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Abstract

Dynamic (or varying) covariate effects often manifest meaningful physiological mechanisms

underlying chronic diseases. However, a static view of covariate effects is typically adopted by

standard approaches to evaluating disease prognostic factors, which can result in depreciation of

some important disease markers. To address this issue, in this work, we take the perspective of

globally concerned quantile regression, and propose a flexible testing framework suited to assess

either constant or dynamic covariate effects. We study the powerful Kolmogorov-Smirnov (K-S)

and Cramér-Von Mises (C-V) type test statistics and develop a simple resampling procedure to

tackle their complicated limit distributions. We provide rigorous theoretical results, including the

limit null distributions and consistency under a general class of alternative hypotheses of the

proposed tests, as well as the justifications for the presented resampling procedure. Extensive

simulation studies and a real data example demonstrate the utility of the new testing procedures

and their advantages over existing approaches in assessing dynamic covariate effects.
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1 Introduction

Identifying useful prognostic factors is often of critical interests in chronic disease studies.

When the disease outcome is captured by a time-to-event, a commonly used approach is

to model the mechanism of a prognostic factor influencing the time-to-event outcome via a

standard survival regression model and then test the corresponding covariate effects (see a

review in Kleinbaum and Klein (2010) and Cox and Oakes (2018)). The standard survival

regression models, such as the Cox proportional hazard (PH) regression model and the

accelerated failure time (AFT) model, impose assumptions like the proportional hazards and

the location-shift effects, which implicitly confine the prognostic factor of interest to be a

static portent of disease progression.

There has been growing awareness that a prognostic factor may follow a dynamic

association with a time-to-event disease outcome. Many reports in literature (Dickson et
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al., 1989; Thorogood et al., 1990; Verweij and van Houwelingen, 1995; Bellera et al.,

2010, for example) have suggested that postulating constant covariate effects, sometimes,

is not adequate to reflect underlying physiological disease mechanisms, leading to distorted

assessment of the prognostic factor. For example, an analysis of a dialysis dataset reported

by Peng and Huang (2008) suggested that the severity of restless leg syndrome (RLS)

symptoms may be prognostic of mortality for short-term dialysis survivors but not for

long-term dialysis survivors. The standard tests based on the Cox PH model and the AFT

model failed to detect such a dynamic effect.

Quantile regression (Koenker and Bassett, 1978), which directly formulates covariate effects

on quantile(s) of a response, confers a seminal venue to characterize a dynamic effect of a

prognostic factor. Specifically, given a time-to-event outcome T and a covariate Z (which

represents the prognostic factor of interest), a linear quantile regression model may assume,

QT(τ ∣ Z) = exp Z⊤θ0(τ) , τ ∈ Δ, (1)

where Z = 1, Z ⊤, QT τ ∣ Z ≡ inf t:Pr(T ≤ t ∣ Z) ≥ τ  denotes the τ-th conditional quantile

of T given Z, θ0(τ) ≡ β0
(0) τ , β0

(1) τ
⊤

 is an unknown coefficient vector, and Δ ⊆ (0, 1) is a

pre-specified set including the quantile levels of interest. The coefficient  β0
(1)(τ) represents

the effect of Z on the τ-th conditional quantile of T, and is allowed to change with τ. This

implicates that the prognostic factor is permitted to have different effects across different

segments of the distribution of the time-to event outcome.

Many authors have studied linear quantile regression with a time-to-event outcome (Powell,

1986; Ying et al., 1995; Portnoy, 2003; Zhou, 2006; Peng and Huang, 2008; Wang and

Wang, 2009; Huang, 2010, for example). Most of the existing methods concern covariate

effects on a single or multiple pre-specified quantile levels (e.g. Δ is a singleton set {0.5}),

and, following the terminology of Zheng et al. (2015), are locally concerned. As discussed

in Zheng et al. (2015), locally concerned quantile regression cannot inform of the covariate

effect on quantiles other than the specifically targeted ones (e.g. median), and thus may

miss important prognostic factors. Adopting the perspective of globally concerned quantile

regression, one can simultaneously examine covariate effects over a continuum of quantile

levels (e.g. Δ is an interval [0.1, 0.9]), and thus confer a more comprehensive assessment of

a prognostic factor. However, powerful tests tailored to evaluate covariate effects under the

perspective of globally concerned quantile regression have not been formally studied, partly

owing to the associated inferential complexity.

In this work, we develop a new framework for evaluating a survival prognostic factor

following the spirit of globally concerned quantile regression. As a proof of concept, we

shall confine the scope of this work to the standard survival setting where the time-to-event

outcome T is subject to random censoring. Specifically, our proposal is to simultaneously

assess the influence of the prognostic factor on a range of quantiles of T, indexed by a

τ-interval, [τL, τU] ⊂ (0, 1). As the key rationale, a significant prognostic factor is allowed

to have a dynamic τ-varying effect, which may be non-zero throughout the whole τ-interval
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(i.e. full effect), or only over a part of the τ-interval (i.e. partial effect). Under this view,

when model (1) with Δ = [τL, τU] holds, the task of identifying a prognostic factor reduces

to testing the null hypothesis,

H0:β0
(1)(τ) = 0, τ ∈ τL, τU .

Moreover, without assuming any models, we may consider the null hypothesis formulated

as,

H0
∗:QT (τ ∣ Z) = QT (τ) for τ ∈ τL, τU ,

where QT(τ) = inf{t : Pr(T ≤ t) ≥ τ}, denoting the τ-th unconditional (or marginal) quantile

of T. The null hypothesis H0
∗ corresponds to the setting where Z has no influence on the

conditional quantile of T at any quantile level between τL and τU.

It is remarkable that under mild regularity conditions, H0
∗ implies that model (1) holds with

Δ = [τL, τU] and β0
(1)(τ) = 0 for τ ∈ [τL, τU]; on the other hand, model (1) with Δ = [τL, τU]

and β0
(1)(τ) = 0 for τ ∈ [τL, τU] implies QT (τ ∣ Z) = QT (τ) for τ ∈ [τL, τU]; see Lemma 1 in

the Appendix A. This finding sheds an important insight that a model-based test developed

for H0 may be used towards testing the model-free null hypothesis H0
∗. From an alternative

view, this result suggests that the globally concerned quantile regression model (1) with Δ =

[τL, τU] can be used as a working model to test H0
∗, which adopts the view that the effect of

a prognostic factor can be assessed through contrasting the conditional versus unconditional

quantiles of T.

Regarding H0
∗, we study two “omnibus” test statistics constructed based on the estimator

of θ0(τ) obtained under the working model (1) with Δ = [τL, τU]. One test is a Kolmogorov-

Smirnov (K-S) type test statistic defined upon the maximum “signal” strength (i.e. covariate

effect) over τ’s in [τL, τU]. The other one is a CramérVon-Mises (C-V) type test statistics

based on the average “signal” strength over τ’s in [τL, τU]. These two types of test statistics

are known to be very sensitive to detect any departure from the null hypothesis H0 under

model (1). However, the analytic form of their limit null distributions are generally complex

and sometimes intractable. This challenge is more intense in the quantile regression setting,

where coefficient estimates do not have a closed form, and the corresponding asymptotic

variance matrix involves unknown density functions (Koenker, 2005). To overcome these

difficulties, we propose to approximate the limit null distributions through a resampling

procedure that perturbs the influence function associated with the adopted coefficient

estimator under the working model (1), following similar strategies of Lin et al. (1993)

and Li and Peng (2014). We derive a sample-based procedure to estimate the influence

function without requiring the correct specification of model (1), thereby circumvents

directly evaluating the unknown density function via smoothing. The proposed resampling

procedure is easy to implement and is shown to perform well even with realistic sample
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sizes. Moreover, we provide rigorous theoretical justifications for the proposed resampling

procedure.

