑓 (𝑥) = 106𝑥21 +
∑𝐷

𝑖=1 𝑥
2
𝑖 0

f15 Happy Cat [−2, 2]𝐷 min 𝑓 (𝑥) =
[

(||𝑥2𝑖 || −𝐷)2
]𝛼 + 1

𝐷
(0.5||𝑥2𝑖 || +

∑𝐷
𝑖=1 𝑥𝑖) + 0.5, where 𝛼 = 1

4
0

f16 Drop-Wave Function [−5.2, 5.2]𝐷 min 𝑓 (𝑥) = −
1 + cos(12

√

𝑥21 + 𝑥22)

(0.5(𝑥21 + 𝑥22) + 2)
−1

f17 Schaffer 2 [−100, 100]𝐷 min 𝑓 (𝑥) = 0.5 +
sin2(𝑥21 − 𝑥22)

2 − 0.5

1 + 0.001(𝑥21 + 𝑥22)
2

0

f18 Camel Function — Three Hump [−5, 5]𝐷 min 𝑓 (𝑥) = 2𝑥21 − 1.05𝑥41 +
𝑥61
6

+ 𝑥1𝑥2 + 𝑥22 0
values for both, worst and mean indicators. On average, in simulations
with 30-dimensional search space, proposed GOQRFA showed better
performance than GDAFA.

Finally, simulations with a search space of 100 dimensions are the
most difficult and as expected, proposed GOQRFA and GDAFA proved
as two best metaheuristics with the side note that on average GOQRFA
showed better performance. In the 𝑓13 test, GOQRFA for all three
indicators — best, worst, and mean, established better results than
the GDAFA. Also, in the case of 𝑓1, 𝑓2, 𝑓4, 𝑓7, 𝑓8, 𝑓10, 𝑓12 and
𝑓15 simulations, GOQRFA obtained better results for worst and mean
metrics. The GOQRFA established better mean value for 𝑓3 and 𝑓5
test instance and worst value for 𝑓6, 𝑓9 and 𝑓14. At the other side,
GDAFA outscored GOQRFA for worst indicator in 𝑓3, 𝑓5 and 𝑓11 and
for the mean indicator in 𝑓6, 𝑓9 and 14 instances. Even with relatively
large search space, both metaheuristics GDAFA and GOQRFA, in most
tests managed to converge to the global optimum and showed good
exploratory performance.

In the experiment with two-dimensional functions (𝑓16–𝑓18), all
FA variants reached the global optimum, however when taking into
account worst and mean indicators GOQRFA and GDAFA established
the best results.

With the goal of better visualizing performance difference between
improved FA metaheuristics, summary table for unconstrained simula-
tions is shown, where the number of times each algorithm obtained
the best results for each benchmark instance and each performance
indicator is counted, (Table 8).

From Table 8, the performance difference between proposed GO-
QRFA and other improved FA implementations can be clearly noticed.
In total, 48 times GOQRFA was better than all other approaches.

Further, to see if there is a statistically significant difference in
results, Wilcoxon signed rank-test that performs the pair-wise results’
comparison between the proposed GOQRFA and other improved FA’s
versions and the original FA algorithm for 100-dimensional simulations
(Table 6) is applied. Following the usual practice for determining
whether the results came from different distributions, significance level
of 𝛼 = 0.05 is taken.

The Table 9 summarizes results of applied Wilcoxon test.
The 𝑝-value obtained in the test is in all cases < 0.05, which indicates

the significant difference between the proposed algorithm and all other
7

compared methods.
Moreover, to better visualize comparative analysis between the
GOQRFA and the basic FA, swarm plot diagrams and convergence
speed graphs for some test instances are generated. Since the most
distinguished performance difference between these two metaheuristics
is noticed in the tests with 100 dimensions, swarm plot diagrams for
some 100-dimensional functions, where each individual represents the
best solution obtained in one run, is shown in Fig. 1.

From the shown swarm plots it can be seen how the original FA in
all runs misses the optimum search space in the case of 𝑓4 and 𝑓12
benchmark functions. In the case of 𝑓4, the best solutions generated in
all runs are scattered between 436 and 483, which leads to worse mean
results. Also, in this test, even in better runs, due to the insufficient
exploration power, the FA could not converge to the optimum domain
and establishes the best results of around 436, which is far away
from the global optimum. On the contrarily, our proposed GOQRFA
obtains relatively good results and in all runs managed to converge to
the optimum region of the search space. Similarly can be stated for
𝑓12 benchmark. In all runs, due to the insufficient exploration, the
FA completely misses the optimum domain and gets stuck in some of
the sub-optimum regions. The GOQRFA on the other hand performs
fine exploitation around the global best solutions and manages to find
optimum in many runs. Original FA performs better for 𝑓2 test instance,
however, GOAQRFA also in this case obtains much better results.

Additionally, convergence speed graphs of mean results obtained
in 50 independent runs for unimodal 𝑓1 and 𝑓14 benchmarks and
multimodal 𝑓3 and 𝑓13 benchmarks with 30 and 100 dimensions are
depicted in Figs. 2 and 3, respectively.

In the presented figures can be noticed that at most 300 iterations,
GOQRFA converges to the optimum domain of the search space (𝐷𝑈𝐶
mechanism) and after it performs a fine-tuned search in the promising
regions (𝐼𝑈𝐶 mechanism). Also, a clear difference in convergence
speed between the original FA and GOQRFA can be noticed. Moreover,
from the presented graphs can be observed that in some consecu-
tive iterations basic FA cannot improve solutions and gets stuck in
sub-optimal domains of the search space.

Finally, to justify proposed changes and to establish the influence
of the GO and QRBL mechanism on the GOQRFA’s performance, since
both additional procedures introduce overhead in terms of algorithm
complexity, additional tests with 100-dimensional benchmarks were
conducted. For that purpose, improved FA with only GO and DUC and

IUC mechanisms (GOFA) and FA with only QRBL mechanism (QRFA)
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Table 4
Comparative analysis with original FA and five other FA’s implementations for benchmarks with 10 dimensions.

