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Abstract

The observation of genetic correlations between disparate human traits has been interpreted as 

evidence of widespread pleiotropy. Here, we introduce cross-trait assortative mating (xAM) as 

an alternative explanation. We observe that xAM affects many phenotypes and that phenotypic 

cross-mate correlation estimates are strongly associated with genetic correlation estimates (R2 = 

74%). We demonstrate that existing xAM plausibly accounts for substantial fractions of genetic 

correlation estimates and that previously reported genetic correlation estimates between some 

pairs of psychiatric disorders are congruent with xAM alone. Finally, we provide evidence for 

a history of xAM at the genetic level using cross-trait even/odd chromosome polygenic score 

correlations. Together, our results demonstrate that previous reports have likely overestimated the 

true genetic similarity between many phenotypes.

One-Sentence Summary:

Statistical artifacts due to non-random mating, rather than shared biology, may explain reported 

genetic correlations.

Methods that use summary statistics from genome-wide association studies (GWAS) 

to investigate genetic overlap across phenotypes have become a fundamental statistical 

tool across many domains of human complex trait genetics (1–5). The results of these 

analyses have been striking: many trait pairs, even those with limited phenotypic similarity, 

display nontrivial genetic correlations (for example, 0.209 [se=0.042] for attention-deficit 

hyperactivity disorder [ADHD] and body mass index [BMI] in (1)). These findings have 

been broadly interpreted as evidence for widespread pleiotropy across the phenome (6–8), 

and, in the case of psychiatric disorders, have raised concerns about the suitability of the 

existing nosology given evidence for shared genetic bases (1, 9).

Here, we consider an overlooked source of potential bias in these findings: cross-trait 

assortative mating (xAM), the phenomenon whereby mates display cross-correlations across 

distinct traits. There are several reasons to be concerned with this potential oversight: 

First, the single-trait linear mixed model, which genetic correlation estimators generalize, is 

misspecified under single-trait assortative mating (sAM) and overestimates SNP heritability 

(10). Second, sAM is widespread across multiple domains for which substantial genetic 
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correlations have been observed, including anthropometric, psychosocial, and disease traits 

(1, 7, 8). Third, recent work has provided genetic-level evidence for a history of sAM with 

respect to some of these same phenotypes (11). Fourth, xAM is known to generate spurious 

results for other marker-based inference procedures, including Mendelian randomization 

(12) and association studies (13).

We set out to systematically assess the impact of xAM on genetic correlation estimates, 

first compiling a large atlas of cross-mate correlations across a broad array of previously-

studied phenotypes utilizing two large population-based samples (n=81,394; n=746,566). 

We find that these phenotypic cross-mate correlations explain a major portion of empirical 

marker-based genetic correlation estimates for the same trait pairs (R2=74% across samples). 

We next demonstrate that xAM biases genetic correlation estimates and yields non-trivial 

estimates even among traits with uncorrelated genetic effects. We use a simulation-based 

approach to evaluate the extent to which empirical levels of xAM alone might plausibly 

explain genetic correlation estimates among previously-studied traits, finding that, for many 

trait pairs, substantial fractions of empirical genetic correlation estimates are congruent 

with expectations for etiologically independent traits subject to xAM. At the same time, 

we observe that particular phenotype pairs, such as schizophrenia and bipolar disorders, 

evidence substantially larger genetic correlation estimates than can be plausibly attributed to 

xAM-induced artifact. Lastly, we utilize correlations between even versus odd chromosome-

specific polygenic scores (PGS) to detect genetic signatures of xAM, extending a previous 

approach (11). We find that cross-trait even/odd PGS correlations mirror cross-mate 

phenotypic correlation patterns and, through this association, explain substantial variation 

in empirical genetic correlation estimates.

