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Abstract

Diffusion weighted MRI (DW-MRI) harmonization is necessary for multi-site or multi-acquisition 

studies. Current statistical methods address the need to harmonize from one site to another, but 

do not simultaneously consider the use of multiple datasets which are comprised of multiple sites, 

acquisitions protocols, and age demographics. This work explores deep learning methods which 

can generalize across these variations through semi-supervised and unsupervised learning while 

also learning to estimate multi-shell data from single-shell data using the Multi-shell Diffusion 

MRI Harmonization Challenge (MUSHAC) and Baltimore Longitudinal Study on Aging (BLSA) 

datasets. We compare disentanglement harmonization models, which seek to encode anatomy 

and acquisition in separate latent spaces, and a CycleGAN harmonization model, which uses 

generative adversarial networks (GAN) to perform style transfer between sites, to the baseline 

preprocessing and to SHORE interpolation. We find that the disentanglement models achieve 

superior performance in harmonizing all data while at the same transforming the input data to a 

single target space across several diffusion metrics (fractional anisotropy, mean diffusivity, mean 

kurtosis, primary eigenvector).

INTRODUCTION

Diffusion weighted MRI (DW-MRI) is the only non-invasive modality to probe in vivo 
tissue microstructure and macrostructure [1]. DW-MRI has opened up new investigations 
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into cognitive neuroscience and brain dysfunction in aging, mental health disorders, and 

neurological disease [2]. However, clinical adoption is hindered by the variability in DW-

MRI measurements caused by differences in the number of head coils, coil sensitivity, 

imaging gradient non-linearities, magnetic field homogeneity, reconstruction algorithms, 

and software upgrades [3–7]. These differences are measured in terms of reproducibility 

across multiple acquisitions and across multiple sites (Figure 1), and the goal of increasing 

reproducibility across acquisition parameters, scanners, and scanning sites is known as 

harmonization.

Many empirical models have been developed for the purpose of correcting hardware specific 

effects [8–12], but these rely on a particular set of acquisitions of acquisition parameters 

which may not be retroactively applied. A generalizable model would be desirable for 

already acquired datasets. DW-MRI harmonization has been approached using statistical 

methods such as ComBat [13] and Linear RISH [14] as well as deep learning approaches 

such as SHResNet [15] and StarGAN [16] (Table 1). These approaches fall under the 

category of supervised or unsupervised machine learning (Figure 2). However, supervised 

methods require matching subject scans at all sites, and unsupervised methods require a 

sufficient number of examples from each site and typically have poor performance when 

data have differing acquisition parameters. After testing 4 approaches, we propose a method 

which can harmonize data spanning multiple sites, acquisition parameters, age groups, and 

datasets using single-shell to multi-shell predictions [17] and semi-supervised contrastive 

learning [18]. We modify a harmonization method originally proposed for MRI contrast 

harmonization [19] and we rely on T1 derived segmentations as priors to our model. We 

compare these disentanglement approaches against a GAN approach to harmonization as 

well as standard preprocessing and SHORE as two baseline methods.

FEATURES OF POPULAR HARMONIZATION METHODS

Statistical Models

Through analyzing the effectiveness of several statistical approaches that were developed for 

other data types, Fortin et al. [13] found that ComBat [20] achieved the best performance. 

Originally developed for genomics data, ComBat uses an empirical Bayes framework for 

adjusting data for batch effects that is robust to outliers in small sample sizes. A DTI 

harmonization technique proposed by Mirzaalian et al. [14] utilizes rotation invariant 

spherical harmonic (RISH) features and combines the unprocessed DTI images across 

scanners. A major drawback of these methods is that they require DTI data to have similar 

acquisition parameters which is often unfeasible in multi-site studies. Although, unlike 

supervised machine learning methods, acquisitions between sites do not need to be of the 

same subjects.

Deep Learning Models

Many deep learning approaches have been employed for diffusion harmonization as well. 