The rest of this paper is organized as follows. In Section 2, we first briefly review some

existing results about the estimation of model (1), which we use as a working model

for testing H0
∗. We then present the proposed test statistics along with their theoretical

properties. A resampling procedure is developed to carry out inference regarding H0 or

H0
∗ based on the proposed test statistics. We also discuss some computational strategies

to help simplify or improve the implementation of the proposed method. In Section 3,

we report extensive simulation studies conducted to evaluate the finite-sample performance

of the proposed testing procedures. Our simulation results show that the proposed tests

have accurate empirical sizes and can be much more powerful than benchmark methods

when assessing a covariate with a dynamic effect. In Section 4, we further demonstrate the

usefulness of the proposed testing procedures with a real data example. Concluding remarks

and discussions are provided in Section 5.

2 The Proposed Testing Procedures

2.1 Estimation of θ0(τ) under model (1)

As explained in Section 1, we propose to use globally concerned quantile regression as a

vehicle to address the testing problem regarding the general null hypothesis H0
∗. The first

step is to obtain an estimator of θ0(τ) (and thus β0
(1)(τ)) from fitting the working model (1)

to the observed data. Here and hereafter, we shall set the Δ in model (1) as Δ = [τL, τU],

which is a pre-specified interval within (0, 1). Let C denote time to censoring, X = min(T,

C), and δ = I(T ≤ C). The observed data include n i.i.d. replicates of (X, δ, Z), denoted by

Xi, δi, Zi i = 1
n .

To estimate θ0(τ) under model (1), we choose to adapt the existing results of Peng and

Fine (2009) developed for competing risks data to the setting with randomly censored data.

Compared to the other available estimators developed by Portnoy (2003) and Peng and

Huang (2008), which require τL = 0, the estimator derived from Peng and Fine (2009) is

more robust to any realistic violation of the global linearity assumed by model (1) (Peng,

2021). The influence function associated with Peng and Fine (2009)’s estimator also has a

simpler form that can facilitate the development of the corresponding testing procedures.

The estimator of θ0(τ) adapted from Peng and Fine (2009)’s work, denoted by θ (τ), is
obtained as the solution to the following estimating equation:

Sn(b, τ) = n−1/2 ∑
i = 1

n
Zi

I Xi ≤ exp Zi
⊤b I δi = 1

G Xi ∣ Zi
− τ = 0, (2)

where G(x ∣ Z) is a reasonable estimator of G(x|Z) ≡ Pr(C ≥ x|Z). For simplicity of

illustration, in sequel, we shall assume C is independent of Z and thus take G(x ∣ Z) as

the Kaplan-Meier estimator of the marginal survival function of C, G(x). As noted by Peng
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and Fine (2009), solving (2) can be formulated as a L1-type minimization problem of the

following convex objective function:

Un(b, τ) = ∑
i = 1

n
I δi = 1

log Xi
G Xi

− b⊤ Zi
G Xi

+ M − b⊤ ∑
l = 1

n −ZlI δl = 1
G Xi

+ M − b⊤ ∑
k = 1

n
2τZk .

Here M is a sufficiently large number. This L1-type minimization problem can be easily

solved using the rq() function in the R package quantreg by Koenker (2022).

By the results of Peng and Fine (2009), the estimator θ (τ) enjoys desirable

asymptotic properties. Specifically, under certain regularity conditions, we have (i)

limn ∞supτ ∈ τL, τU θ (τ) − θ0(τ) p 0; and (ii) n θ (τ) − θ0(τ)  converge weakly to a

mean zero Gaussian process for τ ∈ [τL, τU] with covariance function Φ(τ′, τ) =

E{ξ1(τ′)ξ1(τ)⊤}. Here ξi(τ) (i = 1, …, n) are defined as

ξi(τ) ≡ ξi
(0)(τ), ξi

(1)(τ)
⊤

= A θ0(τ) −1 Zi
I log Xi ≤ Zi⊤θ0(τ), δi = 1

G Xi
− τ

− ∫0
∞

w θ0(τ), s y(s)−1dMiG(s) ,

where G(x) = Pr(C > x), A(b) = E[ZZ⊤f(Z⊤b|Z)] with f(t|Z) denoting the conditional

density of X given Z, w(b, t) = E[ZY (t)I(X ≤ exp{Z⊤b})I(δ = 1)G(X)−1], and

Mi
G(t) = Ni

G(t) − ∫0
∞Y i(s)dΛG(t) with Ni

G(t) = I Xi ≤ t, δi = 0 , Yi(t) = I(Xi ≥ t), y(t) =

Pr(X ≥ t), λG(t) = limΔ→0 P(C ∈ (t, t + Δ)|C ≥ t)/Δ, and ΛG(t) = ∫0
tλG(s)ds. In

addition, n1/2 θ (τ) − θ0(τ) ≈ n−1/2∑i = 1
n ξi(τ), where ≈ indicate asymptotical equivalence

uniformly in τ ∈ [τL, τU]. Consequently, ξi(τ) is referred to as the influence function of

n1/2 θ (τ) − θ0(τ) .

Note that the variance estimation for θ (τ) is complicated by the involvement of the unknown

density f(t|Z) in the asymptotic covariance matrix Φ(τ′, τ). As justified by Peng and Fine

(2009), a sample-based procedure that avoids smoothing-based density estimation can be

used for variance estimation and is outlined below:

(1.a) Compute an consistent variance estimate for Sn(θ0(τ), τ) given by

Σ(τ, τ) = n−1 ∑
i = 1

n
Zi

⊗ 2 I log Xi ≤ Zi⊤θ(τ) , δi = 1
G Xi

− τ
2

− n−1 ∑
i = 1

n
I δi = 0

∑
j = 1

n
ZjI Xj ≥ Xi I log Xj ≤ Zi⊤θ(τ), δj = 1 G Xj

−1/ ∑
j = 1

n
I Xj ≥ Xi

⊗ 2
,
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where for a vector a, a⊗2 = aa⊤.

(1.b) Find a symmetric and nonsingular matrix En(τ) ≡ {en,0(τ), en,1(τ)} such that

En(τ) 2 = Σ(τ, τ).

(1.c) Calculate Dn(τ) = Sn
−1 en, 0(τ), τ − θ (τ), Sn

−1 en, 1(τ), τ − θ (τ) , where

Sn
−1 e(τ), τ  is the solution to the perturbed estimating equation Sn(b, τ) = e(τ).

(1.d) Obtain an estimate for the asymptotic variance of n θ (τ) − θ0(τ)  as

V n(τ) ≡ nDn
⊗ 2(τ).

Here En(τ) can be computed with the eigenvalue eigenvector decomposition of Σ(τ, τ) using

the R function eigen(). As another important remark, the above procedure ensures that

the perturbation terms, en,j(τ), j = 1, 2, have the desired asymptotic order. As a result, this

procedure remains valid when en,j(τ) in step (1.c) is replaced by u · en,j(τ) for some constant

u. Based on our numerical experiences, incorporating some constant u can help stabilize

variance estimation when sample size is small or τ is close to 0 or 1. Variance estimation

based on the above procedure is found to have satisfactory finite sample performance based

on some unreported simulation studies.

2.2 The proposed test statistics and theoretical properties

Express θ (τ) ≡ β (0)(τ), β (1)(τ) ′ and let σn
(1)(τ) denote the square root of the second diagonal

element of Vn(τ), which corresponds to the variance estimate for nβ (1)(τ) under H0
∗. We

propose to construct two “omnibus” test statistics based on β (1)(τ)  and σn
(1)(τ):

T sup
(1) = sup

τ ∈ τL, τU
nβ (1)(τ)
σn(1)(τ)

,

and

T inte
(1) = ∫τL

τU nβ (1)(τ)
σn(1)(τ)

2
dτ .

