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Abstract

Objective.—High-frequency oscillations (HFOs) are considered a biomarker of the epileptogenic 

zone in intracranial EEG recordings. However, automated HFO detectors confound true 

oscillations with spurious events caused by the presence of artifacts.

Approach.—We hypothesized that, unlike pseudo-HFOs with sharp transients or arbitrary 

shapes, real HFOs have a signal characteristic that can be represented using a small number 

of oscillatory bases. Based on this hypothesis using a sparse representation framework, this 

study introduces a new classification approach to distinguish true HFOs from the pseudo-events 

that mislead seizure onset zone (SOZ) localization. Moreover, we further classified the HFOs 

into ripples and fast ripples by introducing an adaptive reconstruction scheme using sparse 

representation. By visualizing the raw waveforms and time-frequency representation of events 

recorded from 16 patients, three experts labelled 6400 candidate events that passed an initial 

amplitude-threshold-based HFO detector. We formed a redundant analytical multiscale dictionary 

built from smooth oscillatory Gabor atoms and represented each event with orthogonal matching 

pursuit by using a small number of dictionary elements. We used the approximation error and 

residual signal at each iteration to extract features that can distinguish the HFOs from any type of 
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artifact regardless of their corresponding source. We validated our model on sixteen subjects with 

thirty minutes of continuous interictal iEEG recording from each.

Main Results.—We showed that the accuracy of SOZ detection after applying our method was 

significantly improved. In particular, we achieved a 96.65% classification accuracy in labelled 

events and a 17.57% improvement in SOZ detection on continuous data. Our sparse representation 

framework can also distinguish between ripples and fast ripples.

Significance.—We show that by using a sparse representation approach we can remove the 

pseudo-HFOs from the pool of events and improve the reliability of detected HFOs in large data 

sets and minimize manual artifact elimination.
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Epilepsy; High-Frequency Oscillation; Orthogonal Matching Pursuit; Sparse representation; 
Pseudo-HFO

1. Introduction

Epilepsy is a condition characterized by recurrent unprovoked seizures (1). It is one of 

the most common neurological disorders and affects between 0.5–1% of the population 

worldwide (2). Despite the advancements in pharmaceutical therapy, about 30% of patients 

remain retractable to antiepileptic drugs (3). For these patients, resective surgery, the 

removal of a small portion of the brain where seizures are generated, is one of the 

most effective treatments. The outcome of epilepsy surgery highly depends on the proper 

localization of the seizure onset zone (SOZ) identified by prolonged intracranial EEG 

(iEEG) monitoring (4). This stresses the necessity of using biomarkers in iEEG recording to 

localize the SOZ precisely and improve the surgical outcome accordingly.

During the past two decades, high-frequency oscillations (HFOs) of iEEG have become 

a promising biomarker of the epileptogenic zone (EZ) (5). HFOs are transients residing 

between 80–600 Hz with low amplitude that last around 30–100 ms (6). HFOs generally are 

divided into two categories: ripples (R) with frequencies between 80–250 Hz and fast ripples 

(FR) with frequencies at 250–600 Hz.

Considering their low amplitude and short duration, visual detection of epileptogenic HFOs 

in long-term recordings is cumbersome. For this reason, computer-based methods are 

frequently used to automate HFO detection. Generally, HFO detectors employ either a high-

pass or band-pass filtering in the HFO range. They detect the oscillatory events that stand 

out from the background activity. Earlier investigations showed that iEEG data obtained in 

prolonged epilepsy monitoring units (EMU) frequently become contaminated with electrical 

interference and other artifacts (7,8,9). These artifacts have internal and external origins 

(10) and might heavily corrupt the recordings. Numerous studies (11,12,13) have shown that 

sharp events or random noise might mimic HFO after high pass filtering (12). The filtering 

effect creates a spurious oscillation in the HFO range, i.e., 80–600 Hz.