Nath et al. utilized a dual network to incorporate unlabeled paired in-vivo DW-MRI of 

human subjects along with labeled squirrel monkey DW-MRI with histology ground truth 

[18]. In a semi-supervised framework, this approach is analogous to utilizing a contrastive 
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learning objective [21, 22] when a negative sample may not be sufficiently identified in 

the unlabeled data. In this work, the term contrastive is used to refer to this variation of 

the loss. Koppers et al. designed a residual network specifically for spherical harmonic 

representations of DW-MRI which predicts the spherical representation at one scanner given 

the spherical harmonics of another scanner [15]. Many of these methods are supervised and 

require matching subjects at all sites, and most of them rely on single-shell representations 

of the diffusion signal which would limit the models to acquisitions of similar b-values. 

However, previous work has used neural networks to estimate a second shell of a two 

shell acquisition given the first shell as input [17]. Given DW-MRI from multiple sources, 

Moyer et al. uses an unsupervised method based on variational auto-encoders to learn 

an intermediate representation that is invariant to site and protocol specific effects [16], 

and while this is free from the constraints of supervised learning, it ignores the use of 

matched subjects which can provide useful guidance to the model. Figure 2 generalizes the 

frameworks of these approaches and Table 1 summarizes the features of popular methods.

Deep learning approaches have been applied to harmonization in other modalities as well. 

For harmonization between T1 and T2 contrasts, Dewey et al. leverages paired T1 and T2 

acquisitions to learn two latent spaces: one which encodes anatomical features and one 

which encodes acquisition features. The encoder is trained to generate the specified contrast 

using either sets of anatomical features [19]. CycleGAN has been used to learn style transfer 

between sites for MRI harmonization as well [23–25]. The cycle consistency loss in this 

framework ensures anatomical information is retained while the adversarial loss enforces the 

site-specific changes. In this work we explore the application of these methods for DW-MRI 

harmonization in a framework that allows for multiple datasets which are not limited by 

acquisition parameters.

DW-MRI Representations

Both statistical and deep learning approaches to DW-MRI harmonization typically rely on 

single-shell representations of the signal. SH and RISH represent the data in comparatively 

few features when considering the number of diffusion volumes acquired in most 

acquisitions. More importantly, the number of features or coefficients remains constant 

after choosing the order of the function. However, these representations are still limited by 

the b-value of the acquisition, so these methods only harmonize multi-site datasets where 

the b-values are chosen to be the same at all sites. Multi-shell representations can enable 

multi-site learning across datasets with different b-values. Simple harmonic oscillator based 

reconstruction and estimation (SHORE) [26, 27] has been shown to generalize diffusion 

microstructure estimation across multiple b-values [28], and this work will explore the use 

of SHORE in diffusion harmonization.

METHODS

Data

The MUSHAC dataset consists of 14 subjects each scanned at two scanners with two 

different sets of acquisition parameters. The scanners were a 3T Siemens Prisma (80 mT/m) 

and a 3T Siemens Connectom (300 mT/m) model. A full list of acquisition parameters is 
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provided in Table 2. The two acquisitions at each scanner were designed to be one standard 

acquisition (ST) and one state-of-the-art acquisition (SA). All acquisitions were acquired 

with b-values of 1200 and 3000 s/mm2, and the most notable differences between ST and 

SA are an increase from 30 to 60 directions per b-value and an increase in resolution from 

a voxel size of 2.4mm isotropic to 1.5mm isotropic in the case of the Prisma scanner and 

2.4mm isotropic to 1.2mm isotropic in the case of the Connectom scanner [29].

The BLSA dataset consists of 50 subjects scanned at four scanners: General Electric (GE) 

Signa 1.5T (A), Philips Ahieva 3T (B), (C), and (D). Every subject was not scanned at all 

four scanners, but each subject used was scanned at the 1.5T scanner and one of the 3T 

scanners. The acquisition parameters have small differences which are provided in Table 3f. 

Unlike the MUSHAC dataset where the average time between acquisitions on scanners was 

within 2 years, there could be many years between acquisitions in the BLSA data. We limit 

consideration to those scans in the BLSA which were acquired within 5 years of the first 

scan used for each subject.

DW-MRI from both datasets are preprocessed using standard techniques including EPI 

distortion correction using FSL TOPUP, and eddy current distortion correction using FSL 

eddy [30, 31].