These two test statistics mimic the classic Kolmogorov-Smirnov (K-S) test statistic and

CramérVon-Mises (C-V) test statistic for two-sample distribution comparisons (Darling,

1957). Under model (1), T sup
(1)  and T inte

(1)  capture the maximum and average magnitude of

the covariate effect over τ ∈ [τL, τU] respectively. By this design, both test statistics are

sensitive to any type of departures from the null hypothesis H0 and can be used to construct

powerful tests for H0.

Without assuming model (1), we can also show that T sup
(1)  and T inte

(1)  provide valid tests for

H0
∗ and have power approaching one under a general class of alternative hypotheses as
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specified in Theorem 2. The key insight is that even when model (1) does not hold, θ (τ)

may still converge in probability to a deterministic function θ(τ) ≡ β(0)(τ), β(1)(τ) ′ that is the

solution to μ(b, τ) ≡ E[Z{I(log T ≤ Z⊤b) − τ}] = 0. It is easy to see that θ(τ) = θ0(τ) under

model (1). By Lemma 1, it follows that under H0
∗, β(1)(τ) = 0 for τ ∈ [τL, τU]. As detailed

in Theorems A1–A2 in Appendix A, under certain regularity conditions, we further have

limn ∞supτ ∈ τL, τU ∥ θ (τ) − θ(τ) ∥ p 0, and n θ (τ) − θ(τ)  converge weakly to a mean

zero Gaussian process for τ ∈ [τL, τU] with covariance function Φ τ′, τ = E ξ1 τ′ ξ1(τ)⊤ ,

where ξi τ i = 1, …, n  are defined as

ξi(τ) ≡ ξi
(0)(τ), ξi

(1)(τ)
⊤

= A(θ(τ)) −1 Zi
I log Xi ≤ Zi⊤θ(τ), δi = 1

G Xi
− τ − ∫0

∞
w θ(τ), s y(s)−1dMiG

(s) .

A useful by-product from the proof of Theorem A2 is that

n1/2 θ (τ) − θ(τ) ≈ n−1/2 ∑
i = 1

n
ξi(τ), (3)

We can prove these results by adapting the arguments of Peng and Fine (2009) which utilize

model assumption (1) only through using its implication μ(θ0, τ) = 0 for τ ∈ [τL, τU]. This

provides the critical justification for why β (1)(τ) can be used to test H0
∗ even when model

(1) does not hold. The sample-based procedure reviewed in Section 2.1 is still applicable to

estimate the asymptotic covariance matrix Φ τ′, τ .

In Theorems 1 and 2, we establish useful asymptotic properties of T sup
(1)  and T inte

(1)  without

assuming model (1). Specifically, in Theorem 1, we provide the limit distributions of the

proposed test statistics under the null hypothesis H0
∗:

Theorem 1 Assuming the regularity conditions (C1)–(C5) in the Appendix hold, under the

null hypothesis H0 or H0
∗, we have

T sup
(1) = sup

τ ∈ τL, τU
n1/2β (1)(τ)

σn(1)(τ)
d sup X(1)(τ) , τ ∈ τL, τU

T inte
(1) = ∫τL

τU n1/2β (1)(τ)
σn(1)(τ)

2
dτ d ∫τL

τU
X(1)(τ) 2dτ,

where (1)(τ) is a mean zero Gaussian process defined in Appendix C.
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We also investigate the asymptotic behavior of the proposed test statistics under a general

class of alternative hypotheses. The findings are stated in Theorem 2.

Theorem 2 Assuming the regularity conditions (C1)–(C5) in the Appendix hold,

A. T sup
(1)  is consistent against the alternative hypothesis

Ha, 1: sup
τ ∈ τL, τU

β(1)(τ) > 0.

B. T inte
(1)  is consistent against the alternative hypothesis:

Ha, 2: ∫τL

τU
β(1)(τ)

2
dτ > 0.

The results of Theorem 2 indicate that the test statistics have power approaching to 1 (as n
goes to ∞) under alternative cases subject to very mild constraints. Given the smoothness

of β(1)( ⋅ ), a general scenario that ensures the consistency of both T sup
(1)  and T inte

(1)  can be

described as

Ha:There exists an interval τ1, τ2 ⊆   τL, τU such that β0
(1)(τ) > 0 for τ ∈ τ1, τ2 .

This suggests that the proposed tests are powerful to identify a significant prognostic factor

even when it only influences a segment of the outcome distribution, not necessarily the

whole outcome distribution. This feature is conceptually appealing for handling a dynamic

covariate effect, which may not have similar effect strength across different quantiles. The

detailed proofs for Theorems 1 and 2 can be found in Appendix C.

2.3 The proposed resampling procedure to obtain p values

The results in Theorem 1 suggest that T sup
(1)  and T inte

(1) , like the classic K-S test statistic and

C-V test statistic, have complex, non-standard limit null distributions. This motivates us

to develop a resampling-based procedure to approximate their limit null distributions and

obtain the corresponding p values for testing H0
∗.

Our key strategy is to approximate the distribution of n1/2 β (1)(τ) − β0
(1)(τ) , which reduces to

n1/2β (1)(τ) under H0, through perturbing the influence function ξi
(1)(τ), which is the second

component of ξi(τ). Similarly ideas were used by other authors, for example, Lin et al.

(1993) and Li and Peng (2014). The core justification of our proposal is provided by

equation (3), which suggests that n−1/2∑i = 1
n ξi

(1)(τ)ιi/σn
(1)(τ) may be used to approximate

nβ (1)(τ)/σn
(1)(τ), where ιi i = 1

n  are i.i.d. standard normal variates.
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Specifically, we take the following steps:

(2.a) Generate B independent sets of ιib i = 1
n , where ιib i = 1

n  are independent random

variables from a standard normal distribution and b = 1, 2, …, B.

(2.b) Compute the estimates for the influence function ξi
(1)(τ) as the second

component of

ξ i(τ) = A(θ (τ)) −1 Zi
I log Xi ≤ Zi⊤θ (τ) , δi = 1

G Xi
− τ

− I δi = 0
∑j = 1

n ZjI Xj ≥ Xi I log Xj ≤ Zj⊤θ (τ), δj = 1 G Xj
−1

∑j = 1
n I Xj ≥ Xi

,

where A θ (τ) −1 = n1/2Dn(τ)En τ −1.

(2.c) For b = 1, …, B, calculate

T sup, b 
(1) = sup

τ ∈ τL, τU

n−1/2∑i = 1
n ξ i

(1)(τ)ιib

σn(1)(τ)
and  Tinte, b

(1)

= ∫τL

τU n−1/2∑i = 1
n ξ i

(1)(τ)ιib

σn(1)(τ)

2
dτ,

where ξ i
(1)(τ) is the second component of ξ i(τ).

(2.d) The p values based on T sup
(1)  and T inte

(1)  are calculated respectively as

psup(1) = ∑
b = 1

B
I Tsup, b

(1) > T sup
(1) /Band pinte

(1) = ∑
b = 1

B
I T inte, b

(1) > T inte
(1) /B .

The resampling procedure presented above is easy to implement without involving

smoothing. The rigorous theoretical justification for the presented resampling procedure

is provided in Appendix D.