Therefore, pseudo-events with random nature or sharp changes might reduce the SOZ 

localization accuracy. Moreover, if the artifacts are recorded from channels that overlap 
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with normal or functional cortex, it might have catastrophic results. Consequently, there is a 

growing interest in distinguishing artifacts and noise from the “real” HFOs for accurate SOZ 

localization. Due to their random and arbitrary nature, it is difficult to translate different 

types of noise into handcrafted features. On the other hand, defining large numbers of rules 

and constraints in the HFO detector might also impair the sensitivity, causing real HFOs to 

be removed from the event pool. Here we introduce a new method to distinguish between 

true and pseudo-HFOs by inspecting the raw signal without bias towards conventional HFO 

features such as time-frequency representation.

In this framework, we employ orthogonal matching pursuit (OMP) to represent initial 

candidate events using a small number of elements from a redundant dictionary. We 

hypothesized that, unlike pseudo-HFOs that might be corrupted with sharp transients 

or arbitrary shapes, real HFOs have a waveform characteristic that can be represented 

using only a few oscillatory atoms. A perfect local and global representation of events 

using a small number of Gabor atoms was translated to features in order to shape a 

classifier distinguishing between all types of noises regardless of their sources from the 

real HFO. We also validated the importance of using Gabor atoms for HFO classification 

and representation by repeating the whole pipeline using the discrete cosine dictionary. We 

tested this method on sixteen subjects and compared the results with a previously published 

method (14). The results showed a notable improvement in classification accuracy and SOZ 

localization compared to the existing method.

This paper also describes a new approach to identifying the frequency components of 

HFO events by exploiting the sparse representation as an adaptive regenerative model to 

reconstruct the original events. This can be a valuable tool for identifying the frequency of 

HFOs and splitting the HFOs into R and FR categories.

2. Materials and Methods

2.1 Data Acquisition

In this multi-institutional study, we analyzed iEEG data recorded from sixteen patients with 

refractory focal epilepsy. All recordings were obtained in the EMU at a sampling frequency 

equal to or greater than 2 kHz. This study was approved by the Institutional Review Boards 

(IRB) of the University of Houston. Relevant annotations, including seizure onset zone 

(SOZ) and surgery outcome, were provided by the clinical team at the affiliated institutes. 

The study protocol was also approved by the IRB at each site the data were recorded.

For each subject, 30-minute-long interictal iEEG segments were selected for the analysis. 

The raw iEEG was converted to bipolar derivation for further processing. To investigate 

the efficacy of the algorithm, all channels were included in the analysis without any pre-

processing or manual artifact rejection.

2.2 Signal Processing

As shown in figure 1, in three steps (A, B, and C), the proposed method distinguished 

between real HFOs and pseudo-HFOs originating from noise/artifacts. First, using an 

amplitude-threshold-based detector (figure 1(A)), an initial pool of potential HFO events 
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was formed. In the second step (figure 1(B)), each event is represented with OMP in a sparse 

fashion using atoms from a redundant oscillatory dictionary. The approximation error and 

the residual signal at each iteration were used to shape a feature vector. Finally, as shown 

in figure 1(C), events were classified into HFO and pseudo-HFO categories using a random 

forest (RF) classifier. All algorithms were developed and employed in MATLAB 2019b 

(MathWorks, Inc., Natick, MA, US) software. Below we describe each stage in detail.

2.2.1 Initial Detection—An amplitude-threshold-based detector described in (14) 

captured the initial events with high sensitivity but low specificity. Specifically, the initial 

detection was executed in two separate frequency bands. After filtering the iEEG data in 

the R [80–250 Hz] and FR [250–600 Hz] ranges using a 64-order FIR digital filter, the 

standard deviation (SD) of these two bands was computed using a 100-millisecond long 

sliding window with 50% overlap. To capture the variation of background activity and 

minimize the effect of outliers with large amplitudes, the SD was computed in each sliding 

window, and the median of these values was computed in 1 minute. This provided a robust 

and time-varying estimation of the SD of the background activity. The amplitude threshold 

is defined as three times the SD estimated from the background activity. 512 samples long 

iEEG segments locally exceeding this threshold were used to form a pool of events once 

they satisfied the following constraints:

i. The number of samples that cross the threshold should be more than four to 

capture at least two complete oscillations above the threshold at each event.

ii. The distance between oscillatory components (at a sampling frequency of fs) 

that passed the threshold should be at least 80/fs and 250/fs for R and FR bands 

respectively.

iii. The amplitude of filtered events at the center should be four times larger than the 

SD of the signal at the sides.