Function Algorithm Best value Worst value Mean value Function Algorithm Best value Worst value Mean value

𝑓1(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
0
0
0
8.013e−03
0
0

2.91e−05
0
0.51142
0
0.11648
0
0

6.07e−07
0
0.142967
0
0.068951
0
0

𝑓9(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
0
0
0
6.02e−02
0
0

1.00e−03
0
0.71557
0
0.79956
0
0

2.00e−05
0
0.318159
0
0.431151
0
0

𝑓2(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
0
0
0
1.50e−03
0
0

5.08-07
0
5.4476
0
4.0492
0
0

1.06e−08
0
1.104484
0
1.022306
0
0

𝑓10(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

1.13e−06
0
0
0
4.82e−02
0
0

3.29e−06
0
15.119
0
9.2701
0
0

1.17e−06
0
2.427798
0
3.272067
0
0

𝑓3(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

9.60e−02
0
0
0
7.67e−05
0
0

9.60e−02
0
4.26e−02
0
1.75e−02
0
0

9.60e−02
0
6.89e−03
0
7.47e−03
0
0

𝑓11(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
0
0
0
1.96e−02
0
0

3.02e−07
0
0.40004
0
0.23554
0
0

6.30e−09
0
0.125577
0
0.110871
0
0

𝑓4(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

5.9697
1.1207
0
0
2.3178
2.1427
0

5.9697
16.987
4
0
21.953
27.12
0

5.9697
8.676933
2.15633
0
10.60387
11.42838
0

𝑓12(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

−3.0077
−7.4072
−9
−9
−8.9819
−7.6738
−9

−3.0077
−6.4696
−8.2748
−9
−6.7685
−5.3186
−9

−3.00774
−6.68047
−8.82709
−9
−7.97286
−6.73002
−9

𝑓5(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
0
0
0
1.15e−02
0
0

1.35e−05
0
1.1064
0
0.64831
0
0

2.81e−07
0
0.361658
0
0.303216
0
0

𝑓13(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
HFA

0.5020
1.01e−03
0
0
9.71e−04
1.54e−04
0

0.5020
1.36e−02
8.79e−03
0
2.29e−02
2.41e−02
0

0.50200
7.24e−03
1.81e−03
0
1.01e−02
8.64e−03
0

𝑓6(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

1.46e−14
8.88e−16
8.88e−16
8.88e−16
7.75e−02
8.88e−16
8.88e−16

1.90e−03
8.88e−16
1.1568
8.88e−16
1.0976
8.88e−16
8.88e−16

3.8e−05
8.88e−16
0.378197
8.88e−16
0.578406
8.88e−16
8.88e−16

𝑓14(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

643.0253
0
0
0
2.50e−03
0
0

697.9746
0
0.53477
0
0.16738
0
0

644.1241
0
6.27e−02
0
7.23e−02
0
0

𝑓7(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

1.61e−07
0
0
0
4.938e−13
0
0

1.83e−07
0
1.02e−02
0
3.45e−03
0
0

1.62e−07
0
1.44e−03
0
3.51e−04
0
0

𝑓15(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

1.7538
0
0
0
0.61011
0
0

1.7538
0.4
0.4
0
0.98881
0.6
0

1.75380
4.47e−02
0.146667
0
0.85317
0.16
0

𝑓8(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
0
0
0
1.69e−02
0
0

1.08e−06
0
1.4135
0
0.7670
0
0

2.24e−08
0
0.217733
0
0.346934
0
0

s
a
A

f

were implemented. Both versions utilize dynamic parameter 𝛼. Testing
results for 100-dimensional problems are shown in Table 10.

Results from the presented table clearly indicate that GOQRFA
establishes better performance than GOFA and QRFA. Also, when com-
pared with original FA (Table 6), GOFA and QRFA obtained better
solutions’ quality for 100-dimensional instances.

4.2. Feature selection simulations

In this subsection, metaheuristic adaptations for feature selection
challenge along with fitness function formulation are shown first, fol-
lowed by evaluation metrics, datasets description, control parameter
setup and comparative analysis.
8

H

4.2.1. Solutions’ encoding strategy, initialization scheme and fitness formu-
lation

For tackling feature selection problem with proposed GOQRFA,
the method should be adapted for binary combinatorial optimization
challenges. Each GOQRFA solution represents a set of features in the
dataset of a length 𝑁 , where 𝑁 denotes the total number of attributes
in a dataset, with the search space of dimension 2𝑁 . If the value of
olution at position 𝑗 is 1, the feature at this position will be included
nd if it is 0, then this feature will be excluded from classification.
dapted approach is refereed as bGOQRFA.

To encode a candidate solutions as a 𝑁-bit string, different trans-
er functions from S-shape and V-shape families can be used [55].
owever, after extensive empirical experiments with different transfer
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Table 5
Comparative analysis with original FA and five other FA’s implementations for benchmarks with 30 dimensions.

Function Algorithm Best value Worst value Mean value Function Algorithm Best value Worst value Mean value

𝑓1(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
13.616
9.6426
0
0.14182
8.89e−02
0

3.30e−04
20.068
17.403
1.81e−04
0.31932
0.34271
7.15E−05

8.47e−06
17.05007
14.08179
1.61e−05
0.237264
0.194190
2.31E−06

𝑓9(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
15.568
7.996
0
0.75795
0.67279
0

7.15e−03
18.532
13.552
4.84e−03
1.877
2.0693
6.17e−03

7.43e−04
17.28833
11.55308
6.22e−04
1.444582
1.444582
7.25e−04

𝑓2(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
949.73
495.23
0
9.0823
8.4382
0

5.73e−04
1332.7
1030.9
6.01e−04
27.288
34.836
4.56e−05

1.19e−05
1163.641
863.976
3.53e−05
17.18261
18.24006
3.32e−06

𝑓10(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

5.52e−04
740.56
1397.7
0
3.5447
5.3022
0

1.48e−03
4302.5
3485.4
1.49e−02
31.875
29.98
1.13e−03

5.71e−04
3334.035
2736.29
1.28e−03
23.61039
19.11064
4.44e−04

𝑓3(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

9.86e−03
0.47304
0.34297
0
5.47e03
4.85e−03
0

9.87e−03
0.583
0.51144
1.84e−05
1.90e−02
1.76e−02
5.69e−05

9.86e−03
0.537958
0.43649
3.65e−06
1.23e−02
9.86e−03
2.11e−06

𝑓11(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

1.66e−02
13.113
6.508
0
0.24505
0.11367
0

1.86e−02
16.154
12.429
3.34e−03
0.61146
0.46509
9.94e−04

1.66e−02
14.56793
10.71938
4.69e−04
0.408792
0.301099
1.05e−04

𝑓4(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

53.728
90.168
26.942
0
10.562
46.82
0

53.728
147.03
46.808
0.29587
70.987
116.4
0.15332

53.728
133.9519
38.35837
6.19e−02
42.79867
91.65793
2.11e−02

𝑓12(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

−2.74
−14.271
−19.773
−29
−27.14
−19.932
−29

−2.738
−10.216
−15.487
−28.98
−23.372
−13.57
−28.97

−2.7380
−11.661
−17.0816
−28.9957
−25.35393
−16.3889
−28.9957

𝑓5(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
189.9
173.79
0
1.0638
1.177
0