Results

Genetic correlation estimates mirror cross-mate phenotypic correlations

We begin by quantifying the extent to which empirical genetic correlation estimates align 

with cross-trait spousal correlations across a broad array of phenotypes: a set of 20 

previously-studied traits measured in the UK Biobank (UKB) (14) and a collection of six 

psychiatric disorder diagnoses ascertained from Danish civil registry data (15). We estimated 

cross-mate correlations for 40,697 spousal pairs within the UKB sample and 373,283 mate 

pairs randomly selected from the Danish population. For a pair of phenotypes Y and Z, there 

are three cross-mate correlation parameters: ryy and rzz the correlations between mates on 

Y and Z, respectively, and ryz, the cross-mate cross-trait correlation; we generically denote 

these quantities rmate, and present these estimates in the diagonal and sub-diagonal entries 

of Figs. 1A and 1B. We also compiled LD score regression (LDSC) genetic correlation 

estimates, denoted ρβ; LDSC, for each pair of phenotypes, which we present in the super-

diagonal entries of Figs. 1A and 1B. All pairwise estimates are provided in Table S1.

Cross-mate correlation structures were diverse across the trait pairs we examined (Fig. 

S1). Whereas cross-mate single-trait and cross-mate cross-trait correlations were similar 

for some trait pairs (for example, ryy = 0.26, rzz = 0.20, and ryz = 0.20 for BMI and hip 

circumferences), these quantities were of opposing signs for others (for example, ryy = 0.33
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and rzz = 0.22 versus ryz = − 0.09 for years of education and regular smoking). In general, 

cross-mate correlation structures were not consistent with sAM alone. When the cross-mate 

correlation rzz for as secondary trait Z is fully mediated through sAM on Y, we expect that 

rzz ≈ ryysyz
2 ; this model fit the data poorly (Fig. S2).

Estimates of ρβ; LDSC were strongly associated with rmate estimates across both samples (Fig. 

1C; meta-analytic R2=74.32%, 95% CI: 67.02%–81.62% in a linear model; R2=76.69%, 

95% CI: 73.94%–79.45% in a Bayesian model accounting for heteroskedasticity and 

estimation error). The regression slope did not significantly differ across the UKB 

and psychiatric phenotypes in either model (for example, p=0.16 for a sample-by-rmate 

interaction term in the linear model). The strength of this association largely persisted when 

excluding trait pairs with large genetic correlation estimates: considering only trait pairs 

with estimated genetic correlations below 0.50 in magnitude yielded R2=70.94%; further 

restricting to those below 0.30 in magnitude, yielded R2=67.88%. This suggests that the 

observed association does not merely reflect sAM on genetically homogenous factors.

Defining genetic correlation

Having established that a large degree of the variance in genetic correlation estimates can 

be predicted from phenotypic mating correlations, we now provide theoretical intuition as 

to why this might occur (see Supplementary Text for further details; (16)). We start by 

defining three distinct notions of genetic similarity between phenotypes. These definitions 

are summarized in Table 1.

We consider a pair of phenotypes Y, Z, with heritable components ℓy, ℓz reflecting the 

additive effects of m standardized haploid variants X1, … Xm with phenotype-specific effect 

vectors βy, βz. For simplicity, we assume that causal variants are initially unlinked and 

that both phenotypes have unit variance under random mating (panmixis), such that the 

panmictic heritabilities are ℎy; pan
2 = βy

⊤βy and ℎz; pan
2 = βz

⊤βz.

Pleiotropy is present when a locus influences two or more phenotypes. Thus, locus Xi is 

pleiotropic with respect to Y and Z when both βy;i ≠ 0 and βz;i ≠ 0, though these effects 

might differ substantially in magnitude or direction. On the other hand, the correlation 

between effects, which we refer to as the effect correlation ρβ, indexes the similarity of 

variant effects on two phenotypes:

ρβ = cor βy, βz ,

where the β vectors include all variants, causal or otherwise, and thus may contain elements 

equal to zero. A value of ρβ > 0 implies both the existence of pleiotropic loci and that said 

loci have similar effects on average, and we term a pair of traits genetically orthogonal when 

ρβ = 0. Effect correlation is distinct from the classical definition of genetic correlation as 

the correlation between the heritable components of two traits (17), which we refer to as the 

score correlation:
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ρℓ = cor ℓy , ℓz ,

as it reflects the correlation between the true PGS.