2.4 Some Computational Considerations

Note that β (1)(τ) and σn
(1)(τ) are piecewise constant; thus an exact calculation of the

supremum or integration involved in T sup
(1)  and T inte

(1)  is possible. Alternatively, we may follow

the recommendation of Zheng et al. (2015) to compute T sup
(1)  and T inte

(1)  based on a simpler

piecewise-constant approximation of R(τ) ≡ β (1)(τ)/σn
(1)(τ) on a pre-determined fine τ-grid,

G ≡ τL = τ1 < τ2 < … < τN∗ = τU, with the grid size max1 ≤ l ≤ N∗ − 1 τl + 1 − τl = o n−1/2 .

In this case, the proposed test statistics can be calculated as
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T sup
(1) = nmax R τl :1 ≤ l ≤ N∗ , T inte

(1) = ∑
l = 1

N∗ − 1
n R τl

2 τl + 1 − τl . (4)

When n is not large, the sample-based variance estimation (i.e. the computation of σn
(1)(τ))

sometimes is not stable. Our remedy is to replace the en,j(τ) in step (1.c) (see Section 2.1)

with u · en,j(τ), where u is a pre-specified constant. We develop the following algorithm to

determine a good choice of the adjusting constant u among a set of candidate values,  = {1,

2, …, U}.

(3.a) For each u ∈ , calculate R(τ; u) ≡ β (1)(τ)/σn
(1)(τ; u) for τ ∈ , where σn

(1)(τ; u) is

the σn
(1)(τ) computed with the adjusting constant u.

(3.b) For each u ∈ , calculate R∗(u) = maxτ ∈ GR(τ; u) and R†(u) = medianτ ∈ GR(τ; u).

(3.c) For each u ∈ , calculate R(u) = maxτ ∈ Gmax V n(τ; u) − minτ ∈ Gmin V n(τ; u) ,

where Vn(τ; u) is Vn(τ) computed with the adjusting constant u. Here, for a

matrix A, max(A) (or min(A)) denotes the largest (or the smallest) component of

the matrix A.

(3.d) Assign a large positive value to A[0] and B[0], say 105. Set k = 1 and u[0] = U +

1.

i. If R∗(k) − R†(k) < A[k − 1] and R(k) < B[k − 1], then let

A[k] = R∗(k) − R†(k), B[k] = R(k), and u[k] = k. Otherwise, let A[k] =

A[k−1], B[k] = B[k−1] and u[k] = u[k−1].

ii. Increase k by 1 and go back to (i) until k > U.

(3.e) If u[U] < U + 1, then choose u as u[U]. Otherwise, no appropriate u can be

selected from .

By this algorithm, we provide an empirical strategy to select u based on two estimation

instability measures: (A) R∗(k) − R†(k), which reflects the spread of R(τ) ≡ β (1)(τ)/σn
(1)(τ)

over τ given u = k; (B) R(k), which measures the maximum fluctuation of the estimated

variance matrices across τ given u = k. It is clear that both measures would be large when

unstable variance estimation occurs. Our algorithm first compares them with pre-specified

initial values, A[0] and B[0], to rule out the occurrence of obviously outlying estimates of

R(τ) or σn
(1)(τ). Once these two measures are found to meet the stability criteria set by the

initial values with some u ∈ , the algorithm will proceed to check if other u’s can yield

smaller values of the instability measures. The output from this algorithm is either the value

of u that produces the smallest instability measures, or an error message indicating that

none of the constants in  can lead to stable estimation required by the proposed testing

procedure. Based on our numerical experiences, setting  = {1, 2, …, 6}, which corresponds

to U = 6, works well for small sample sizes such as 200 or 400. In a rare case where this

algorithm fails to identify an appropriate u, we recommend adaptively increasing the value
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of U until an appropriate u can be identified. Our extensive numerical experiences suggest

that incorporating the adjusting constant u selected by this algorithm results in good and

stable numerical performance of the proposed tests. The algorithm can be easily generalized

to allow  to include non-integer values.

3 Simulation Studies

We conduct extensive simulation studies to investigate the finite-sample performance of

the proposed resampling-based testing procedures. To simulate randomly censored data, we

consider six setups where T and Z follow different relationships. In all setups, we generate

Z from Uniform(0, 1) and generate censoring time C from Uniform(UL, UU), where UL and

UU are properly specified to produce 15% or 30% censoring. Let Φ(·) denote the cumulative

distribution function of the standard normal distribution. The six simulation set-ups are

described as follows.

I. Setup I: Generate T such that Qτ{log(T)} = Φ−1(τ). Set (UL, UU) = (2, 3.8) to

produce 15% censoring, and set (UL, UU) = (1, 2.5) to produce 30% censoring.

II. Setup II: Generate T such that Qτ{log(T)} = 0.2X +Φ−1(τ). Set (UL, UU) = (2.5,

3.9) to produce 15% censoring and set (UL, UU) = (1.2, 2.8) to produce 30%

censoring.

III. Setup III: Generate T such that Qτ{log(T)} = 0.5X + Φ−1(τ). Set (UL, UU) =

(2.7, 4.9) to produce 15% censoring, and set (UL, UU) = (1.5, 3) to produce 30%

censoring.

IV. Setup IV: Generate T such that Qτ{log(T)} = l4(τ)X + Φ−1(τ), where l4(τ) is as

plotted in Figure 1. Set (UL, UU) = (2, 3.9) to produce 15% censoring, and set

(UL, UU) = (1, 2.5) to produce 30% censoring.

V. Setup V: Generate T such that Qτ{log(T)} = l5(τ)X + Φ−1(τ), where l5(τ) is as

plotted in Figure 1. Set (UL, UU) = (5.2, 6.5) to produce 15% censoring, and set

(UL, UU) = (1.5, 3.5) to produce 30% censoring.

VI. Setup VI: Generate T such that Qτ{log(T)} = l6(τ)X + Φ−1(τ), where l6(τ) is as

plotted in Figure 1. Set (UL, UU) = (3.5, 5.5) to produce 15% censoring, and set

(UL, UU) = (1.1, 3.5) to produce 30% censoring.

Under all setups, model (1) holds for τ ∈ (0, 1) and thus for τ ∈ [0.1, 0.6], a pre-specified

τ-interval of interest [τL, τU]. In Figure 1, we plot the true coefficient function β0
(1)(τ) for

each setup. It is easy to see that setup (I) represents a null case, where Z has no effect on any

quantile of T. Setup (II) and (III) are two setups where Z has nonzero constant effects over

all τ ∈ [0.1, 0.6]. The constant effect in setup (II) has a magnitude of 0.2, which is smaller

than that in setup (III), which is 0.5. In setups (IV), (V), and (VII), Z has a dynamic effect

varying across different τ’s. More specifically, Z has a partial effect over the τ-interval [0.1,

0.49] in setup (IV). In setup (V), the magnitude of Z’s effect is symmetric around 0.5, while

the sign of the effect is opposite for τ < 0.5 and for τ > 0.5, and the effect equals 0 at τ = 0.5.

In setup (VI), the τ-varying effect pattern of Z is similar to that in setup (V) except that there

is a small interval around 0.5 where Z has no effect in setup(VI).
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We compare the proposed method with the Wald test based on the Cox PH model, denoted

by “CPH (Wald)”, as well as the Wald test based on the locally concerned quantile

regression that focuses on τ = 0.4, 0.5, or 0.6, denoted by “CQR (Wald)”. To implement

CQR (Wald), we adopt Peng and Huang (2008)’s estimates with variance estimated by

bootstrapping. The resampling size used for both CQR (Wald) and the proposed testing

procedures is set as 2500. In the sequel, we shall refer the testing procedures based on T sup
(1)

and T inte 
(1)  respectively to as GST and GIT. For all the methods, we consider sample sizes

200, 400, and 800. We set  = {1, …, 6} when implementing the algorithm for selecting the

constant u.