8.10e−04
259.87
249.66
1.30e−04
5.8679
7.1741
7.15e−05

1.69e−05
228.3503
217.1767
1.31e−05
3.364743
3.68803
6.65e−06

𝑓13(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

4.82
4.96e−02
4.92e−02
2.77e−32
4.38e−02
3.61e−02
4.34e−34

4.854
9.17e−02
0.1031
8.85e−06
0.11132
9.92e−02
6.13e−06

4.8218
7.34e−02
7.61e−02
1.08e−06
7.60e−02
7.06e−02
7.09e−07

𝑓6(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

3.95e−14
4.1408
3.0118
8.88e−16
0.42363
0.44769
8.88e−16

4.08e−02
4.4306
3.7251
1.91e−02
0.86514
2.8507
1.15e−02

8.17e−03
4.29383
3.39331
2.97e−03
0.698177
1.1317517
4.65e−03

𝑓14(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

1.26e+04
16.331
12.645
0
3.54e−02
0.10623
0

1.29e+04
22.498
20.226
3.01e−04
0.50956
0.42646
1.15e−04

1.26e+04
19.8985
16.6886
4.50e−05
0.261277
0.244281
2.29e−05

𝑓7(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

6.16e−05
123.29
21.96
0
4.47E−11
3.526e−08
0

6.18e−05
1158.4
4339.5
1.17e−38
1.29e−03
9.96e−04
5.91e−39

6.16e−05
341.4773
1065.334
3.91e−40
9.667E−05
1.03e−03
3.02e−41

𝑓15(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

2.3302
2.2622
0.73333
0
1.1758
1.3084
0

2.3302
2.348
1.4667
0.62705
1.3716
1.744
0.59256

2.3302
2.30503
1.060788
9.97e−02
1.29469
1.534977
9.98e−02

𝑓8(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
153.83
100.28
0
1.524
1.561
0

3.17e−04
274.97
214.06
5.81e−04
4.7709
5.1752
2.22e−04

8.12e−05
233.8543
175.337
4.72e−05
3.25577
3.2706972
9.29e−06
functions, it is determined that by using standard Sigmoidal transfer
function, on average the best performance is obtained. By applying
this function for each candidate solution 𝑖 and parameter 𝑗 continuous
values from the range [0, 1] are mapped to either 0 or 1:

𝑥𝑖,𝑗 =

{

1, if 1∕(1 + 𝑒−𝑥𝑖,𝑗 ) > 0.5
0, otherwise

(15)

The initialization phase is very important in any metaheuristics
because from the chosen initialization strategy the quality of final
solutions depend. Recently, Xue et al. [7] have proposed small, large
and mixed initialization strategy for feature selection. Small and large
9

strategies generate initial population where for each individual most of
the features are disabled (zero) and enabled (one), respectively. Mixed
strategy combines properties of small and large initialization where
most individuals are initialized by using small, while remaining by
employing large strategy. Again, by performing practical simulations
with mentioned three initialization strategies plus traditional strategy
(where each solution is completely randomly generated), it is deter-
mined that the mixed strategy on average generates better solutions
and these results are included in comparative analysis.

In the proposed research, for determining efficiency of a method,
classification accuracy along with the number of selected features were
taken into the account. Thus, in this case two contradictory objectives
should be minimized and the following composite objective function is
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Table 6
Comparative analysis with original FA and five other FA’s implementations for benchmarks with 100 dimensions.

Function Algorithm Best value Worst value Mean value Function Algorithm Best value Worst value Mean value

𝑓1(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
86.407
83.653
0
0.77697
6.0074
0

5.08e−03
95.975
100.5
5.23e−03
1.3239
9.0963
3.39e−03

3.06e−04
91.5817
94.2248
1.66e−03
1.021821
7.497247
2.13e−04

𝑓9(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

7.27
74.271
61.281
0
4.668
19.463
0

7.345
79.171
69.287
0.27298
7.2477
29.886
0.253

7.2724
76.217
65.83797
6.85e−02
5.95169
24.39307
8.13e−02

𝑓2(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

6.45e−02
20155
20134
0
183.59
1435.2
0

0.8613
23097
23511
2.7
326.04
2495
0.525

0.2963
21435.67
22061.73
0.263
247.351
1958.367
0.255

𝑓10(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0.11
24876
24626
0
92.637
686.78
0