After the detection of initial events across subjects, three experts jointly labelled 400 events 

(at least 200 HFOs and 200 pseudo-HFOs) at minimum for each subject. A graphical user 

interface (GUI) was designed in MATLAB for the visual inspection of raw signal, its filtered 

version in the HFO band, and its time-frequency plane representation. Experts reviewed 

the data in time and time-frequency domain using the GUI and annotated the events. (A 

snapshot of this GUI and more information regarding the annotation process are provided 

in supplementary figure 7). These labelled events were used to extract informative features, 

train a classification algorithm, and validate its performance in later stages using the leave 

one subject out method.

2.2.2 Orthogonal Matching Pursuit and Analytical Redundant Dictionary—
After forming an HFO event pool using the initial amplitude-threshold-based detector, each 

candidate event was represented in a sparse fashion using an overcomplete dictionary. 

Assume that we want to represent an HFO event y∈Rm × 1 using a linear combination of a 

small number of atoms from a dictionary of D∈Rm × n where the atoms span the columns of 

matrix D with m, n the size of events and the number of dictionary atoms, respectively:
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y = Dα (1)

for n > m, in which the dictionary is redundant, this representation can be formulated as a 

l0 − minimization problem that penalizes the number of nonzero coefficients in α:

minα α 0 s . t . y = Dα (2)

where · 0 denotes l0 − norm, which counts the number of nonzero entries in the vector 

α∈Rn × 1. Figure 2(C) shows the matrix formulation of sparse representation of an HFO 

using predefined waveforms called atoms.

The sparse approximation problem of equation (2) is combinatorial and NP-hard. Thus, 

approximate but efficient solutions such as MP (15) and OMP (16) are considered, which 

employ a greedy search in a recursive fashion to select atoms sequentially.

In our study, to represent the events, we employed OMP and enforced sparsity in α, by 

forming a rich Gabor dictionary resembling the oscillatory nature of the HFO components. 

The Gabor basis is defined as the product of a Gaussian function with the cosine function:

gu, σ t = 1 2πσe− t − u 2

2σ2 . cos 2π ω
N t − u (3)

which is described by parameters σ: time spread, u: shift in time, ω: frequency.

The dictionary D = d1, d2, d3, …, dn  where di∈Rm × 1 is the ith dictionary atom then can be 

formulated as Gabor atoms with different frequencies and time supports:

D = g σ1, u1, ω1 g σ2, u2, ω2 … g σn, un, ωn . (4)

We varied the parameters based on the definition of HFOs in terms of their time support 

(see figure 2(B)) and frequency content (see figure 2(A)). The frequency of atoms, w, 

ranged between 0–600 Hz to represent R and FR components and the slow waves below 

80 Hz. As implemented originally by Mallat and Zhang in (15), the parameter sigma, 

which corresponds to an atom’s width in time, is chosen from dyadic sequences of integers 

(σ = 2−j) and j (integer) were varied in a systematic fashion below and above 80Hz. 

Specifically, j ∈ 0,1  for w < 35 Hz and 35 < w < 80 (figure 2(A) first and second rows). 

For 80 < w < 200 Hz, j ∈ 2  (figure 2(A) 3rd row). For 150 < w < 500 Hz j ∈ 3  (figure 

2(A) 4th row) and for 300 < w < 600 Hz j ∈ 4  (figure 2(A) 5th row). Consequently, atoms 

with localized high-frequency oscillations were constructed through such a strategy.

Similarly, the shifts in time are chosen from dyadic sequences of integers. As we go to the 

higher frequencies in our dictionary, the scale of the atoms becomes smaller and more shifts 

in time are included in the dictionary to have localized atoms in higher frequencies. Overall, 

our Gabor dictionary included 5600 atoms. Due to their analytical design, we stored the 
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frequency information of all atoms in a vector and used this information in feature extraction 

and later in R and FR categorization.