In Table 1, we report the empirical rejection rates based on 1000 simulations. The results

in setup I show that the proposed GIT, and the existing tests, CQR (Wald) and CPH

(Wald), have empirical sizes quite close to the nominal level 0.05. The proposed GST yields

relatively larger empirical type I errors as compared to the other tests. The empirical size of

GST equals 0.1 when the sample size is 200 but decreases to 0.077 when the sample size

increases to 800. Such an anti-conservative behavior of GST is not surprising because the

K-S type test statistic is defined based on the largest value of β (1)(τ)/σn
(1)(τ) over τ ∈ [0.1,

0.6], which is more sensitive to a possible outlying value of σn
(1)(τ) at some τ.

When the quantile effect of Z is constant over τ (i.e. setups (II) and (III)), we note that in

setup (II) where the effect size (i.e. magnitude of the constant effect) is relatively small, CPH

(Wald) has lower empirical power as compared to the proposed GIT and GST, and the power

improvement associated with the proposed GIT and GST is more evident with the smaller

sample size 200. In setup (III), where the effect size is larger, CPH (Wald) still generally

has lower empirical power compared to the proposed tests but its empirical power becomes

comparable to that of GIT when the sample size is large (i.e. n = 800). These observations

suggest that even in the trivial constant effect cases, the proposed tests can outperform the

traditional Cox regression based tests in data scenarios with small effect sizes or sample

sizes. In both setups (II) and (III), the locally concerned CQR (Wald) consistently yields

lower empirical power than the proposed globally concerned GIT and GST. This reflects

the power benefit resulted from integrating information on covariate effects on different

quantiles as in GST and GIT, rather than focusing on the covariate effect on a single quantile

as in CQR (Wald).

In setups (IV), (V), and (VI), the effect of Z is τ-varying, reflecting its dynamic association

with T. In these cases, CPH (Wald), which assumes a constant covariate effect, can have

poor power to detect the dynamic effect of Z (e.g. 8.3% empirical power in setup (VI) with

n = 800 in the presence of 30% censoring), while the proposed GST and GIT may yield

much higher power (e.g. >99% power in setup (VI) with n = 800 in the presence of 30%

censoring). The locally concerned CQR (Wald) can have higher power than CPH (Wald)

when the targeted quantile level is within the τ-region where β0
(1)(τ) is non-zero. When the

targeted quantile level is outside the τ-region with non-zero effect, such as τ = 0.6 in setup

(IV) or τ = 0.5 in setups (V) and (VI), the CQR (Wald) has even poorer power compared to

CPH (Wald). This is well expected because these cases may serve as the null cases for the
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locally concerned CQR (Wald). This confirms that CQR (Wald) is inadequate to capture the

meaningful effect of Z that is manifested at non-targeted quantiles.

We compare the simulation results across settings that are only differed by the censoring

distribution. For each relationship between Z and T specified by setups (I)-(VI), we consider

three different censoring distributions to yield 0%, 15%, and 30% censoring. The results

for settings with 15% and 30% censoring are presented in Table 1 and the results based

on uncensored data are presented in Table A.1 in Appendix E. From our comparisons, we

find that quantile regression based tests, including GST, GIT and CQR (Wald), demonstrate

small variations in empirical powers as the censoring rate (or distribution) changes. In cases

with a constant covariate effect, the Cox regression based test, CPH (Wald), also has similar

performance among settings with different censoring rates. However, in setup (V), where the

covariate effect is not constant over τ, CPH (Wald) has reasonably good power when there

is no censoring or only 15% censoring, but its performance deteriorates considerably when

the censoring rate is increased to 30%. We have a similar observation for CPH (Wald) in

setup (VI). A reasonable interpretation of these observations is that the capacity to detect

a dynamic effect can be weakened by incorrectly assuming a constant proportional hazard

effect and can be further attenuated by the missing data from censoring.

We also investigate whether the proposed tests are sensitive to the choice of . We conduct

additional simulation studies with  set as {1, …, 3}, {1, …, 6}, and {1, …, 12} for

the six set-ups with 15% censoring. The results are summarized in Table A.2. in the

Appendix. From this table, we note that GIT is quite robust to the change in , while GST

demonstrates more variations across different choices of . Another observation is that GIT

becomes less sensitive to the change in  when the sample size becomes larger. A possible

explanation for these results is similar to that for the observed anti-conservative behavior of

GST. That is, GST, by its construction, is sensitive to any outlying value of σn
(1)(τ) with τ ∈

[τL, τU], which is more likely to occur when the sample size is not large.

Aligning with the definitions of the proposed tests, the simulation results suggest that GST,

as compared to GIT, is more sensitive to detect a departure from the null hypothesis,

yielding higher power. This observation is also consistent with the anti-conservative

behavior of GST observed in the null cases, which is reflected by empirical sizes notably

greater than 0.05. With a smaller sample size, such as n = 200, GST can produce quite

elevated type I errors, while GIT yields more reasonable empirical sizes. Therefore, in

practice, one may need to exercise caution for applying GST to a small dataset, for which we

recommend using GIT instead. In summary, our simulation results demonstrate the proposed

testing procedures have robust satisfactory performance for detecting a covariate of either a

constant or dynamic effect. The new tests tend to exhibit greater advantages over benchmark

approaches when the covariate presents a dynamic effect, or the covariate has a constant

effect but of a small magnitude.

4 Real Data Analysis

To illustrate the utility of the proposed testing framework, we apply our method to

investigate the prognostic factors for dialysis survival based on a dataset collected from
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a cohort of 191 incident dialysis patients (Kutner et al., 2002). In this dataset, time to death

is censored in about 35% of dialysis patients due to either renal transplantation or end of

the study as of December 31, 2005. In our analysis, we consider six potential prognostic

factors (or covariates), which include age in years (AGE), indicator of reporting fish

consumption over the first year of dialysis (FISHH), the indicator for baseline HD dialysis

modality (BHDPD); whether the patient has severe symptoms of restless leg syndrome or

not (BLEGS); whether or not education level is equal or higher than college (HIEDU); and

the indicator of being in the black race group (BLACK). In our analyses, we standardize

AGE by subtracting the sample mean and then dividing the resulting quantity by the sample

standard deviation.

As a part of exploratory analyses, we check the proportional hazard assumption for each

covariate based on Grambsch and Therneau (1994)’s method, using the R function cox.zph()

in the R package survival. The p-values corresponding to AGE, FISHH, BHDPD, BLEGS,

HIEDU and BLACK are 0.43, 0.63, 0.55, 0.0006, 0.047 and 0.0004, respectively. These

results suggest that the proportional hazard assumption may be violated for BLEGS, HIEDU

and BLACK.

We fit model (1) for time to death (i.e. T) with each covariate separately. We set [τL, τU]

as [0.1, 0.6] for FISHH, BLGES, HIEDU, and BLACK, but set [τL, τU] as [0.1, 0.54]

and [0.1, 0.49] respectively for AGE and BHDPD. This is because the estimation of β0
(1)(τ)

based on Peng and Fine (2009) does not converge for some τ’s larger than 0.54 and 0.49

when Z is AGE or BHDPD. Figure 2 presents the estimated coefficients with the pointwise

95% confidence interval across τ ∈ [τL, τU]. It is suggested by Figure 2 that AGE and

BLACK have strong and persistent effects across all or most quantiles of time to death,

implying an apparent survival advantage for younger or black patients. For each of the

rest covariates, FISHH, BHDPD, BLEGS, or HIEDU, we note a partial effect pattern. For

example, FISHH and BLEGS may only impact some lower quantiles of the survival time.