0.764
29942
33338
0.76923
143.93
1421.7
0.731

0.2127
27295.17
29210.1
6.21e−02
117.6095
1057.672
5.44e−02

𝑓3(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

1.11e−16
0.78385
0.74602
0
1.17e−02
0.10731
0

2.99e−04
0.85044
0.83769
1.24e−04
2.30e−02
0.19698
1.38e−04

5.97e−05
0.81136
0.799866
3.50e−05
2.10e−02
0.166489
2.14e−05

𝑓11(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

14.77
67.41
58.349
0
1.2958
7.2875
0

15.145
73.173
65.707
2.25e−02
2.2723
11.657
2.41e−02

14.7801
70.5776
62.45623
4.53e−03
1.67696
9.200357
6.02e−03

𝑓4(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

436.88
638.51
220.18
0
112.5
478.93
0

551.39
706.69
260.46
1.6535
214.36
603.43
1.193

484.60
668.54
241.692
0.567833
179.406
556.4503
0.541

𝑓12(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

−4.44
−23.042
−42.456
−99
−87.93
−40.354
−99

−8.728
−19.167
−33.023
−98.845
−79.334
−29.746
−98.882

−6.1785
−20.9113
−36.48
−98.9479
−82.79143
−36.3625
−98.963

𝑓5(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

2428.9
4002.6
3878.5
0
30.682
289
0

2592.2
4633
4681.6
0.41709
69.406
508.96
0.425

2432.19
4310.623
4362.873
8.17e−02
50.59657
384.6423
4.44e−02

𝑓13(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

20.65
0.14201
0.1476
1.23e−32
0.13246
0.1269
3.15e−33

20.770
0.16768
0.19154
8.70e−05
0.17611
0.16589
3.33e−05

20.6599
0.154435
0.175026
1.30e−05
0.155534
0.152831
9.45e−06

𝑓6(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

1.11e−13
4.9241
4.2498
8.88e−16
0.6256
3.1695
8.88e−16

9.43e−02
5.1426
4.5533
3.39e−02
1.0087
4.2067
2.95e−02

1.89e−02
5.05314
4.413013
1.08e−02
0.837799
3.612709
1.23e−02

𝑓14(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

1.70e+0.5
91.691
94.901
0
0.89019
8.7565
0

1.72e+05
104.63
108.04
3.06e−03
1.4583
15.82
2.75e−03

1.70e+05
99.2656
102.4729
6.23e−04
1.099807
11.24761
6.41e−04

𝑓7(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

7.30e−05
1.01e+15
1.70e+18
0
3.017e−09
219780
0

7.31e−05
6.59e+17
1.32e+22
2.34e−31
2.16e−03
2.2613e+11
1.55e−32

7.35e−05
1.29e+17
1.88e+21
8.11e−33
1.17e−04
9.54e+09
7.81e−34

𝑓15(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

3.1582
3.1769
2.2808
0
1.7363
2.5784
0

3.1583
3.2378
2.4819
0.79772
1.8669
2.8293
0.735

3.158275
3.221253
2.405193
0.441660
1.812157
2.71441
0.428

𝑓8(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0.18
4100.5
3541.9
0
36.905
291.85
0

0.499
4.53e+03
4.79e+03
0.53765
72.045
487.54
0.495

0.1890
4.33e+03
4.33e+03
5.42e−02
51.45037
370.4313
3.09e−02
(
t
r
T

4
s

[
t

utilized to evaluate each solution 𝑖 from the population:

min𝑂𝑖 = 𝜔 ⋅ 𝐸𝑖 + (1 − 𝜔) ⋅

∑𝑁
𝑗=0 𝑥𝑖,𝑗
𝑁

, (16)

here 𝐸𝑖 is the classification error rate, ∑𝑁
𝑗=0 𝑥𝑖,𝑗 denotes number of

elected features for solution 𝑖, and 𝑁 is the total number of attributes
in the dataset. Continuous parameter 𝜔 ∈ [0, 1] controls the relative
nfluence of the error rate and the number of selected features to the
itness function.

It is noted that since in experiments the goal is to optimize objective
unction, explicitly defined fitness is not formulated, so the fitness and
10

bjective function are used interchangeably. t
Fitness function is calculated by employing k-nearest neighbors
KNN) classifier. When solution is generated, it is first being transform
o binary array and then features from the specific dataset, that cor-
espond to solution, are extracted and passed for KNN classification.
hus, for each fitness evaluation, the KNN is trained and validated.

.2.2. Evaluation metrics, datasets description and control parameters’
etup

Proposed method is validated against 21 well-known UCL datasets
56], that have small, medium and large number of attributes (fea-
ures), which are described in Table 11. For each experiment, observa-

ions are divided randomly into training, testing and validation subsets
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Table 7
Comparative analysis with original FA and five other FA’s implementations for benchmarks with 2 dimensions.

Function Algorithm Best value Worst value Mean value Function Algorithm Best value Worst value Mean value

𝑓16(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

−1
−1
−1
−1
−1
−1
−1

−1
−1
−1
−1
−0.94357
−1
−1

−1
−1
−1
−1
−0.996534
−1
−1

𝑓17(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
0
0
0
0
0
0

9.72e−13
0
0
0
0
0
0

1.94e−14
0
0
0
0
0
0

𝑓18(𝑥)

FA
VSSFA
LFA
GDAFA
WFA
CLFA
GOQRFA

0
0
0
0
0
0
0

3.02e−12
0
0
0
0.00000505
0
0

6.29e−14
0
0
0
1.861e−07
0
0

Table 8
Summary of results for unconstrained benchmarks.

FA VSSFA LFA WFA CLFA GDAFA GOQRFA

Best 10dim 0 0 0 0 0 0 0
Mean 10dim 0 0 0 0 0 0 0
Worst 10dim 0 0 0 0 0 0 0
Total 10 dim 0 0 0 0 0 0 0

Best 30dim 0 0 0 0 0 0 1
Mean 30dim 0 0 0 0 0 3 11
Worst 30dim 0 0 0 0 0 3 12
Total 30 dim 0 0 0 0 0 6 24

Best 100dim 0 0 0 0 0 0 1
Mean 100dim 0 0 0 0 0 4 11
Worst 100dim 0 0 0 0 0 3 12
Total 100 dim 0 0 0 0 0 7 24

GRAND TOTAL 0 0 0 0 0 13 48
Table 9
Statistical comparison of the GOQRFA for 100-dimensional tests with other approaches by Wilcoxon Signed-Rank Test (𝛼 = 0.05).

Function GOQRFA GDAFA FA VSSFA LFA WFA CLFA

f1 2.13E−04 1.66E−03 3.06E−04 9.16E+01 9.42E+01 1.02E+00 7.50E+00
f2 2.55E−01 2.63E−01 2.96E−01 2.14E+04 2.21E+04 2.47E+02 1.96E+03
f3 2.14E−05 3.50E−05 5.97E−05 8.11E−01 8.00E−01 2.10E−02 1.66E−01
f4 5.41E−01 5.68E−01 4.85E+02 6.69E+02 2.42E+02 1.79E+02 5.56E+02
f5 4.44E−02 8.17E−02 2.43E+03 4.31E+03 4.36E+03 5.06E+01 3.85E+02
f6 1.23E−02 1.08E−02 1.89E−02 5.05E+00 4.41E+00 8.38E−01 3.61E+00
f7 7.81E−34 8.11E−33 7.35E−05 1.29E+17 1.88E+21 1.17E−04 9.54E+09
f8 3.09E−02 5.42E−02 1.89E−01 4.33E+03 4.33E+03 5.15E+01 3.70E+02
f9 8.13E−02 6.85E−02 7.27E+00 7.62E+01 6.58E+01 5.95E+00 2.44E+01
f10 5.44E−02 6.21E−02 2.13E−01 2.73E+04 2.92E+04 1.18E+02 1.06E+03
f11 6.02E−03 4.53E−03 1.48E+01 7.06E+01 6.25E+01 1.68E+00 9.20E+00
f12 −9.90E+01 −9.89E+01 −6.18E+00 −2.09E+01 −3.65E+01 −8.28E+01 −3.64E+01
f13 9.45E−06 1.30E−05 2.07E+01 1.54E−01 1.75E−01 1.56E−01 1.53E−01
f14 6.41E−04 6.23E−04 1.70E+05 9.93E+01 1.02E+02 1.10E+00 1.12E+01
f15 4.28E−01 4.42E−01 3.16E+00 3.22E+00 2.41E+00 1.81E+00 2.71E+00

p-value 3.19E−02 3.05E−05 3.05E−05 3.05E−05 3.05E−05 3.05E−05
n
o

𝐴

by using 𝑡𝑟𝑎𝑖𝑛𝑡𝑒𝑠𝑡𝑠𝑝𝑙𝑖𝑡 method. The 80% of observations are used for
training, while remaining 20% are utilized for testing. Moreover, 10%
of training data is used for validation.