Within the standard linear mixed model framework, ρℓ and ρβ are equivalent and hence 

seldom discussed as separate quantities (though genetic correlation estimates are commonly 

interpreted as estimates of ρβ (4, 18, 19)). However, traits with uncorrelated effects 

can unintuitively have correlated PGS. Under xAM, all causal variants affecting trait Y 
become correlated with all causal variants affecting trait Z, and these correlations are 

directionally consistent with their respective effects (see Supplementary Text (16)). As we 

will demonstrate in the following section, this results in non-zero score correlations in the 

direction of the cross-mate cross-trait phenotypic correlation, even for genetically orthogonal 

traits.

The impact of xAM in simulations

We ran a series of forward-time simulations using realistic genotype data to investigate the 

impact of xAM on multiple measures of genetic correlation. At each generation, individuals 

(consisting of a set of genotypes together with two phenotypes) were matched to achieve 

target cross-mate correlation parameters, after which we estimated genetic correlations (ρβ)
using LDSC (denoted ρβ; LDSC; (6)), Haseman-Elston regression (HE, denoted ρβ; HE; (20)), 

and residual maximum likelihood (REML; ρβ; REML; (18)). We also computed true score 

correlations (ρℓ), which is possible when the true genetic effects are known. We performed 

sensitivity analyses to confirm that our results did not depend on simulation parameters, 

including the number of causal variants (Fig. S3), mate selection algorithm (Fig. S4), 

recombination scheme (Fig. S5), and whether causal variants with orthogonal genetic effects 

arose on overlapping loci (Fig. S6). We additionally investigated the impact of xAM on 

GWAS effect estimates and GWAS-based methods for identifying pleiotropic SNPs (Figs. 

S7 to S10), genetic correlation estimates for binary phenotypes subject to misdiagnosis (Fig. 

S11), partitioned genetic correlation estimates (Fig. S12), and genetic covariance estimators 

(Fig. S13).

xAM induces nonzero score correlations among genetically orthogonal traits
—We confirmed that xAM induces substantial score correlations across a broad array of 

simulation parameters. This is perhaps most striking for traits with orthogonal effects: Fig. 

2A demonstrates the increase in the true score correlation across multiple generations of 

xAM for a pair of traits with ρβ = 0, rmate = 0.5, and ℎpan
2 = 0. Across simulation replicates, 

the average score correlation was 0.11 after a single generation of xAM, which increased to 

0.24 after three generations.

Importantly, this increase in score correlation induced by xAM does not represent bias: 

the population-level correlation between the heritable components of the phenotypes truly 

does increase under xAM. On the other hand, as we demonstrate next, genetic correlation 

estimators become misspecified under xAM and yield biased estimates. Still, even unbiased 
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estimates of score correlation can be driven by either shared biology, or xAM, or both, 

further complicating interpretation (Table 1).

Effect correlation estimates are biased upwards—For genetically orthogonal traits, 

after a single generation of xAM, the REML estimator yielded ρβ = 0.15 and the HE and 

LDSC estimators, which are closely related (21, 22), both yielded average estimates of 

ρβ = 0.21, all of which were greater than the true value of ρβ=0.00. After three generations of 

xAM, this upward bias became more pronounced, with REML and LDSC yielding estimates 

of ρβ = 0.30 and ρβ = 0.44, respectively.

The quantities ρ ℓ , and ρβ are monotonically related to ρ β , r mate , and ℎpan
2

—Many trait pairs subject to xAM will truly have correlated genetic effects. Figure 2B 

illustrates the relationship between ρβ, ρℓ, and ρβ for two traits with ℎpan
2 = 0.5. Excepting 

the case of ρβ=1.0 (genetically identical phenotypes), results remained consistent with 

the genetically orthogonal case: ρβ was lower than ρℓ, which was in turn lower than the 

upwardly biased ρβ estimates provided by REML, HE, and LDSC. For example, when 

ρβ=0.25, LDSC yielded ρβ = 0.62 after three generations of xAM. We note that whereas 

the true effect correlation varies in Fig. 2B, the cross-mate correlations remain fixed, 

demonstrating that the potential for xAM-induced bias is present even when cross-mate 

cross-trait correlations partially reflect shared genetic bases. The impact of xAM on both 

ρℓ and ρβ was greater for traits under stronger xAM (Fig. 2C) and for traits with greater 

heritabilites (Fig. 2D).

xAM biases annotation- and locus-level analyses—Partitioned genetic correlation 

estimators evidenced similar biases as genome-wide estimators under xAM, even when 

supplied with annotations directly relevant to bivariate genetic architecture. Further, this bias 

was greatest at regions relevant to only one of the two phenotypes (Fig. S12).