Using a b0 image, the DW-MRI are registered to a T1 of the subject suing FSL epi_reg, and 

then the T1 and the DW-MRI are registered to the MNI152 template using FSL flirt [31]. 

The template image has a voxel resolution of 1mm isotropic and the volume dimensions 

are 193×223×193. This standard DW-MRI preprocessing pipeline is evaluated as a baseline 

when comparing the harmonization methods discussed below. Anatomical segmentations as 

defined by BRAINCOLOR [32] are generated using SLANT [33].

For the purposes of this work, we select the Connectom state-of-the-art acquisition within 

the MUSHAC dataset as the target site. We utilize the MUSHAC data as labeled data where 

each target has three distinct inputs: Prisma ST, Prisma SA, and Connectom ST. The BLSA 

dataset is used as unlabeled data. We use five fold cross-validation for evaluation. The goal 

of each method is to harmonize both datasets by removing site specific effects and biases not 

already addressed by standard pipelines and adding acquisition features specific to the target 

site.

SHORE

SHORE has been shown to capture multi-shell DW-MRI with minimal reconstruction error 

[26] while ensuring the same when modelling single-shell DW-MRI. The normalized DW-

MRI signal can be represented as:

E(q) = ∑
n = 0

N
∑
l = 0

n
∑

m = − l

l
cnlmGnl(q, ζ)Y l

m(u) (1)

where c are the coefficients, G is the radial basis, and Y is the SH basis. The radial basis G is 

expressed as:
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Gnl(q, ζ) = Knl
q2

ζ

l
2exp − q2

ζ L
n − l

2

l + 1
2 q2

ζ (2)

where ζ is the scale parameter, q is the radius of the diffusivity value, and L is the associated 

Laguerre polynomial. Here we use the default parameters of shore as recommended by 

DIPY [34], so SHORE is estimated at 6th order, ζ is et as 700, and regularization constants 

are set as 1e − 8. This results in 50 estimated coefficients. However, though SHORE 

achieves minimal reconstruction error in both single-shell and multi-shell estimation, 

it cannot reconstruct multi-shell data from coefficients modelled with single-shell data. 

Therefore, the input data in the MUSHAC dataset are only modelled using the b-value 1200 

s/mm2 shell.

Disentanglement Model

We repurpose the model designed by Dewey et al. to harmonize between sites rather 

than between contrasts (Figure 3). This method consists of learning two things: the 

disentanglement between acquisition specific and anatomical specific features and the 

transformation to the target acquisition. Because cross-site same subject pairs exist within 

the input data, we can use a pair of scans from different scanners or acquisitions to learn the 

disentanglement, and we can use the labeled MUSHAC data to learn the transformation 

from acquisition free latent space. The model is comprised of an anatomical encoder 

Eanat, an acquisition encoder Eacq, an acquisition decoder Dacq, and a target decoder Dtarg. 

The architectures of Eanat, Dacq, and Dtarg are modified 3D U-Nets [35, 36] which do 

not downsample the spatial dimensions of the input. The architecture of Eacq is a 3D 

convolutional neural network which encodes the input in to a 1×256 vector that contains 

acquisition specific features. The architectures are modified for 32×32×32 patches as well as 

193×223×3 slabs of axial slices. The specifics of these architectures are shown in Appendix 

A.

For each step in training, a volume from one of the three input sites of the MUSHAC dataset 

xi as well as a pair of sites from either the BLSA or MUSHAC [xj, xk] are selected. Eanat, 

Eacq, and Dacq are trained using the paired data [xj, xk] in a similar fashion to Dewey et al. 