2.2.3 Feature Extraction—We extracted simple informative features from the residual 

of the signal and selected atoms during the iterations of OMP. Let ri represent the residual of 

candidate event y at ith iteration,

ri = y − ∑
k = 1

i
akgk (5)

where gk is the selected atom at iteration k, ak is its coefficient. We computed the residual 

signal over successive iterations and extracted the following features from the residual signal 

and selected atoms:

Approximation Error (L2 Error): Approximation error is defined as the ratio of the energy 

of the residual to the energy of the event y:

εi =
ri 2
y 2

. (6)

Here εi revealed the ability to reconstruct an event at a specific iteration globally.

Variation Factor (V-Factor): The range of residual error was divided by the standard 

deviation of residual error at iteration i:

V i = max ri − min ri
std ri

. (7)

We named V i as variation factor at iteration i. This feature captured the local behaviour of 

the residual error with respect to the overall error. If the signal is corrupted with a localized 

sharp artifact, the OMP needs a large number of atoms to reconstruct such segments. Thus, 

it leaves the large localized sharp artifacts untouched or poorly represents within the first 

few iterations as the dictionary does not include sharp atoms. Therefore, while the overall 

error is small, which is captured by the standard deviation of ri, the V-Factor will be large. 

This feature plays a vital role in distinguishing between sharp artifacts and HFOs and 

describes the quality of reconstruction of events locally (Supplementary figures 1 and 2 

present examples of the OMP process, selected atoms, and extracted features for real and 

pseudo-HFOs. See (17) for a demo).

Line Noise: The iEEG signals can often be exposed to power line interference at 50 or 

60 Hz. In such a case, a small signal distortion or discontinuity caused fake oscillations 

mimicking HFO. Such events can be easily represented with oscillatory Gabor atoms, but 

the selected atoms repeat themselves at the power line frequency. On this account, the 

number of selected atoms around the line noise frequency might serve as an important 
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feature. Consequently, since we know the frequency index of the analytical Gabor atoms, the 

number of atoms located 60 Hz over iterations was used as another feature. A representative 

example regarding this feature can be found in supplementary figure 6.

Other Features: The range and standard deviation of the raw event and in the HFO range 

above 80 Hz were computed and used as additional features.

2.2.4 Classification of Events and Model Validation—We utilized the random 

forest classifier to assign the events into HFO and noise (pseudo-HFO) categories. RF is 

an ensemble learning method that fits multiple decision tree models on different subsets of 

a training dataset, then combines the predictions from all models. Specifically, it contains 

different individual trees where each tree uses a random subset of the feature space in each 

split. (18). In this way, the correlation between trees is reduced, and the prediction power 

increases. The final decision of the RF was computed based on the majority voting scheme. 

We utilized the RF toolbox (19) to construct the trees and employed the Gini impurity index 

(18) to find the best feature in each node and do the splits with a smaller Gini index. The 

Gini index is defined as

G = ∑
i = 1

C
p i 1 − p i (8)

where C is the number of total classes and p i  denotes the probability of picking up data 

from class i. In our problem, we wish to classify the events into two classes, i.e., real HFO 

and pseudo-HFO.

Feature Selection:  At this stage, one critical question is how to choose the number 

of iterations to represent the HFO events in a sparse fashion, which will influence the 

approximation error and V-Factor values and their discrimination power. Rather than 

computing these two features at a specific iteration, we continued to approximate each event 

up to 50 iterations. Then, corresponding features, including approximation error, V-Factor, 

line noise, range, and SD of raw event and high-frequency components, were concatenated 

across iterations to form a 154-dimensional feature vector. The computed features were fed 

to the RF classifier, and the learned model was used on a test subject who was not included 

in the learning stage. More specifically, the efficacy of the model is validated using leave 

-one-subject-out: One subject was used to test the model, while the rest of the subjects 

were used as training data to learn the informative features. This process is repeated for all 

subjects, and the mean accuracy is reported as the overall classification accuracy. We opted 

to use 50 trees with 5 minimum leaf and 10 minimum parent sizes with the square root of 

the total number of features as the number of the predictor to sample.

Consequently, we compared our detector with the previously published method (14), which 

uses time-frequency features, including sub-band power ratio, the frequency with maximum 

peak to notch ratio, and spectral entropy to form clusters of events using the Gaussian 

mixture model (GMM). In order to compare these two methods, we used the labelled events 

of each subject. The time-frequency features were computed, and the noise cluster(s) was 

selected. The accuracy was obtained using the ground truth labels of events in each subject. 
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We also inspected the efficacy of using the redundant Gabor dictionary against the complete 

discrete cosine dictionary by repeating the same feature extraction and classification scheme.