BHDPD and HIEDU may only have quantile effects in the τ-intervals, [0.15, 0.3] and [0.3,

0.4], respectively. These observations suggest the presence of dynamic covariate effects as

well as the need to appropriately accommodate such dynamic covariate effects.

To evaluate each potential prognostic factor considered, we apply the proposed testing

procedures, GST and GIT, along with the benchmark methods, CPH (Wald) and CQR

(Wald), as described in Section 3. Table 2 summarizes the p values obtained from different

methods for evaluating each covariate. We note that all tests consistently suggest a strong

effect of AGE or BLACK on the survival time. The locally concerned quantile regression

tests, CQR (Wald), reveal τ-varying effects of FISHH, BHDPD, BLEGS, and HIEDU. For

example, BLEGS may significantly influence the 10th and 20th quantiles of the survival

time but not the 30th, 40th, 50th, 60th of quantiles. HIEDU may also have a partial effect,

influencing some quantiles, such as the 30th and 40th quantiles, but not the other quantiles.

The classic Cox regression based test, CPH (Wald), however, fails to capture the partial

effects of BLEGS and HIEDU. The p values for testing the effect of BLEGS and HIEDU

based on CPH (Wald) are 0.35 and 0.25 respectively. This is possibly caused by imposing

a restrictive static view on how a covariate can influence the survival time. In contrast,
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the proposed GIT and GST, through simultaneously examining covariate effects at quantile

levels [τL, τU], are able to detect the partial effect of BLEGS, with small p values ≤ 0.001

and to suggest a trend toward the association between HIEDU and the survival time, with

marginal p values 0.01 and 0.09. The proposed GIT and GST also provide some evidence

for the dynamic prognostic value of FISHH and BHDPD for dialysis survival. For example,

as suggested by CQR (Wald), fish consumption in the first year may benefit dialysis patients

with shorter survival time but may manifest little effect on the long-term survival. In general,

our analysis results are consistent with the analyses of Peng and Huang (2008) based

on multivariate censored quantile regression model. This example demonstrates the good

practical utility of the proposed methods when varying covariate effects are present.

5 Discussion

In this paper, we develop a new testing framework for evaluating a survival prognostic

factor. The main thrust of the new framework lies in its flexibility of accommodating

a dynamic covariate effect, which is achieved through adapting the spirit of globally

concerned quantile regression. Our testing procedures are conveniently developed based on

existing results on fitting a working quantile regression model with randomly censored data.

It is important to note that the validity of the testing procedures does not require that the

working model is the true model. Moreover, the proposed methods can be readily extended

to handle more complex survival outcomes, such as time to event subject to competing risks.

As suggested by one referee, we would like to point out that QT (τ ∣ Z) = QT (τ) for τ ∈ (0, 1)

implies the statistical independence between T and Z. Nevertheless, in this work, we confine

our attention to H0
∗ with τU less than 1. This is because right censoring typically precludes

the information on the upper tail of the distribution of T, and thus QT(τ) or QT (τ ∣ Z) can

become non-identifiable as τ approaches 1. The null hypothesis H0
∗ entails a weaker version

of the independence between T and Z that can be better assessed with right censored data.

Rejecting H0
∗ can provide evidence for the dependence between T and Z, while accepting

H0
∗ may not sufficiently indicate the independence between T and Z.

Another commendable extension of this work is to generalize the current null hypothesis

and testing procedures to permit evaluating multiple prognostic factors simultaneously.

This work also lays a key foundation for developing a nonparametric screening method

for helping identify useful prognostic factors among a large number of candidates. These

extensions will be reported in separate work.

Appendix

Appendix A: Lemma 1 and its proof

Lemma 1 Suppose the conditional distribution function of T given Z = z is continuous and
strictly monotone for all possible values of z. Then QT (τ ∣ Z) = QT (τ) for τ ∈ [τL, τU] is

equivalent to model (1) holds with Δ = [τL, τU] and β0
(1)(τ) = 0 for τ ∈ [τL, τU].
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Proof for Lemma 1. Suppose we have QT (τ ∣ Z) = QT (τ) for τ ∈ [τL, τU]. It is clear that

for τ ∈ [τL, τU], we can write QT (τ ∣ Z) = exp Z⊤θ0(τ)  with θ0(τ) = (logQT(τ), 0)⊤. This

means that model (1) holds with Δ ∈ [τL, τU] and β0
(1)(τ) = 0 for τ ∈ [τL, τU].

Suppose model (1) holds with Δ = [τL, τU] and β0
(1)(τ) = 0 for τ ∈ [τL, τU]. This means,

QT (τ ∣ Z) = exp β0
(0)(τ)  for τ ∈ [τL, τU]. Given that the conditional distribution function of T

given Z is continuous and strictly monotone, it follows from the definition of QT (τ ∣ Z) that

Pr T ≤ exp β0
(0)(τ) ∣ Z = τ for τ ∈ [τL, τU]. Taking expectation on both sides of this equality

with respect to Z, we then get Pr T ≤ exp β0
(0)(τ) = τ for τ ∈ [τL, τU]. Given the continuity

and strict monotonicity of the distribution function of T, which is implied by the continuity

and strict monotonicity of the conditional distribution function of T given Z, this implies

that exp β0
(0)(τ) = QT (τ). Thus, QT (τ ∣ Z) = QT (τ) for τ ∈ [τL, τU]. This completes the proof

of Lemma 1.

Appendix

Appendix B: Asymptotic properties of θ  without assuming model (1)

We assume the following regularity conditions:

(C1) There exist a constant v such that P(C = v) > 0 and P(C > v) = 0.

(C2) Z is uniformly bounded, i.e. supi Zi < ∞.

(C3) (i) θ(τ) is Lipschitz continuous for τ ∈ [τL, τU]; (ii) f(y|z) is bounded above

uniformly in y and z, where f(y|z) denotes the conditional density of X given Z =

z.

(C4) For some ρ0 > 0 and c0 > 0, infb ∈ ℬ ρ0  eigminA(b) ≥ c0, where

ℬ(ρ) = b ∈ R2: infτ ∈ τL, τU ∥ b − θ(τ) ∥ ≤ ρ  and A(b) = E[ZZ⊤f(Z⊤b|Z)].

Here ∥ · ∥ is the Euclidean norm and eigminA(b) represents the minimal

eigenvalue of A(b).

Condition (C1) is adopted to simplify the theoretical arguments to ensure that G( ⋅ ) is
consistent for G(·). This condition is usually satisfied in studies subject to administrative

censoring. Condition (C2) imposes covariate boundedness. Condition (C3) assumes that the

limit coefficient process is smooth and the conditional density distribution is bounded and

smooth. Condition (C4) requires that the asymptotic limit of Un(b, τ) is strictly convex in

a neighborhood of θ(τ) for τ ∈ [τL, τU], implying the uniqueness of the solution to μ(b,

τ) ≡ E{ZI(log T ≤ Z⊤b) − τ)} = 0. This plays a critical role in establishing the uniform

convergence of θ (τ) to θ(τ).

Theorem A1 Under regularity conditions (C1)–(C4), we have
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lim
n ∞

sup
τ ∈ τL, τU

∥ θ (τ) − θ(τ) ∥ p 0.

Theorem A2 Under regularity conditions (C1)–(C4), we have n(θ (τ) − θ(τ)) converge
weakly to a mean zero Gaussian process for τ ∈ [τL, τU] with covariance

Φ τ′, τ = E ξ1 τ′ ξ1(τ)⊤ .

The proofs of Theorems A1 and A2 closely resemble the proofs in Peng and Fine (2009) and

thus are omitted.

Appendix

Appendix C: Proofs of Theorem 1 and 2

We assume one additional regularity condition:

(C5) infτ ∈ τL, τU σ(1)(τ) > 0, where {σ(1)(τ)}2 is the second diagonal element of

Φ(τ, τ).