In association studies, GWAS effect estimates for SNPs causal for the focal trait were biased 

upwards in magnitude whereas those causal for a secondary, unrelated trait under xAM 

with the first were biased toward their effects on that trait (Figs. S7 to S9). These biases 

were asymptotically non-negligible (Fig. S9). As a result, xAM increased the likelihood of 

rejecting the null-hypothesis of no association at all SNPs causal for either trait, increasing 

both statistical power and false positives rates (Fig. S10). Eventually, all variants affecting 

a secondary phenotype subject to xAM with the GWAS phenotype will reach genome-wide 

significance as sample size becomes large. However, spurious effect estimates will remain 

attenuated (Figs. S7 to S9), implying that methods for identifying cross-trait heterogeneity 

in GWAS estimates may have the potential to differentiate trait-specific signal from xAM-

induced artifacts.

xAM alone can plausibly explain substantial variance in empirical genetic 
correlation estimates—We next sought to quantify the extent to which empirical ρβ
estimates for previously-studied trait pairs could be explained by xAM alone, assuming 
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genetic orthogonality. We proceeded with a simulation-based approach, which we present 

for the UKB and psychiatric phenotypes in turn.

Within each sample we identified mate pairs and estimated phenotypic cross-mate 

correlations. We then used these estimates, together with empirical heritability estimates, 

as inputs to a forward-time simulation where separate, non-overlapping collections of 

causal variants were assigned to each phenotype, such that ρβ=0.0. At each generation, 

we estimated the effect correlation, ρβ, using method-of-moments. These projected effect 

correlation estimates, which we denote ρxAM, can be interpreted as expected LDSC genetic 

correlation estimates for genetically orthogonal traits under xAM consistent with empirical 

spousal correlations.

We next compared ρxAM to empirical LDSC estimates derived in real data, which we denote 

ρemp. To simplify discussion, we define the ratio:

γ = ρxAM/ρemp,

which measures the projected LDSC effect correlation estimate due to xAM-induced artifact 

relative to the empirical LDSC effect correlation estimate for a given phenotype pair (Fig. 

3A).

Expected effect correlation estimates for UKB phenotypes in the absence of 
pleiotropy—We restricted our attention to 132 (of 190 possible) pairs of UKB phenotypes 

with nominally significant (p < 0.05) LDSC genetic correlation estimates (Table S1). We 

first obtained pedigree-based heritability estimates for each of the traits of interest from 

the literature, using estimates derived in demographically-comparable (Table S2). Together 

with the phenotypic mating correlations (Fig. 1A), these comprised inputs to forward time 

simulations used to compute ρxAM.

Across 132 trait pairs, 42 evidenced γ  values significantly greater than zero (their 95% 

credible intervals did not include zero) after a single generation of xAM, which increased to 

74 trait pairs after three generations. Across all trait pairs (including those not significantly 

different from zero), the inverse variance weighted average γ  estimate was 0.25 (se=0.005). 

Figure 3B presents the first 20 pairs in descending order of γ  and Fig. 3C presents the raw 

projected and empirical effect correlation estimates across all 132 pairs (see Table S3 and 

Figs. S14 to S15 for detailed results spanning five generations of xAM). Finally, Fig. 3D 

displays average γ  values within and between qualitative phenotypic domains.