In the proposed research, to make comparative analysis with other
approaches more realistic, the same metric are used and the same ex-
perimental environment as in [57] was set. For validation and compar-
ative analysis the following metrics were used: classification accuracy,
objective function value and number of selected features averaged over
20 independent runs.

The average classification accuracy determines average accuracy
obtained for each datasets for 20 runs:

𝐴𝑣𝑔𝑎𝑐𝑐 =
1

𝑅𝑢𝑛
∑ 1

𝐾
∑

𝑀𝑎𝑡𝑐ℎ(𝑌𝑖, 𝑌𝑖), (17)
11

𝑅𝑢𝑛 𝑖=1 𝑁 𝑖=1
where 𝑅𝑢𝑛 denotes the total number of independent runs, 𝐾 is the
umber of observations in the test set, while 𝑌𝑖 and 𝑌𝑖 denote classifier
utput and actual class for instance 𝑖.

The average objective function value (𝐴𝑣𝑔𝑜) is calculated as:

𝑣𝑔𝑜 =
1

𝑅𝑢𝑛

𝑅𝑢𝑛
∑

𝑖=1
𝑂𝑖, (18)

where 𝑂𝑖 represents the best objective function value obtained in each
run.

Finally, the average number of selected features (selection size) is
determined as:

𝐴𝑣𝑔𝑛𝑓 = 1
𝑅𝑢𝑛
∑

𝐹𝑆𝑖, (19)

𝑅𝑢𝑛 𝑖=1
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Fig. 1. Swarm plot diagrams — GOQRFA (green) vs. FA (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
where 𝐹𝑆𝑖 represents the number of selected features of best solution
for run 𝑖.

All approaches in [57] were tested with 8 individuals in population
and 70 iterations (approximately 560 fitness function evaluations —
FFE). However, the QRL mechanism of GOQRFA uses additional FFE
in each iteration for each solution, and to make comparison realistic,
the GOQRFA was tested with only 4 individuals. Other GOQRFA control
parameters were set as shown in Table 1.

Results reported in comparative analysis are generated by using
𝜔 = 0.99, as it is reported in the manuscript from which results of
other methods included in comparative analysis were obtained [57].
Moreover, it is determined that the 𝑘 = 5 is optimum value for KNN
classifier and this value is used in simulations.

4.2.3. Comparative analysis and discussion
Comparative analysis was performed with 9 other state-of-the-

art metaheuristics for feature selection: WOA (whale optimization
algorithm), bWOA-S, bWOA-v, BALO1 (ant lion optimizer), BALO2,
12
BALO3, PSO, bGWO, and bDA, which results are retrieved from [57].
In comparative analysis were also included original binary FA and
previously proposed FA with quasi-reflective learning initialization
(bFAQRL) [14].

As noted above, all results are generated by using mixed initializa-
tion strategy and average objective function value (fitness), accuracy
and number of selected features for 20 independent runs are used as
metrics for performance comparisons. Comparative analysis for these
three indicators is reported in Tables 12, 13 and 14, respectively. The
convergence graph, for selected datasets, of the proposed method in
feature selection experiment are depicted in Fig. 4.

It is observed that results reported for average number of selected
features in [57] are wrong — the authors accidentally reported results
which are 10 times smaller than real. Even with corrections, results re-
ported in [57] are strange because optimizers employed relatively small
number of features. For this set of experiments authors have probably
used fitness function, where higher influence has the number of features
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Fig. 2. Convergence speed graphs for 30-dimensional benchmarks — GOQRFA vs. FA.

Fig. 3. Convergence speed graphs for 100-dimensional benchmarks — GOQRFA vs. FA.
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Table 10
Comparative analysis between proposed approach and GOFA and QRFA with 100-dimensional benchmarks.

Function Algorithm Best value Worst value Mean value Function Algorithm Best value Worst value Mean value