Proof of Theorem 1

Following the lines of Peng and Fine (2009), we can show that the sample-based variance

estimation procedure presented in Section 2.1 provides consistent variance estimation, which

implies supτ ∈ τL, τU σn
(1)(τ) − σ(1)(τ) p 0.

Note that under the null hypothesis H0
∗, we have β(1)(τ) = 0 and consequently,

n1/2R(τ) =
n1/2 β (1)(τ) − β(1)(τ)

σn
(1)(τ)

=
n1/2 β (τ) − β(1)(τ)

σ(1)(τ)
σ(1)(τ)
σn

(1)(τ)
− 1

+
n1/2 β (1)(τ) − β(1)(τ)

σ(1)(τ)
.

(5)

By Theorem A2, n1/2 β (1)(τ) − β(1)(τ) /σ(1)(τ) converges weakly to a mean zero Gaussian

process (1)(τ) with covariance process

Φ(1) τ, τ′ = Φ(2, 2) τ, τ′
σ(1)(τ)σ(1) τ′

,

where Φ(2, 2) τ, τ′  denotes the element in the second row and the second column

of Φ τ, τ′ . In addition, condition (C5) and supτ ∈ τL, τU σn
(1)(τ) − σ(1)(τ) p 0 imply
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supτ ∈ τL, τU
σ(1)(τ)
σn(1)(τ)

− 1 p 0. Applying the result of Theorem A2 and the Slutsky’s

Theorem (line 11 of Example 1.4.7 in Boucheron et al. (2013)) to (5), we then get

n1/2R(τ) d X(1)(τ) in l∞(ℱT), where l∞(S) is the collection of all bounded functions f:

S → R for any index set S and ℱT =
ξ1

(1)(c, τ)
σ(1)(τ)

, c ∈ R2, τ ∈ τL, τU . Then, by the extended

continuous mapping theorem (Theorem 1.11.1 in van der Vaart et al. (1996)), we can

establish the limiting null distribution for T sup
(1)  and T inte 

(1)  as

T sup
(1) = sup

τ ∈ τL, τU
n1/2β (1)(τ)

σn(1)(τ)
= sup

τ ∈ τL, τU
n1/2R(τ) d sup X(1)(τ) , τ ∈ τL, τU ,

T inte 
(1) = ∫τL

τU n1/2β (1)(τ)
σn(1)(τ)

2
dτ = ∫τL

τU
n1/2R(τ) 2dτ d ∫τL

τU
X(1)(τ) 2dτ .

This completes the proof of Theorem 1.

Proof for Theorem 2

We first investigate the asymptotic limit of T sup
(1)  under the alternative hypothesis Ha,1. Simple

algebra shows that

T sup 
(1) = sup

τ ∈ τL, τU
n1/2β (1)(τ)

σn(1)(τ)
= sup

τ ∈ τL, τU
n1/2β(1)(τ)

σn(1)(τ)
+

n1/2 β (1)(τ) − β(1)(τ)

σn(1)(τ)

≥ sup
τ ∈ τL, τU

n1/2β(1)(τ)
σn(1)(τ)

− sup
τ ∈ τL, τU

n1/2 β (1)(τ) − β(1)(τ)

σn(1)(τ)
≡ T sup, 1

(1) − T sup, 2
(1) .

By the extended continuous mapping theorem, we can show that the T sup, 2
(1)

 converges

in distribution to supτ ∈ τL, τU X(1)(τ)  and thus is Op(1). At the same time, given

supτ ∈ τL, τU σn
(1)(τ) − σ(1)(τ) p 0, under condition (C5), we get n−1/2T sup, 1

(1)
p ν0, where

ν0 = supτ ∈ τL, τU
β(1)(τ)
σ(1)(τ)

.

Under the alternative hypothesis Ha,1 and condition (C5), we have ν0 > 0, and hence

P n−1/2T sup , 1
(1) > ν0/2 P ν0 > ν0/2 = 1 as n → ∞. Furthermore, for any a > 0, we have

n−1/2T sup, 2
(1) + a ⋅ n−1/2 = op(1), which implies P n−1/2T sup , 2

(1) + a ⋅ n−1/2 > ν0/2 0 as n →

∞. Note that
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P T sup
(1) > a ≥ P n−1/2T sup , 1

(1) > n−1/2Tsup , 2
(1) + a ⋅ n−1/2

≥ P n−1/2T sup, 1
(1) > ν0/2 − P n−1/2T sup, 2

(1) + a ⋅ n−1/2 > ν0/2 .

It then follows that P T sup 
(1) > a 1 as n → ∞ under the alternative hypothesis Ha,1. This

immediately implies that T sup 
(1)  is a consistent test against Ha,1 because P T sup

(1) > Csup, α 1

as n → ∞ given Ha,1 holds, where Csup,α denotes the α-level critical value determined upon

the limit null distribution of T sup
(1) , which is greater than 0.

Next, we consider T inte
(1)  under the alternative hypothesis Ha,2. Write T inte

(1)  as

T inte 
(1) = ∫τL

τU n1/2β (1)(τ)
σn(1)(τ)

2
dτ = ∫τL

τU n1/2β(1)(τ)
σn(1)(τ)

−
n1/2 β(1)(τ) − β (1)(τ)

σn(1)(τ)

2

dτ

≥ ∫τL

τU n1/2β(1)(τ)
σn(1)(τ)

2
dτ − ∫τL

τU
2 n1/2β(1)(τ)

σn(1)(τ)
⋅

n1/2 β(1)(τ) − β (1)(τ)

σn(1)(τ)
dτ ≡ Tinte, 1

(1) − Tinte , 2
(1) .

By the continuous mapping theorem, combined with supτ ∈ τL, τU σn
(1)(τ) − σ(1)(τ) p 0 and

condition (C5), we get n−1T inte, 1
(1)

p ν0
∗, where ν0

∗ = ∫τL
τU β(1)(τ)

σ(1)(τ)

2
dτ, and

n−1/2Tinte, 2
(1)

d ∫τL

τU
2 β(1)(τ)

σ(1)(τ)
⋅ X(1)(τ) dτ

and thus Op(1). By condition (C5), the alternative hypothesis Ha,2 implies ν0
∗ > 0. Then

following the same arguments for showing P T sup
(1) > a 1 for any a > 0 based on the results

that n−1/2T sup, 1
(1)

p ν0 > 0 and T sup, 2
(1) = Op(1), we can prove that P n−1/2T inte 

(1) > a 1 as n

→ ∞ for any a > 0 under Ha,2. This implies that P T inte 
(1) > a 1 as n → ∞ for any a > 0

under Ha,2. Therefore, T inte 
(1)  is a consistent test against the alternative hypothesis Ha,2.

Appendix

Appendix D: Justification for the proposed resampling procedure

Given the observed data denoted by Oi i = 1
n ≡ Xi, δi, Zi i = 1

n , since ιib i = 1
n  are i.i.d.

standard normal random variables, we have
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E
n−1/2∑i = 1

n ξ i
(1)(τ)ιib

σn(1)(τ)
⋅

n−1/2∑i = 1
n ξ i

(1) τ′ ιib

σn(1) τ′
∣ Oi i = 1

n = n−1 ∑
i = 1

n ξ i
(1)(τ)ξ i

(1) τ′

σn(1)(τ)σn(1) τ′
p Φ(1) τ, τ′ .