The SHORE coefficients of the input are fed to Eanat and Eacq for each xj and xk resulting 

in subject features βj and βk and acquisition features θj and θk. For each β feature map, 

the feature map is randomly taken from βj or βk to form βjk. This encourages the model to 

represent subject features the same across acquisition. Dacq is then given the pairs of [βjk, 

θj] and [βjk, θk] with the goal of reconstructing the acquisition specified by θ. Dtarg is given 

only βi with the goal of generating the associated target image yi. Eanat, Dacq, and Eacq are 

trained using the paired data [xj, xk], while Dtarg is trained separately using the labeled data 

[xi, yi]. The loss functions employ L1 loss (L1), structural similarity index measure loss 

(SSIM), total variation loss (TV), and Sobel edge detection (Sobel):
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Limage(x, y, y) = SSIM(y, y) + L1(y, y) + TV (y) + L1(Sobel(x), Sobel(y)) (3)

where the SSIM and L1 terms encourage the predicted y to have the same information as y, 

the TV term regularizes neighborhood consistency within y, and another L1 term between 

the edge features of the input x and the prediction y enforces that the structure remains the 

same. For Eanat, Dacq, and Eacq, the loss function is:

L = Limage xj, xj, xj + Limage xk, xk, xk + λEL1 βj, βk (4)

where the final term is a contrastive term which further encourages the structural features to 

be similar across acquisitions and λE controls the contribution of this term and is empirically 

set to 10. The loss for Dtarg is:

L = Limage xi, yi, yi (5)

The implementation of this model requires two optimizers, one responsible for each of these 

losses. We choose each of these to be an Adam optimizer with a learning rate of 1e-5. 

Each model was trained until convergence on a validation set which was approximately 75 

epochs each consisting of approximately 1500 samples of patches or axial slabs. Where the 

patch-based model was evaluated in 3D, the slice-based model was evaluated only on the 

middle of the three axial slices.

CycleGAN Model

As a baseline representing unsupervised learning approaches, we modify the CycleGAN 

model according to Bashyam et al. (Figure 4). This involves adding an encoder (Eacq) which 

encodes the acquisition specific features of images from the input domain to compensate 

for potentially many different styles coming from many different acquisitions. Similar to 

the disentanglement model, the generator which goes from the target domain to the input 

domain (GB) is parameterized by a target domain image and the acquisition features which 

indicate the specific acquisition that should be generated. Also in following Bashyam et al., 

we pass our input as axial slices rather than slabs or patches. To avoid putting this model at 

a disadvantage, we also modify the loss to account for paired data which may provide useful 

information:

LG = L2 DA GA xj , 1 + λAL1 GB GA xj , Eacq xj , xj
+L2 DB GB yi, Eacq xj , 1 + λBL1 GA GB yi, Eacq xj , yi

+λEL1 GB GA xk , Eacq xj , xj
(6)

LD = L2 DA GA xj , 0 + L2 DA yi , 1 + L2 DB GB yi, Eacq xj , 0 +
L2 DB xj , 1 (7)

where LG is the generator loss, LD is the discriminator loss, GA is the generator which is 

parameterized by the input domain and generates the target domain, DA is the discriminator 

which classifies between real and fake target domain images, and DB is the discriminator 
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which classifies between real and fake input domain images. λA, λB, and λE are 

hyperparameters for the cycle loss terms and are empirically set to 25. The final term of 

the generator loss is similar to the cycle loss except the goal is to recreate xj using xk to 

parameterize GA to leverage the paired data. Training consisted of 200 epochs where during 

the first 100 epoch a learning rate of 2e-5 was used and during the last 100 epochs the 

learning rate was linearly to zero. The architectures used are shown in Appendix A.

RESULTS

We evaluate each method in terms of RMSE for the metrics fractional anisotropy (FA), mean 

diffusivity (MD), mean kurtosis (MK), and the angular error of the primary eigenvector (PE) 

of the diffusion tensor (Figure 5 & Table 4). For the MUSHAC dataset four subjects were 

withheld for testing and each of the input from the three acquisitions PrismaSA, PrismaST, 

and ConnectomST are evaluated by their similarity to the target acquisition ConnectomSA. 

For the BLSA dataset five subjects were withheld for testing and each scan from the 

1.5T scanner (A) and the 3T scanners (B, C, or D) are evaluated by their similarity to an 

average which is calculated for each method. The Wilcoxon signed-rank test was used to test 

statistical significance of each method (p-value<0.01).

In the MUSHAC data the baseline and SHORE methods are generally similar with some 

improvement over the baseline in MK and angular error. The disentanglement methods 

outperform all other methods on average. Additionally, without the second diffusion shell, 

the model cannot rely on the identity transform to achieve similar results as the baseline. A 

visualization of the error reveals the differences in the Patch and Slice method (Figure 6). 