2.2.5 HFO Categorization via Sparse Representation—Once the classification is 

done and pseudo-HFOs are removed from the pool of events, we use the sparse model to 

further classify the HFO events into the Rs and FRs. The schematic of sparse representation 

and a typical example of the original and reconstructed HFOs are shown in figure 3.

Each event goes into band-pass filters in the range of R (80–250 Hz) and FR (250–600 Hz). 

In the following step, R and FR components enter the amplitude-threshold-based detector, 

counting the number of threshold crossings. The detector accepts an event as HFO if it 

passes the threshold at least four positive or negative cycles. If the detector confirms an 

existing oscillatory component that pops out of the background as an HFO component, 

the sparse representation will be conducted on that specific signal, and the residual signal 

will be replaced with the original signal. The amplitude-threshold-based detection and 

representation as a joint procedure will continue to represent each band until no component 

from the residual passes the amplitude-threshold-based detector. This framework acts as a 

regenerative model that reconstructs HFOs without adapting to the local background by 

using the initial detector as a stopping criterion. Finally, the event will be reconstructed 

by mixing the low-frequency signal below 80 Hz, and R/FR bands reconstructed using the 

adaptive sparse representation.

The classification of R and FR is then conducted based on the highest frequency among 

atoms that have been used during the adaptive sparse representation process (see figure 3).

2.2.6 Validation through SOZ identification—After training a classification model 

using labelled events, as a next step, we validated its efficacy over long-term iEEG data 

towards SOZ identification. We executed the whole classification process on detected events 

in 30 minutes of continuous interictal iEEG recording of each subject. The delineation of the 

SOZ is assessed as the rate of classified HFOs coming from SOZ channels as follows:

Accuracy = Events Coming from SOZ
Total Number of Events (9)

We evaluated the efficacy of the classification method by calculating the rate of HFOs 

coming from SOZ before and after applying the noise removal method. We then use a paired 

Wilcoxon rank test to show the statistical significance of SOZ localization after removing 

pseudo-HFO events from the pool of candidates.

The agreement between SOZ and Rs/FRs is evaluated by applying the adaptive HFO sparse 

representation. We realized that the FRs were rare compared to Rs, and a few subjects might 

have a small amount of FRs compared to the size of the entire pool. To fairly compare the 

SOZ accuracy estimated from Rs and FRs, we excluded subjects with an FR rate below 

3% of the total HFO pool in this part of the study. The SOZ localization of Rs and FRs 

was computed, and the Wilcoxon rank test was applied to evaluate the statistical difference 

between these two groups.
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3. Results

Across all sixteen subjects, around 3200 HFO and 3200 pseudo-HFO events that passed 

the amplitude-threshold-based HFO detector were labelled. We annotated an equal number 

of real and pseudo-HFO events among all subjects to avoid bias toward a specific subject. 

Figure 4 (A) shows the continuous iEEG recording and the corresponding HFO band 

data. Typical annotated HFO and pseudo-HFO events that passed the initial detector are 

provided in figure 4 (B, C). More examples on real and pseudo-HFOs are also provided 

in supplementary figure 8 and 9. When the filtered continuous trace is inspected visually, 

one can get easily mislead by these pseudo HFO events. When inspected closely, the raw 

pseudo-HFOs have no clear oscillation but some random waveform that passed the initial 

detector.

3.1 Characteristic of Features over Iterations

We executed the sparse reconstruction process up to 50 iterations. Figures 5(A) and 5(B) 

visualize the residual signal, the change in approximation error, and V-Factor over iterations 

for various HFO and pseudo-HFO events. We observed that for the HFO events, the 

approximation error decreased rapidly within the first 15–20 iterations and then almost 

reached a plateau. This plateau is likely due to the white noise structure of the residual 

background, which could not be represented by local oscillatory atoms efficiently. We 

observed flat behaviour for the V-Factor of the HFO samples across iterations. Compared 

to HFO events, the pseudo-HFOs could not be represented efficiently within the first 15–

20 iterations. For those pseudo-HFO events with localized sharp artifacts, the V-Factor 

values were also larger than those of real HFOs. These sample events provide evidence that 

pseudo-events cannot be represented efficiently locally or globally in a sparse fashion.