By the arguments of Lin et al. (1993), the distribution of n−1/2∑i = 1
n ξ i

(1)(τ)ιib/σn
(1)(τ)

converges weakly to (1)(τ), the same limit as that of n1/2 β (1)(τ) − β(1)(τ) /σn
(1)(τ), for

almost all realizations of Oi i = 1
n . Applying the extended continuous mapping theorem

as in the proof of Theorem 2, we have that under H0
∗, the conditional distribution of

T sup, b
(1)

 (or T inte, b
(1)

) given the observed data is asymptotically equivalent to the unconditional

distributions of Tsup, b
(1)  (or Tinte, b

(1) ). This justifies using the resampling procedure in Section

2.3 to obtain the p values of the proposed tests.

Appendix

Appendix E: Additional simulation results

Table A.1

Empirical rejection rate for the uncensored case based on 1000 simulations.

Set-up n
Proposed Test CQR (Wald)

CPH (Wald)
GST GIT τ = 0.4 τ = 0.5 τ = 0.6

I 200 0.098 0.070 0.055 0.052 0.056 0.048

400 0.093 0.075 0.069 0.064 0.060 0.047

800 0.076 0.058 0.053 0.053 0.048 0.061

II 200 0.215 0.156 0.104 0.108 0.108 0.121

400 0.275 0.216 0.162 0.156 0.139 0.183

800 0.420 0.372 0.276 0.265 0.238 0.328

III 200 0.541 0.478 0.344 0.374 0.337 0.456

400 0.790 0.771 0.589 0.595 0.590 0.745

800 0.958 0.961 0.883 0.886 0.873 0.963

IV 200 0.378 0.250 0.074 0.045 0.049 0.060

400 0.656 0.476 0.101 0.056 0.055 0.049

800 0.935 0.808 0.118 0.034 0.045 0.085

V 200 0.618 0.452 0.106 0.057 0.121 0.428

400 0.939 0.828 0.169 0.071 0.165 0.737

800 1.000 0.994 0.255 0.041 0.313 0.968

VI 200 0.729 0.543 0.095 0.047 0.088 0.228

400 0.971 0.898 0.154 0.048 0.097 0.446

800 1.000 0.995 0.243 0.020 0.154 0.756
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Table A.2

Empirical rejection rate for the proposed test with different choices of  on the six set-ups

subject to 15% censoring based on 1000 simulations.

Set-up n
 = {1,…, 3}  = {1,…, 6}  = {1,…, 12}

GST GIT GST GIT GST GIT

I 200 0.128 0.074 0.091 0.067 0.092 0.065

400 0.126 0.079 0.086 0.067 0.081 0.063

800 0.112 0.060 0.080 0.059 0.072 0.058

II 200 0.287 0.178 0.228 0.161 0.225 0.158

400 0.359 0.231 0.283 0.218 0.256 0.206

800 0.472 0.379 0.415 0.369 0.376 0.361

III 200 0.666 0.549 0.593 0.510 0.585 0.513

400 0.841 0.789 0.779 0.773 0.761 0.757

800 0.975 0.964 0.956 0.956 0.940 0.957

IV 200 0.427 0.257 0.364 0.242 0.362 0.243

400 0.702 0.490 0.666 0.470 0.649 0.471

800 0.952 0.808 0.942 0.811 0.936 0.808

V 200 0.695 0.478 0.649 0.452 0.649 0.446

400 0.962 0.850 0.948 0.831 0.944 0.827

800 1.000 0.994 1.000 0.991 1.000 0.993

VI 200 0.768 0.558 0.723 0.534 0.726 0.535

400 0.981 0.902 0.971 0.894 0.970 0.892

800 1.000 0.997 1.000 0.997 1.000 0.998
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Fig. 1.
The true coefficient function for all simulation set-ups.
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Fig. 2.
The estimated coefficient with the 95% confidence interval for the covariates based on the

censored quantile regression model on the dialysis data.
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Table 1

Empirical rejection rate based on 1000 simulations.

Set-up n
Proposed Test CQR (Wald)

CPH (Wald)
GST GIT τ = 0.4 τ = 0.5 τ = 0.6

15% censoring

I 200 0.100 0.073 0.066 0.062 0.057 0.049

400 0.091 0.078 0.072 0.072 0.066 0.051

800 0.077 0.055 0.064 0.063 0.059 0.061

II 200 0.234 0.167 0.117 0.131 0.117 0.115

400 0.275 0.214 0.155 0.153 0.150 0.178

800 0.410 0.362 0.277 0.265 0.247 0.322

III 200 0.566 0.485 0.359 0.401 0.360 0.450

400 0.786 0.772 0.585 0.592 0.576 0.722

800 0.957 0.957 0.873 0.887 0.865 0.960

IV 200 0.377 0.254 0.097 0.060 0.053 0.063

400 0.652 0.478 0.116 0.065 0.063 0.067

800 0.939 0.816 0.148 0.047 0.058 0.090

V 200 0.653 0.464 0.143 0.070 0.118 0.260

400 0.937 0.827 0.208 0.071 0.153 0.458

800 0.999 0.993 0.291 0.053 0.279 0.757

VI 200 0.731 0.552 0.149 0.062 0.086 0.125

400 0.971 0.896 0.198 0.055 0.095 0.201

800 1.000 0.995 0.260 0.033 0.142 0.364

30% censoring

I 200 0.171 0.095 0.062 0.060 0.048 0.047

400 0.110 0.085 0.069 0.074 0.065 0.056

800 0.066 0.052 0.063 0.059 0.050 0.038

II 200 0.302 0.186 0.115 0.122 0.105 0.122

400 0.305 0.221 0.152 0.156 0.138 0.188

800 0.411 0.359 0.277 0.259 0.245 0.298

III 200 0.681 0.539 0.360 0.393 0.322 0.432

400 0.828 0.791 0.585 0.590 0.534 0.703

800 0.959 0.957 0.874 0.877 0.855 0.952

IV 200 0.440 0.271 0.101 0.061 0.044 0.056

400 0.668 0.480 0.115 0.065 0.062 0.085

800 0.947 0.804 0.150 0.048 0.046 0.089

V 200 0.799 0.573 0.135 0.069 0.103 0.092

400 0.960 0.846 0.206 0.068 0.135 0.140

800 1.000 0.993 0.292 0.054 0.282 0.211

VI 200 0.803 0.587 0.148 0.063 0.077 0.053
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Set-up n
Proposed Test CQR (Wald)

CPH (Wald)
GST GIT τ = 0.4 τ = 0.5 τ = 0.6

400 0.978 0.903 0.199 0.052 0.082 0.064

800 1.000 0.995 0.263 0.033 0.141 0.083
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Table 2

A summary of p-values for each covariates with different methods.

Covariate
Proposed Test CQR (Wald)

CPH (Wald)
GST GIT τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6

AGE <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

FISHH <0.001 0.018 0.037 0.055 0.036 0.214 0.473 0.316 0.026

BHDPD <0.001 0.005 0.090 0.021 0.152 0.228 0.229 0.030 0.008

BLEGS <0.001 0.001 <0.001 0.001 0.062 0.082 0.091 0.507 0.349

HIEDU 0.013 0.093 0.596 0.137 0.003 0.032 0.068 0.241 0.245

BLACK <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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	AppendixAppendix D: Justification for the proposed resampling procedureGiven the observed data denoted by , since  are i.i.d. standard normal random variables, we haveBy the arguments of Lin et al. (1993), the distribution of  converges weakly to 
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(1)(τ), the same limit as that of , for almost all realizations of . Applying the extended continuous mapping theorem as in the proof of Theorem 2, we have that under , the conditional distribution of  (or ) given the observed data is asymptotically equivalent to the unconditional distributions of  (or ). This justifies using the resampling procedure in Section 2.3 to obtain the p values of the proposed tests.
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 on the six set-ups subject to 15% censoring based on 1000 simulations.Set-upn
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