While the Patch method has a small advantage in gray matter regions, the Slice seems to 

achieve superior performance in the core of the corpus callosum. The CycleGAN method 

performs poorly at this task, and it can be seen where the model fails to generate the correct 

anatomy in the sample subject.

In the BLSA data, the difference between methods is less distinct, but similar trends appear. 

Although, the SHORE method has much different behavior due to only being fit with a 

single-shell. The large increase in reproducibility error in MD in both gray and white matter 

and in FA in gray matter suggest that the method is not particularly stable for single-shell 

data. Additionally, there is no baseline or SHORE method for MK due the data only being 

acquired with a single-shell. Again the disentanglement methods obtain the lowest error for 

all metrics. However, the angular error for the slice method is greater than the Patch method. 

Visually it can be seen again that the CycleGAN method is inconsistent.

As an ablation, we also train the Patch method on a single fold with data augmented by 

random Gaussian noise to test the stability of the model (Patch Noisy) and without the 

anatomical parcellation as a prior (Patch w/o SLANT) to assess the contribution of the T1 

derived information. We find that there is a small drop in performance when the SLANT 

priors are withheld from the model, and we also find the approach is not affected by noisy 

training data. The results of this ablation experiment are presented in Appendix B.
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DISCUSSION

The chosen datasets are each unique and present different challenges for harmonization. The 

MUSHAC dataset was specifically designed to have two very different acquisition protocols 

which tends to be the main contribution of reproducibility error compared to the bias 

introduced by differences in hardware. The BLSA dataset was not intended to have different 

acquisition parameters, but throughout the course of the study, there were inevitably 

replacements made resulting in four different hardware and slightly altered acquisition 

parameters. The aging aspect of the data introduces reproducibility error resulting from 

actual changes in anatomy rather than scanner or acquisition bias which should be preserved 

rather than removed or altered. In trying to harmonize all these data to a single target space 

includes dealing with the differences in b-value, the number of shells, and the anatomical 

differences in an aging cohort and a young adult cohort.

By choosing a method that represents the diffusion signal as the same set of coefficients 

regardless of the acquisition, the simplified input space can potentially use a single 

model. However, the differences between the estimated SHORE coefficients from single-

shell data and multi-shell data creates two distinct tasks for the model to learn. This 

becomes particularly difficult when the unlabeled set of data only contains single-shell 

representations, and the labeled data only contains multi-shell representations as semi-

supervised learning relies on the supervised term to form a good approximation to start 

learning from the unlabeled data. We choose to only use the first shell for our deep learning 

methods to avoid this, but it is a considerable limitation. Despite only using a single-shell, 

the disentanglement models achieve lower MK error overall which is derived from diffusion 

kurtosis imaging (DKI) and requires multiple shells to be estimated. This suggests that the 

multi-shell SHORE representation can be approximated well, and that given the choice, 

harmonizing with a single-shell is better than using multi-shell data as it is.

The choice of the SHORE representation while aiding to overcome multiple acquisition 

protocols requires that the model accurately represents multiple features in the output space. 

While some of the 50 coefficients have a larger impact on such measures as MD and FA, for 

the model to adapt single-shell data to multi-shell, most of the 50 coefficients would need 

to be accurately estimated, and so we did not influence the models by weighting the loss 

by coefficient preventing models from placing more importance on a particular coefficient. 

The CycleGAN model being purely unsupervised did not have the benefit of the highly 

informative labeled samples and so could not converge on a point where all coefficients 

were realistic and anatomically correct in our experimental setup. Further investigation to 

unsupervised approaches is necessary, but outside of the scope of this work.

An interesting aspect of the disentanglement model used here, is that the harmonization 

between the input takes place entirely in the encoders which are tasked with extracting 

either the anatomical or the acquisition specific information from the data. By preventing the 

gradients from the decoder Dtarg which is tasked with estimating the target site from being 

backpropagated to the encoder, we ensure that the encoder Eanat is fully self-supervised 

along with the decoder Dacq. Dtarg can generate an image when parameterized by the 
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unlabeled BLSA data even though it only learned from the labeled MUSHAC data, because 

the anatomical latent space which it learns from is free from acquisition specific features.