Expected effect correlation estimates among psychiatric disorders in the 
absence of pleiotropy—We next estimated ρxAM for a collection of six psychiatric 

disorders, using correlations estimated in spousal pairs randomly selected from the Danish 

population (Table S4). We then compared these projections to the LDSC genetic correlation 

estimates reported by Grotzinger and colleagues (23).
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Across all pairwise combinations of disorders, we observed an average ratio of γ = 0.29
(se=0.016; Figs. 4A and 4B) after five generations of xAM. Some trait pairs evidenced 

considerably greater empirical genetic correlation estimates than might be explained by 

xAM alone (for anxiety disorders and major depression, γ = 0.21, 95% CI: 0.17–0.25), 

whereas for other pairs this discrepancy was modest (for alcohol use disorder and 

schizophrenia, γ = 0.83, 95% CI: 0.59–1.24; see Table S5 and Fig. S16 for complete results).

xAM exacerbates bias due to misdiagnosis—After additional simulations 

demonstrated that xAM and further inflates genetic correlation estimates in the context 

diagnostic errors (Fig. S11), we extended our method for estimating ρxAM to incorporate 

misdiagnosis. Results were heterogenous across disorder pairs (Fig. S17). For example, 

whereas moderate rates of diagnostic errors (5%) together with three generations of xAM 

yielded genetic correlation estimates for ADHD and major depression on par with published 

estimates (γ = 0.97, 95% CI: 0.73–1.22), substantial diagnostic errors (15%) after five 

generations of xAM yielded estimates well below previously published estimates for bipolar 

disorders and major depression (γ = 0.37, 95% CI: 0.12–0.62). Figure 4C highlights the 

potential impacts of xAM and diagnostic errors on four selected trait pairs and Fig. S17 

presents results for all pairs.

Genetic evidence for xAM recapitulates empirical cross-mate correlations

Cross-mate phenotypic correlation estimates (rmate) explained substantial variance in the 

cross-chromosome even/odd PGS correlations in a linear model (ρℓ; eo; R2=47.66%; Fig. 

5A). This association, which is congruent with expectations under phenotypically-mediated 

xAM (Supplementary Text; (16)), persisted when accounting for measurement error and 

heteroskedasticity, and across PGS p-value thresholds (Fig. S18).

Additionally, cross-trait even/odd chromosome PGS correlations were positively associated 

with empirical LDSC genetic correlation estimates (ρβ; LDSC; R2=34.81%; Fig. 5B). This 

is consistent with the hypothesis that empirical effect correlation estimates are capturing 

additional structure beyond the signatures of biological overlap. Further, regressing ρβ; LDSC
on ρℓ; eo and ryz simultaneously revealed that the association between ρβ; LDSC and ρℓ; eo is 

mediated via ryz (ΔR2<0.001; partial effect p=0.48 for ρℓ; eo versus p<5e-8 for ryz). Thus, 

alternative sources of structure independent from xAM do not appear to explain the positive 

association between ρℓ; eo and ρβ; LDSC.

Discussion

Nonzero effect correlation estimates have been widely interpreted as evidence for 

overlapping genetic bases. It is therefore surprising that substantial variation in genetic 

correlation estimates can be explained by cross-mate phenotypic correlations. Given the 

strength of this association, the consequences of the random mating assumption implicit in 

all commonly used genetic correlation estimators warrant critical attention.
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Our results show that cross-mate phenotypic correlations among many pairs of phenotypes 

are strong enough that one or more generations of xAM would substantially inflate genetic 

correlation estimates. Further, the correlation structures of even/odd chromosome PGS 

coincide with expectations after one or more generations of xAM. Wes conclude that xAM 

comprises a source of systematic bias in the study of genetic similarity across complex traits, 

one which subverts the widespread interpretation of genetic correlation as a direct index of 

biological similarity.

Our findings mirror recent results regarding the potential impacts of assortative mating 

across other areas of statistical genetics, including marker-based heritability estimation 

(10), and Mendelian randomization (12). Our results also complicate the interpretation of 

a number of multivariate analytic frameworks. For example, genomic structural equation 

modeling (24), which takes marker-based genetic correlation estimates as inputs, will 

propagate xAM induced biases. This does not mean such methods are fundamentally flawed, 

but instead demonstrates the importance of developing unbiased effect correlation estimators 

given the centrality of genetic correlation estimates in modern statistical genetics.