𝑓1(𝑥)
GOFA
QRFA
GOQRFA

0
0
0

4.98e−03
4.46e−03
3.39e−03

3.03e−04
2.82e−04
2.13e−04

𝑓9(𝑥)
GOFA
QRFA
GOQRFA

6.515
5.925
0

7.945
7.821
0.253

7.201
6.372
8.13e−02

𝑓2(𝑥)
GOFA
QRFA
GOQRFA

0.32
0.19
0

0.725
0.692
0.525

0.238
0.205
0.255

𝑓10(𝑥)
GOFA
QRFA
GOQRFA

0.06
0.03
0

0.755
0.742
0.731

0.203
0.189
5.44e−02

𝑓3(𝑥)
GOFA
QRFA
GOQRFA

0
0
0

2.85e−04
2.44e−04
1.38e−04

4.85e−05
3.68e−05
2.14e−05

𝑓11(𝑥)
GOFA
QRFA
GOQRFA

6.55
4.29
0

10.11
8.08
2.41e−02

8.54
6.71
6.02e−03

𝑓4(𝑥)
GOFA
QRFA
GOQRFA

432.78
295.37
0

551.56
365.82
1.193

419.71
321.47
0.541

𝑓12(𝑥)
GOFA
QRFA
GOQRFA

−40.701
−61.375
−99

−31.555
−52.752
−98.882

−37.661
−57.015
−98.963

𝑓5(𝑥)
GOFA
QRFA
GOQRFA

1275.21
973.97
0

1409.73
1265.43
0.425

1344.02
1119.54
4.44e−02

𝑓13(𝑥)
GOFA
QRFA
GOQRFA

0.1152
0.1003
3.15e−33

0.1490
0.1351
3.33e−05

0.1309
0.1186
9.45e−06

𝑓6(𝑥)
GOFA
QRFA
GOQRFA

3.23e−14
8.92e−15
8.88e−16

8.79e−02
6.66e−02
2.95e−02

1.56e−02
1.41e−2
1.23e−02

𝑓14(𝑥)
GOFA
QRFA
GOQRFA

8.3325
6.7251
0

14.2301
8.1796
2.75e−03

10.5972
7.5403
6.41e−04

𝑓7(𝑥)
GOFA
QRFA
GOQRFA

4.23e−06
8.75e−07
0

3.89e−04
2.29e−05
1.55e−32

7.13e−05
4.42e−06
7.81e−34

𝑓15(𝑥)
GOFA
QRFA
GOQRFA

2.6934
1.9582
0

2.9134
1.9845
0.735

2.7921
1.9763
0.428

𝑓8(𝑥)
GOFA
QRFA
GOQRFA

0.17
0.09
0

0.497
0.497
0.495

0.183
0.162
3.09e−02
Table 11
List of datasets used in the experiments results.
No. Name Features Samples

1 Breastcancer 9 699
2 Tic-tac-toe 9 958
3 Zoo 16 101
4 WineEW 13 178
5 SpectEW 22 267
6 SonarEW 60 208
7 IonosphereEW 34 351
8 HeartEW 13 270
9 CongressEW 16 435
10 KrvskpEW 36 3196
11 WaveformEW 40 5000
12 Exactly 13 1000
13 Exactly 2 13 1000
14 M-of-N 13 1000
15 vote 16 300
16 BreastEW 30 569
17 Semeion 265 1593
18 Clean 1 166 476
19 Clean 2 166 6598
20 Lymphography 18 148
21 PenghungEW 325 73
p
a
a
t
F

than classification accuracy, which is not reported in [57]. however in
table provided in this manuscript, these results are corrected.

Additionally, the Friedman ranks and Holm’s procedure is applied,
and the results proves the robustness of the proposed method (see
Tables 15 and 16).

From presented comparative analysis interesting conclusions can be
deduced. However, most importantly, proposed bGOQRFA in average
shows the best performance than all other adversary approaches. More-
over, as mentioned above, it is noticed that all three FA approaches
implemented for the purpose of this research obtain significantly higher
number of features for most datasets than algorithms which results are
reported in [57]. From composite objective (fitness) function formula-
tion Eq. (16), it is obvious that with 𝜔 = 0.99, the higher impact on the
objective has classification error (accuracy) than the number of features
and that is the main argument why reported results for implemented
FA approaches have relatively high number of features.

Also, when compared with basic FA and recently proposed bFAQRLI
1u [14], the bGOARFA in most benchmarks obtains lowest fitness value
14
and highest classification accuracy. However, there is always a trade-
off. For example, when performing feature selection with SonarEW,
Clean2 and ExactlyEW datasets, propose bGOQRFA establishes worse
erformance for accuracy, as well as for the fitness than basic bFA
nd bFAQRLI. Similarly, when comparing results with WaveFormEW
nd Vote test instances, bFAQRLI proved as more robust method than
he one proposed in this research. There is also a case when basic
A outperforms both improved FA implementation (KrivskpEW test

instance).
In general, all three FA instances in average show better results

than all other methods encompassed in comparative analysis. The
only exclusion is 𝑆𝑒𝑚𝑖𝑜𝑛 dataset, where for all three indicators other
methods outscored FA-based metaheuristics. The comparison of compu-
tational time is not provided because other metaheuristics were tested
on a different platform. However, by reducing number of features, the
classification process is significantly reduced regardless of the platform

which is used for execution.
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Fig. 4. Convergence graphs for benchmark datasets.
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Table 12
Fitness (objective) value for 21 datasets averaged over 20 runs.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bFA bFAQRLI bGOQRFA

1 0.054 0.052 0.079 0.100 0.099 0.076 0.031 0.035 0.032 0.016 0.013 0.015
2 0.220 0.207 0.215 0.245 0.252 0.246 0.204 0.215 0.209 0.219 0.180 0.175
3 0.153 0.148 0.120 0.183 0.146 0.141 0.078 0.096 0.071 0.054 0.013 0.021
4 0.925 0.928 0.910 0.935 0.938 0.938 0.884 0.903 0.882 0.057 0.029 0.027
5 0.313 0.307 0.289 0.319 0.321 0.312 0.242 0.280 0.255 0.182 0.064 0.057
6 0.304 0.286 0.254 0.278 0.298 0.285 0.168 0.235 0.194 0.073 0.059 0.085
7 0.159 0.158 0.152 0.156 0.169 0.165 0.113 0.141 0.124 0.084 0.106 0.071
8 0.328 0.308 0.259 0.319 0.324 0.308 0.158 0.233 0.167 0.191 0.125 0.119
9 0.389 0.380 0.372 0.393 0.397 0.384 0.337 0.359 0.341 0.053 0.028 0.024
10 0.071 0.074 0.081 0.074 0.072 0.074 0.040 0.061 0.053 0.028 0.032 0.032
11 0.193 0.193 0.195 0.198 0.195 0.193 0.182 0.187 0.188 0.171 0.157 0.162
12 0.303 0.308 0.301 0.301 0.307 0.308 0.151 0.272 0.226 0.228 0.099 0.233
13 0.241 0.244 0.252 0.237 0.244 0.253 0.238 0.244 0.243 0.252 0.225 0.209
14 0.139 0.133 0.155 0.151 0.150 0.136 0.022 0.112 0.072 0.095 0.010 0.009
15 0.084 0.084 0.081 0.089 0.090 0.085 0.048 0.069 0.052 0.060 0.038 0.048
16 0.081 0.058 0.062 0.086 0.088 0.086 0.033 0.057 0.031 0.033 0.056 0.031
17 0.044 0.043 0.037 0.043 0.043 0.044 0.032 0.034 0.030 0.084 0.066 0.092
18 0.191 0.187 0.176 0.184 0.192 0.197 0.136 0.158 0.149 0.089 0.075 0.071
19 0.052 0.052 0.049 0.051 0.052 0.052 0.041 0.044 0.042 0.036 0.025 0.042
20 0.235 0.230 0.223 0.258 0.243 0.237 0.138 0.211 0.160 0.108 0.111 0.082
21 0.260 0.244 0.242 0.276 0.262 0.274 0.149 0.217 0.180 0.136 0.071 0.062