Though deep learning is a promising approach to harmonization, the advantage of such 

approaches lies in extracting information from large datasets. As was shown in the challenge 

associated with the MUSHAC dataset, with only 10 subjects in a supervised training 

set, regression models can outperform convolutional neural networks with millions of 

parameters. Additionally, a model trained to transform one site to another is only useful 

for those who need to harmonize data acquired on those specific scanners or those who have 

a large enough cohort to retrain the model.

Where deep learning can be the most useful in harmonization is in developing a model 

which can generalize well to unseen diffusion acquisitions. Because a fully supervised 

dataset of many subjects covering many acquisition parameters and scanner hardware is time 

consuming and expensive, it would be beneficial to leverage semi-supervised approaches to 

bring together many different datasets. Though this work takes a step towards this goal, it 

is limited to datasets which contain paired data which contain differences in acquisition or 

hardware between them.

CONCLUSION

The framework provided in this work can reduce error introduced by differences in 

acquisition and hardware in two unique datasets and can potentially be extended to 

many datasets provided they contain paired data. We advocate for further development of 

harmonization models which generalize across many datasets and account for the various 

differences in acquisition protocols in DW-MRI.
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APPENDIX A

Figure 8. 
The architectures used in the disentanglement model are modified for 32 by 32 by 32 

patches (A) as well as 193 by 229 by 3 axial slabs (B). The acquisition encoder is defined 

by a CNN which results in a vector of size 256 while the structural encoder and the two 

decoders are defined by U-Nets which preserve the original size of the input. The U-Nets 

use the same residual and upsample units (C).
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Figure 9. 
All architectures for the CycleGAN method are designed for 193 by 229 axial slices. The 

generators are defined as U-Nets (A), the discriminators are defined as patch discriminators 

(B), and the acquisition encoder is defined as an autoencoder (C). The residual and upsample 

units for the U-Net are similar to those used in the disentanglement model (D), and the 

autoencoder uses similar units which lack the skip connection (E).
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APPENDIX B

Figure 10. 
We modify the Patch disentanglement model to 1) test the models robustness when trained 

with data augmented with Gaussian noise and 2) test the models response to removing 

the anatomical segmentation priors. While the model seems to have a small response to 

adding noise, removing the anatomical priors generally decreases performance. Wilcoxon 

signed-rank test shows that all methods are statistically significant (p-value<0.01).
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Figure 1. 
Hardware and protocol differences lead to reproducibility error in DW-MRI metrics. 

Examples of these differences are shown here for FA and MD for a subject from the 

MUSHAC dataset (top) as well as the BLSA dataset (bottom). Error is calculated as the 

absolute difference between metrics from two scans divided by the average of the two. 

While directly harmonizing between two sites is straightforward, it does not allow for 

multiple datasets each with multiple sites to be jointly analyzed as all sites would need to be 

moved to the same space.
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Figure 2. 
Machine learning approaches in DW-MRI follow the general format of supervised (A) and 

unsupervised (B) methods. However, there are few approaches which follow the standard 

semi-supervised approach (C), but a contrastive approach which relies on having paired 

data across sites or acquisitions (D) has been shown to be effective. A problem more 

unique to DW-MRI is estimating a multi-shell acquisition from a single-shell acquisition 

(E). This work focuses on estimating a multi-shell target site from single-shell data in a 

semi-supervised contrastive learning framework (F).
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Figure 3. 
We follow the work of Dewey et al., but where before the goal was to harmonize between T1 

and T2 acquisitions, our goal is to harmonize between many DW-MRI acquisitions as well 

move all data to a single target space. Changes to the method are indicated by red boxes. 