With this in mind, we comment on potential approaches to disentangling true effect 

correlation from xAM-induced artifact. First, family-based designs for addressing xAM 

(25) are increasingly being applied to molecular genetic data with promising results (26). 

Second, we conjecture that approaches aimed at characterizing effect heterogeneity across 

multiple phenotypes may provide a viable means for identifying trait-specific loci: though 

all trait-specific loci for either of two traits will achieve genome-wide significance in large 

sample GWAS of either trait, effect estimates will remain substantially larger at causal loci. 

Finally, we propose that directly modeling the dependence between genotypes and their 

effects will allow the differentiation of effect correlations and score correlations in samples 

of unrelated individuals.

There are several limitations to the current investigation. Foremost among these are the 

numerous assumptions about population dynamics required to model xAM, including 

but not limited to: panmictic heritabilities, stability of cross-mate phenotypic correlation 

structures over succeeding generations, stability and transmissability of environmental 

factors, and the extent to which mating patterns reflect social versus genetic homogamy. We 

proceeded under the tractable dynamical framework of two additive phenotypes subject to 

primary-phenotypic xAM with constant cross-mate correlations, stable non-heritable sources 

of variation, and no vertical transmission. Though each of these assumptions is likely 

untenable for particular trait pairs, thereby compromising the accuracy of our projections, 

we hypothesize that the qualitative phenomenon whereby xAM inflates genetic correlation 

estimates will persist for many traits. Nonetheless, we caution that these projections 

are contingent upon multiple consequential decisions. Constructing a generative model 

that reconciles the association between empirical mating patterns and genetic correlation 

estimates is an ill-posed inverse problem for which there are multiple solutions, and of 

which we have only explored a subset. At the same time, existing methods are only able to 

sidestep these decisions by making the strong (and often incorrect) assumption that mating is 

random.
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Lastly, we remark that xAM is, in essence, a form of population structure not captured by 

conventional principal component or mixed-model based correction. Given the increasing 

evidence that existing methods fail to completely address structural factors, even in 

ostensibly ancestrally homogenous groups (27), a broader characterization of population 

structure and methods for addressing such structure will likely be necessary to generate 

results that are maximally clinically relevant and can be applied equitably.

Supplementary Material
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Fig. 1. Cross-mate phenotypic correlation and genetic correlation estimates.
(A) Correlations among previously-studied UK Biobank (UKB) phenotypes. Diagonal and 

sub-diagonal heatmap entries correspond to cross-mate phenotype correlation estimates 

derived from 40,697 putative spouse pairs in the UKB. Super-diagonal entries correspond 

to empirical LD score regression (LDSC) correlation estimates among unrelated European 

ancestry UKB participants. (B) Cross-mate correlation and genetic correlation estimates 

for psychiatric disorders. Diagonal and sub-diagonal entries reflect cross-mate tetrachoric 

correlations among 373,283 spousal pairs sampled from the Danish population, all of 
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which were significantly greater than zero (maximum p=1.69e-5). Super-diagonal entries 

are previously-reported LDSC correlation estimates (23). (C) Association between empirical 

cross-mate phenotypic correlation and genetic correlation estimates (meta-analytic R2 ≈ 
74%). Error lines indicate 95% confidence intervals and the purple dashed line displays the 

line of best fit across all points. All numbers have been rounded to two decimal places. 

The model for bone mineral density (BMD) and subjective happiness failed to converge 

and is omitted. ADHD: attention-deficit hyperactivity disorder; ALC: alcohol use disorders; 

ANX: anxiety disorders; BIP: bipolar disorders; BMI: body mass index; HDL/LDL: high/

low-density lipoprotein; IQ: intelligence quotient; MDD: major depressive disorder; SCZ: 

schizophrenia.
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Fig. 2. Impact of xAM on genetic correlation estimates in forward-time simulations.
Score correlation (ρℓ) and genetic correlation estimates (ρβ) for two phenotypes with true 

effect correlation ρβ, panmictic heritabilities ℎpan
2 , and all cross-mate correlations set to rmate. 