The approximation error and V-Factor characteristic for representative and all subjects 

are given in figure 5(C–F). Figures 5(C–F) illustrate that HFOs have low approximation 

error and V-Factor, which confirms our previous assumption. In patients 3 and 10, the 

approximation error (ε) was a distinguishable feature as most artifacts fell into a category of 

pseudo-HFOs with a high background noise level and, as a result, high approximation error. 

As sharp artifacts exist in patients 4 and 6, the V-Factor (V ) will be a vital feature (see figure 

5(C–D)).

Figure 5(F) shows the AUC versus the number of iterations for εi, V i, and line noise (Li) 

features. While the εi and Li features have a larger AUC before iteration 15th, the V-Factor 

reached a maximum value around iteration 30th.

3.2 Classification Accuracy and Selected Features

Figure 6(A) shows the confusion matrix of our proposed method vs. other strategies. The 

proposed method using OMP, and redundant Gabor dictionary reached 96.65% accuracy in 

discriminating the real and pseudo-HFOs.

When we replaced the redundant Gabor dictionary with the complete discrete cosine 

transform (DCT) dictionary, we could reach 93.53% mean accuracy. Finally, the STFT-
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GMM method (14) had 80.09% classification accuracy. In order to have a fair comparison 

between the features extracted from time-frequency analysis and our method, we used 

the same supervised classifier method (Random Forest classifier) in conjunction with the 

STFT derived features. We called this method STFT-RF and it reached 82.3% classification 

accuracy, which was significantly lower than the classification accuracy of our proposed 

method. These results suggest that more than the classifier, the features extracted with 

the sparse signal representation strategy plays a critical role in distinguishing between 

real and pseudo-HFOs (a comparison between the ROC curves of features extracted from 

time-frequency/spectral analysis and sparse representation is provided in supplementary 

figure 3). The classification accuracy of real and pseudo-HFOs for individual subjects is 

provided in figure 6(B). A box plot comparing the accuracy of each method is given 

in figure 6(C). We noted that the OMP-Gabor method was significantly better than the 

other techniques (P < 0.001 Wilcoxon signed-rank test between Gabor-OMP and other 

techniques). As shown in figure 6(B), in some cases (P-9, P-10, P-11, and P-13), the STFT-

GMM method noticeably failed to distinguish between real and pseudo-HFOs (P-9: out of 

236 pseudo-HFO events, 136 are misclassified as real-HFO, P-10: out of 217 pseudo-HFO 

events, 127 are misclassified as real-HFO, P-11: out of 202 pseudo-HFO events, 123 are 

misclassified as real-HFO, and P-13: out of 217 real-HFO events, 127 are misclassified as 

pseudo-HFO) while our proposed method had an accuracy above 90% (P-9: out of 236 

pseudo-HFO events, 12 are misclassified as real-HFO, P-10: out of 217 pseudo-HFO events, 

5 are misclassified as real-HFO, P-11: out of 202 pseudo-HFO events, 6 are misclassified 

as real-HFO , and P-13: out of 217 real-HFO events, 16 are misclassified as pseudo-HFO) 

across these subjects. Overall, the most significant improvement of the proposed method 

was in detection of pseudo-HFO with high accuracy among all subjects (4.2%, i.e., 142 

false-positive events in total) compared to the GMM/STFT method (24.8%, i.e., 846 false-

positive events in total).

Figure 7(A) shows the frequency distribution of selected atoms over iterations for real and 

pseudo-HFOs. We observed that the OMP algorithm picks atoms with lower frequencies 

for the first 10–15 iterations. However, as we go to the higher iterations, the algorithm 

picks atoms with higher frequencies from the R and FR bands. This trend is almost similar 

between real and pseudo-HFOs. However, for the pseudo-ones, the OMP starts to select 

the higher frequency atoms in earlier iterations. This is likely that many pseudo-HFOs have 

sharp changes which has either broad-band characteristics or reside in higher frequencies. 