To account for the much broader range of acquisition possibilities, we use an acquisition 

encoder which represents the acquisition using a vector of size 256 rather than a single value 

which only needed to indicate contrast. In a similar manner, we use paired subject data from 

different acquisitions and encourage the network to encode a latent space which represents 

only the subject specific feature free from scanner or acquisition bias, and then reconstruct 

the acquisition indicated by the acquisition encoding vector using subject features from 

either scan. A second decoder was added to learn from the acquisition free latent space to a 

target space using the supervised data.
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Figure 4. 
As a baseline, a CycleGAN framework is constructed from two U-Net generators, one which 

takes an axial slice of SHORE coefficients and one hot encoded SLANT segmentation 

from the input domain and generates the target domain and vice versa, as well as two 

patch discriminators, one which tries to classify whether or not the input is from the input 

domain and one which does the same for the target domain. Due to the input domain being 

composed of multiple sites and acquisitions, an autoencoder is used to extract acquisition 

specific information θ from the input image which is then used as input when trying to 

generate an input domain image to specify what scanner or acquisition the generated image 

should resemble.
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Figure 5. 
Here the methods are compared in terms of RMSE of FA, MD, MK, and angular error for 

each input scan. The baseline and SHORE methods use all available shells while all other 

methods are given on the first shell of a lower b-value. On average, the Patch and Slice 

disentanglement models perform better in white and gray matter for both datasets across 

metrics. Notably the improvement in MK indicates the estimation of the second shell is 

successful. Wilcoxon signed-rank test shows that all methods are statistically significant 

(p-value<0.01).
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Figure 6. 
For a single MUSHAC subject an axial slice of FA, MD, and MK and the precent error is 

shown for each method excluding the baseline. For the disentanglement methods, the error 

generally improves in both gray and white matter. However, the Slice method shows greater 

error reduction in white matter.
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Figure 7. 
Here we look at the reproducibility error for each method for a BLSA subject using a scan 

acquired at the 1.5T scanner (A) and a scan acquired at a 3T scanner (B). Here the difference 

between the Patch and Slice Disentanglement models is clear in FA where the error in white 

matter is much lower for the Slice method.
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Table 1.

Statistical methods as well as deep learning methods all depend on b-value specific representations of 

DW-MRI. SHORE is a mutli-shell representation that is not dependent on the b-value and can be used to 

reconstruct any given acquisition scheme given a set of b-values and directions. We aim to create a deep 

learning framework which harmonizes across datasets without needing to match acquisition parameters across 

sites.

Regression Convolutional 
Neural Net

Supervised Unsupervised Semi-
supervised

Semi-supervised 
Contrastive

Multi-shell 
Target

COMBAT [20] ✓ ╳ ╳ ✓ ╳ ╳ ╳

RISH [14] ✓ ╳ ╳ ✓ ╳ ╳ ╳

SHORE [24] ✓ ╳ ╳ ╳ ╳ ╳ ╳

SHResNet [15] ╳ ✓ ✓ ╳ ╳ ╳ ╳

StarGAN [16] ╳ ✓ ╳ ✓ ╳ ╳ ╳

NST [18] ╳ ✓ ╳ ╳ ╳ ✓ ╳

ShellDNN [17] ╳ ✓ ✓ ╳ ╳ ╳ ✓

This Work ╳ ✓ ╳ ╳ ╳ ✓ ✓
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Table 2.

The MUSHAC dataset consists of 14 subjects across two sites each with two sets of acquisition parameters. 

For each site, there is a standard (ST) and a state-of-the-art (SA) acquisition where the most noticeable 

difference is the voxel resolution and the number of directions per b-value.

Scanner (MUSHAC) Siemens 80 mT/m (Prisma) Siemens 300 mT/m (Connectom)

Protocol Standard (ST) State-of-the-art (SA) Standard (ST) State-of-the-art (SA)

Diffusion weighted images

Sequence PGSE PGSE PGSE PGSE

b-values [s/mm2] 1200, 3000 1200, 3000 1200, 3000 1200, 3000

# directions per b-value 30 60 30 60

TE [ms] 89 80 89 68

TR [ms] 7200 4500 7200 5400

Δ/δ [ms] 41.4/26.0 38.3/19.5 41.8/28.5 31.1/8.5

Phase encoding direction AP AP AP AP

Reconstructed voxel size 1.8 × 1.8 × 2.4 1.5 × 1.5 × 1.5 1.8 × 1.8 × 2.4 1.2 × 1.2 × 1.2

Matrix size 96 × 96 154 × 154 96 × 96 180 × 180

# slices 60 84 60 90a

Head coil 32 channel 32 channel 32 channel 32 channel

b0 images

TE [ms] 89, 80, 89 80, 80, 89 89, 68, 89 68, 68, 89

TR [ms] 7200, 7200, 13000 4500, 7200, 7200 7200, 7200, 13000 5400, 7200, 7200

Phase encoding direction AP, PA AP, PA AP, PA AP, PA
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Table 3.