(A) xAM increases the true score correlation among genetically orthogonal phenotypes. HE, 

LDSC, and REML estimators all further overestimate ρβ and the magnitude of this bias 

increases over subsequent generations. (B) After three generations of xAM, ρβ estimates are 

upwardly biased for genetically distinct phenotypes. (C) The impact of three generations of 

xAM increases with the cross-mate correlation. (D) The impact of three generations of xAM 

increases with the panmictic heritabilities.
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Fig. 3. Empirical and expected genetic correlations among UK Biobank phenotypes.
(A) We computed the expected LD score regression (LDSC) genetic correlation estimate in 

the absence of pleiotropy and after a given number of generations of xAM (ρxAM), which 

we compared to empirical LDSC estimates (ρemp) to obtain the ratio γ : = ρxAM/ρemp. (B) 

The top 20 γ  estimates across previously-studied UKB phenotype pairs with nominally 

significant (p < 0.05) ρemp values. (C) Projected versus empirical LDSC estimates for 

all UKB phenotypes with nominally significant genetic correlation estimates. (D) Inverse 
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variance weighted average γ  estimates within and between qualitatively similar phenotypic 

domains. Error bars throughout represent 95% credible intervals.
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Fig. 4. Empirical and expected genetic correlations among psychiatric phenotypes.
(A) Ratios (γ : = ρxAM/ρemp) of projected LD score regression (LDSC) genetic correlation 

estimates under xAM alone relative to empirical genetic correlation estimates (23) for six 

psychiatric disorders with 95% credible intervals. (B) Projected versus empirical LDSC 

estimates across psychiatric phenotype pairs. (C) The potential combined impacts of 

bidirectional errors in diagnosis and xAM on genetic correlation estimates for selected 

psychiatric disorder pairs. The red dashed line corresponds to γ = 1 across all panes.
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Fig. 5. Genetic level evidence consistent with xAM in the UK Biobank.
(A) Correlation between even and odd chromosome-specific polygenic scores (PGS) as a 

function of the cross-mate phenotypic correlation. For a single trait, the vertical axis reflects 

the correlation between even and odd chromosome scores ℓeven, ℓodd and the horizontal axis 

reflects the cross-mate correlation. For a pair of traits Y, Z, the vertical axis reflects a single 

parameter to which the correlations between ℓy; even, ℓz; odd and between ℓy; odd, ℓz; even are 

both constrained, and the horizontal axis reflects the cross-mate cross-trait correlation. (B) 

Cross-trait even/odd PGS correlations as a function of empirical LD score regression genetic 

correlation estimates.

Border et al. Page 20

Science. Author manuscript; available in PMC 2023 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Border et al. Page 21

Table 1.

Notions of genetic similarity and their relationship to genetic correlation estimators.

Metric of genetic similarity Relation to shared etiology and xAM

Pleiotropy is present at a particular locus when 
it influences both phenotypes.

Reflects shared etiology. Substantial numbers of pleiotropic loci imply that overlapping 
genetic variants affect both traits, though their effects may not be consistent.

Effect correlation (ρβ) refers to the correlation 
between standardized genetic effects.

Reflects shared etiology. ρβ > 0 implies an overlapping set of variants (at pleiotropic loci) 
influence both traits with similar effects on average.

Score correlation (ρℓ) refers to the correlation 
between true polygenic scores.

Reflects shared etiology, or xAM-induced population structure, or both. Roughly equal to 
ρβ under random mating but larger than ρβ under xAM due to long-range sign-consistent 
LD. ρℓ > 0 does not necessarily imply biological similarity or even the existence of 
pleiotropic loci.

Genetic correlation estimators (ρβ), such as 

bivariate LD score regression, are commonly 
interpreted as estimates of the effect correlation.

Reflect shared etiology under random mating but produces estimates substantially greater 
than both ρβ and ρℓ under xAM, even when ρβ = 0 or in the complete absence of pleiotropy.

Under random mating, score correlations and effect correlations are equal in expectation, imply the existence of pleiotropic loci, and are 
well-captured by widely-used genetic correlation estimators. Under xAM, however, substantial score correlations can arise in the absence of effect 
correlation or even pleiotropy, and genetic correlation estimators overestimate both ρβ and ρℓ.
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