Total 0 0 0 0 0 0 0 0 1 1 7 12
Table 13
Classification accuracy for 21 datasets averaged over 20 runs.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bFA bFAQRLI bGOQRFA

1 0.785 0.619 0.628 0.740 0.725 0.726 0.802 0.962 0.789 0.988 0.992 0.995
2 0.787 0.799 0.786 0.686 0.681 0.686 0.720 0.764 0.673 0.784 0.824 0.829
3 0.841 0.839 0.822 0.656 0.706 0.680 0.789 0.900 0.779 0.949 0.989 0.982
4 0.065 0.056 0.053 0.039 0.033 0.031 0.039 0.086 0.031 0.946 0.973 0.975
5 0.678 0.670 0.664 0.635 0.623 0.625 0.656 0.707 0.649 0.819 0.938 0.945
6 0.698 0.703 0.703 0.645 0.639 0.647 0.721 0.765 0.705 0.928 0.942 0.916
7 0.835 0.836 0.831 0.819 0.803 0.802 0.835 0.860 0.827 0.918 0.894 0.931
8 0.656 0.654 0.652 0.625 0.621 0.623 0.668 0.751 0.652 0.811 0.879 0.885
9 0.598 0.582 0.595 0.573 0.559 0.577 0.589 0.631 0.571 0.950 0.974 0.981
10 0.936 0.930 0.918 0.766 0.765 0.757 0.794 0.943 0.754 0.976 0.971 0.972
11 0.812 0.808 0.804 0.642 0.649 0.647 0.763 0.816 0.747 0.832 0.847 0.839
12 0.687 0.683 0.691 0.644 0.656 0.648 0.664 0.706 0.642 0.775 0.904 0.772
13 0.738 0.740 0.735 0.733 0.711 0.703 0.723 0.735 0.712 0.750 0.778 0.796
14 0.865 0.865 0.833 0.734 0.732 0.744 0.761 0.883 0.728 0.908 0.992 0.994
15 0.915 0.908 0.900 0.829 0.823 0.829 0.884 0.930 0.866 0.943 0.968 0.955
16 0.761 0.610 0.615 0.730 0.744 0.727 0.810 0.944 0.769 0.972 0.949 0.976
17 0.964 0.964 0.965 0.924 0.939 0.925 0.956 0.972 0.959 0.918 0.934 0.910
18 0.815 0.818 0.803 0.729 0.720 0.724 0.806 0.845 0.791 0.913 0.926 0.931
19 0.956 0.956 0.955 0.908 0.910 0.911 0.953 0.962 0.952 0.967 0.979 0.965
20 0.756 0.755 0.749 0.639 0.672 0.659 0.705 0.786 0.709 0.899 0.889 0.925
21 0.744 0.755 0.725 0.553 0.568 0.563 0.765 0.781 0.730 0.866 0.933 0.943

Total 0 0 0 0 0 0 0 1 0 1 6 13
Box plot diagrams comparisons between proposed bGOQRFA and
FA for all 21 datasets are summarized in Fig. 5.

.2.4. Additional experiments
Moreover, with the goal of further validation, the bGOQRFA method

as also tested on two more real-life datasets, first dealing with COVID-
9, and second with microarray and IoT microcontroller data. The
icrocontroller dataset was chosen because it contains a large number

f features, and it can give additional insight into the performances of
he proposed algorithm.

The bGOQRFA method was first employed for relatively new
OVID-19 dataset for predicting patient health and compared to other-
tate-of-the art methods, as it is presented in [58]. Utilized COVID-19
ataset consists of 15 features and can be retrieved from here. Details
f this dataset can be seen from [58].

When compared with other approaches from [58], the bGOARFA
stablished the best accuracy of 93.41% and the second best approach
LBDA (hyper learning binary DA) obtained accuracy of 92.21%. On
16

he other hand, bFA and bFAQRLI obtained accuracy of 88.45% and
90.33%, respectively. Fig. 6 presents box plot comparison between bFA
and bGOQRFA for COVID-19 dataset for objective (fitness) value.

To validate the performances of the proposed algorithm on the
datasets with a large number of features, another experiment was con-
ducted with the microcontroller microarray dataset SMK-CAN-187, that
is available on https://jundongl.github.io/scikit-feature/datasets.html.
This experiment was inspired by the experiments and results published
by Sun et al. [59]. SMK-CAN-187 dataset from the microarray domain
is specific because of a large number of features — 19,993, with 187
instances and two classes.

The conducted experiments have shown that the basic bFA obtained
the classification error of 0.13258. The proposed bGOQRFA algorithm
achieved superior performances by obtaining the classification error of
0.10824, while selecting on average 74.92 features. In comparison to
other methods described in [59], the proposed bGOQRFA outperformed
all of them significantly on this particular dataset.

5. Conclusion

Feature selection is a very important pre-processing method in

machine learning and data science for reducing the dimensionality of

https://github.com/Atharva-Peshkar/Covid-19-Patient-Health-Analytics
https://jundongl.github.io/scikit-feature/datasets.html
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Fig. 5. Box plot comparison: bGOQRFA vs. bFA.
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Table 14
Average number of selected features on 21 data sets for the compared algorithms.

No. WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bFA bFAQRLI bGOQRFA

1 6.0875 6.3875 5.6750 4.7500 5.0250 5.0875 6.3600 6.3875 5.0625 3.7081 4.572 8.075
2 7.7500 9.7083 7.5555 6.1806 6.3750 6.2083 5.2000 7.9167 8.0417 4.6440 5.1842 5.139
3 6.6172 7.6328 6.0625 6.2031 6.1797 6.2500 6.0900 5.9141 4.71090 5.6162 3.3764 5.0881
4 6.2596 6.9904 5.8365 5.5865 5.6154 5.4231 6.4300 5.8269 4.7019 4.6022 2.9510 2.9251
5 6.4602 7.3920 5.9148 5.4432 5.9886 5.6989 5.6800 6.2898 4.5966 6.1825 5.7640 5.6100
6 6.4729 6.6396 5.5667 6.0563 6.0566 6.2396 5.2000 6.2146 4.3854 10.3200 9.4805 11.0439
7 6.0221 6.6875 5.9265 5.4522 5.5699 5.4081 5.6400 6.1213 4.0625 9.5883 3.6043 9.1460
8 5.5577 5.4519 5.4134 5.1731 4.5769 4.7885 6.1100 5.7596 4.1730 5.0570 6.7732 6.6951
9 5.3281 5.8438 5.4609 5.0859 5.2578 5.0469 4.2700 6.2891 4.4219 5.6231 3.6160 8.3040
10 7.0417 9.0347 6.7951 6.1909 6.2535 6.2361 5.7800 7.6314 5.3368 15.2640 11.8442 15.4086
11 7.3344 9.0500 7.0750 6.2656 6.3156 6.3062 7.5000 7.9906 5.8656 18.7213 22.1245 10.4433
12 6.4038 7.2693 6.9712 5.1635 5.4231 5.4231 4.7500 6.2212 6.1827 6.8252 5.1489 9.4651
13 4.9904 4.6731 6.1538 3.9423 4.0385 4.4615 4.7500 4.2981 1.7885 5.8500 6.7860 9.1523
14 7.2404 8.7884 6.9135 6.2212 6.0865 6.2115 6.9500 7.6442 6.3462 5.0960 2.7047 3.9785
15 6.6719 7.4609 6.0234 5.9141 5.6640 6.1016 5.2300 6.1094 3.7813 5.7125 10.1124 5.5213
16 5.7250 6.2375 6.0250 5.1875 4.9500 5.1000 5.5200 6.0750 4.8875 15.8423 16.5392 21.725
17 6.6788 7.9953 5.9774 6.2183 6.2538 6.2363 8.5600 6.4108 5.0028 74.7329 17.4956 76.852
18 6.9247 7.9488 5.8893 6.2146 6.1942 6.2387 6.5700 6.4932 4.8532 47.64200 28.8842 44.6529
19 6.6822 7.7086 5.7515 6.2432 6.2402 6.2771 7.8100 6.8577 4.8735 55.2789 69.8860 122.0135
20 6.6250 7.2708 6.0069 6.0555 5.8958 5.9028 4.9900 6.2569 5.0486 14.4180 16.2542 13.9531
21 6.4835 7.1131 5.3630 6.2142 6.2111 6.2312 5.5000 4.9126 4.7477 108.5533 151.7752 181.0253

Total 0 0 0 0 0 0 2 0 11 1 4 3
Table 15
Friedman ranks of the comparable method over the 21 benchmark datasets.

Dataset WOA bWOA-S bWOA-v BALO1 BALO2 BALO3 PSO bGWO bDA bFA bFAQRLI bGOQRFA

1 8 7 10 12 11 9 4 6 5 3 2 1
2 9 4 6.5 10 12 11 3 6.5 5 8 2 1
3 11 10 7 12 9 8 5 6 4 3 1 2
4 8 9 7 10 11.5 11.5 5 6 4 3 2 1
5 10 8 7 11 12 9 4 6 5 3 2 1
6 12 10 7 8 11 9 4 6 5 2 1 3
7 10 9 7 8 12 11 4 6 5 2 3 1
8 12 8.5 7 10 11 8.5 3 6 4 5 2 1
9 10 8 7 11 12 9 4 6 5 3 2 1
10 7 10 12 10 8 10 4 6 5 1 2.5 2.5
11 8 8 10.5 12 10.5 8 4 5 6 3 1 2
12 9 11.5 7.5 7.5 10 11.5 2 6 3 4 1 5
13 5 8 10.5 3 8 12 4 8 6 10.5 2 1
14 9 7 12 11 10 8 3 6 4 5 2 1
15 8.5 8.5 7 11 12 10 3 6 4 5 2 1
16 9 7 8 10.5 12 10.5 3.5 6 1.5 3.5 5 1.5
17 9.5 7 5 7 7 9.5 3 4 2 12 11 1
18 10 9 7 8 11 12 4 6 5 3 2 1
19 10.5 10.5 7 8 10.5 10.5 4 6 5 3 2 1
20 9 8 7 12 11 10 4 6 5 2 3 1
21 9 8 7 12 10 11 4 6 5 3 2 1

Average ranking 9.21 8.38 7.90 9.71 10.54 9.95 3.74 5.98 4.45 4.14 2.5 1.48
Rank 9 8 7 10 12 11 3 6 5 4 2 1
Table 16
Holm’s step-down procedure result.

Comparison 𝑝-value Rank 0.05/(k-i) 0.1/(k-i)

bGOQRFA vs BALO2 2.22E−16 0 0.00455 0.00909
bGOQRFA vs BALO3 1.29E−14 1 0.00500 0.01000
bGOQRFA vs BALO1 6.62E−14 2 0.00556 0.01111
bGOQRFA vs WOA 1.77E−12 3 0.00625 0.01250
bGOQRFA vs bWOA-S 2.72E−10 4 0.00714 0.01429
bGOQRFA vs bWOA-v 3.79E−09 5 0.00833 0.01667
bGOQRFA vs bGWO 2.62E−05 6 0.01000 0.02000
bGOQRFA vs bDA 3.74E−03 7 0.01250 0.02500
bGOQRFA vs bFA 8.27E−03 8 0.01667 0.03333
bGOQRFA vs PSO 2.10E−02 9 0.02500 0.05000
bGOQRFA vs bFAQRLI 1.79E−01 10 0.05000 0.10000
data, which leads to computation time reduction and also can positively
affect the classification accuracy. In this article, a novel approach is
proposed for the feature selection problem by employing improved FA
method, that enhances original implementation by utilizing GO and
QRBL mechanisms.
18
Proposed method significantly improves performance of the basic
FA, and also outperforms other state-of-the-art metaheuristics for both,
benchmark bound-constrained and practical feature selection tasks.
Method was first validated on 18 standard unconstrained benchmarks
and later it was applied for feature selection by using 21 standard UCL
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Fig. 6. Box plot comparison: bGOQRFA vs. bFA.

datasets , 1 relatively new COVID-19 dataset, and 1 microcontroller
dataset. In all practical simulations proposed GOQRFA in average
outscored all other metaheuristics in terms of convergence, solutions’
quality and classification accuracy.

However, study presented in this manuscript also suffers from some
limitations. Proposed GOQRFA is more complex, as it employs addi-
tional control parameters when compared to the basic FA method,
which makes it harder to be adjusted by the researcher. Also, the
potential of GOQRFA was not fully investigated on other real-world
feature selection datasets. However, this will be subject of future
research from this domain. Additionally, future research will also focus
on testing the proposed GOQRFA algorithm on other NP-hard problems,
including the task ordering in cloud-based systems, intrusion detection
systems, and other challenges in the domain of artificial intelligence
— feature selection and hyperparameter optimization of various neural
network models.
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