The chosen 50 subjects from the BLSA dataset are acquired across four scanners. All subjects have at least 

a one scan on the 1.5T scanner (A) and at least one scan at one or more of the 3T scanners (B, C, D). 

The number of directions per b-value are spread across two scans acquired in a single session. There are 

small differences between acquisitions, but the parameters were not intentionally chosen such that there were 

differences between scanners.

Scanner (BLSA) A (1.5T) B (3T) C (3T) D (3T)

Diffusion weighted images

Sequence PGSE PGSE PGSE PGSE

b-values [s/mm2] 700 700 700 700

# directions per b-value 30 32 32 32

TE [ms] 80 75 75 75

TR [ms] 6210 6801 6801 7454

Δ/δ [ms] 39.2/15.1 36.3/16 36.3/16 36.3/13.5

Phase encoding direction APP APP APP APP

Reconstructed voxel size 0.94 × 0.94 × 2.5 0.83 × 0.83 × 2.2 0.83 × 0.83 × 2.2 0.81 × 0.81 × 2.2

Matrix size 96 × 96 96 × 95 96 × 95 116 × 115

Reconstruction matrix size 256 × 256 256 × 256 256 × 256 320 × 320

# slices 50 65 65 70

Head coil Philips 8-ch Philips 8-ch Philips 8-ch Philips 8-ch

b0 images

TE [ms] 80 75 75 75

TR [ms] 6210 6801 6801 7454

Phase encoding direction APP APP APP APP
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Table 4.

The mean and standard deviation of the RMSE across scans is reported for each dataset in the white matter 

and gray matter. The lowest RMSE across FA, MD, MK, and Angular error (noted in bold) is achieved by the 

Patch or Slice disentanglement method.

Gray Matter White Matter

Method FA RMSE MD RMSE 
(1e-05) MK RMSE Angular 

RMSE FA RMSE MD RMSE 
(1e-05) MK RMSE Angular 

RMSE

MUSHAC

Baseline 0.088±0.017 22.65±5.48 0.28±0.04 38.55±2.97 0.104±0.029 10.64±3.06 0.17±0.03 23.07±4.33

SHORE 0.088±0.018 22.60±5.57 0.28±0.04 38.53±2.97 0.105±0.030 10.63±3.18 0.17±0.04 23.05±4.34

Patch 0.075±0.011 15.88±2.32 0.23±0.05 32.79±1.68 0.090±0.013 7.86±1.70 0.12±0.02 19.46±2.67

Slice 0.080±0.011 16.39±2.32 0.23±0.04 33.70±1.91 0.096±0.011 7.50±1.29 0.12±0.02 20.61±2.90

CycleGAN 0.218±0.057 48.59±14.15 0.44±0.07 52.36±4.22 0.187±0.030 17.83±3.04 0.35±0.07 41.56±10.90

BLSA

Baseline 0.046±0.017 23.71±13.07 NaN±NaN 41.35±5.56 0.061±0.039 12.16±9.28 NaN±NaN 33.64±9.73

SHORE 0.074±0.014 90.54±25.48 NaN±NaN 41.13±5.46 0.057±0.034 34.66±14.68 NaN±NaN 33.73±9.64

Patch 0.036±0.024 14.24±4.54 0.06±0.02 33.66±4.27 0.050±0.030 3.76±1.51 0.04±0.03 28.17±6.48

Slice 0.041±0.025 13.41±4.17 0.07±0.03 37.95±5.68 0.050±0.026 3.77±1.26 0.05±0.05 32.74±9.77

CycleGAN 0.127±0.045 40.04±17.33 0.18±0.04 37.12±4.10 0.096±0.041 14.48±6.93 0.19±0.07 36.26±7.13
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