Therefore, the OMP tends to pick more high-frequency atoms in the first few iterations for 

pseudo HFOs compared to real ones.

The features selected by RF over iterations are depicted in figure 7 (B, first row). We 

noticed that the RF picks approximation error feature between iterations 15–30 and line-

noise feature around iteration 15. The V-Factor was selected at iterations above 22. The 

importance factor of features is also investigated in figure 7 (B, second row). It was observed 

that the most important iterations are ε18 − 22, V 28 − 32, and L12 − 16 suggesting that the 

sparse solution is more critical for classification.
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3.3 Spatial Distribution of HFO

After exploring the efficacy of our proposed method using labelled events, we further tested 

this method on continuous iEEG data to see whether removing pseudo-HFOs from the 

pool of events could improve the identification of HFO to SOZ. Figure 8(A) illustrates the 

distribution of HFOs over implanted electrodes for patients 1, 2, 5, and 8 before (upper 

row) and after (lower row) pseudo-HFO removal. The SOZ identified by the epileptologist 

is marked with red arrows for each patient. As shown in figure 8(A), the existence of noises 

and artifacts in the initial pool of HFO might be misleading. The amplitude-threshold-based 

detection results in P-2, 5, and 8 also identified some busy channels out of SOZ, which 

are pseudo-HFOs and removed from the pool of events by using the proposed method. 

Additionally, we demonstrated the changes in SOZ localization accuracy for each subject in 

figure 8(B). P-9 had the lowest improvement accuracy among all these patients with 1.75% 

SOZ localization improvement, while P-15 had the highest with a 37.67% SOZ localization 

improvement.

Across all sixteen subjects, 62.5% (10/16) had busy channels laden with artifacts out of 

SOZ in their initial pool of events. However, most of these pseudo-HFOs were eliminated 

from the pool after applying the proposed method. In the continuous iEEG data, a total of 

171,665 events passed the initial detector. Before the removal of pseudo-HFOs, 57.7% of 

the initially detected events were localized in the SOZ. After applying our method, 34.51% 

(59,242) of events were removed from the initially detected pool. Of these events, 75.6% 

(44,814) were out of the SOZ, and 24.4% (14,428) were from the SOZ. After removing 

pseudo-HFOs, 75.3% (84,630) of the remaining events were in the SOZ. As shown in figure 

8(C), compared to the initial 57.7% accuracy, the proposed method showed a significant 

17.6% improvement in the SOZ localization accuracy (P < 0.001 Wilcoxon signed-rank test).

3.4 HFO Representation and Spatial Distribution of Ripples and Fast Ripples

To assess the SOZ localization accuracy of R and FR separately, those events that are 

classified as real HFOs were further categorized into R and FR groups based on the 

frequency of atoms used in their adaptive representation as described in section 2.2.5. Using 

the adaptive sparse representation, we were able to find all high-frequency components in 

HFOs that pass the initial detector. We then used the highest frequency of the selected atoms 

to create a two-dimensional distribution of events over different frequencies and channels 

(figure 9(A)). Finally, we divided them into two categories (below 250 Hz as R and above 

250 Hz as FR). We have provided the distribution of R and FR events for each subject and 

their SOZ localization accuracy in figure 9. Across all subjects, 24.5% of real HFO events 

were categorized as FR through our adaptive representation approach. In some subjects (P3, 

P-7, P-15, and P16), the number of FR was smaller than 3% of total HFOs (see figure 9(B)) 

and therefore discarded from the SOZ analysis. As shown in figure 9(C), we noticed that 

although the FR rate was noticeably lower than Rs, they were more specific to the SOZ 

channels than the Rs (figure 9(C) and 9(D)). Specifically, SOZ accuracy of Rs (75.23% ± 

16.46) was significantly lower than FRs (82.81% ± 17.24) shown in figure 9(D).
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4. Discussion

Prolonged iEEG recordings obtained in the clinical setting frequently are contaminated with 

different noises and artifacts (7,8,9). Generally, HFO detectors employ either high-pass or 

band-pass filtering. Numerous studies (11,12,13) have shown that sharp artifacts or random 

noise with arbitrary non-sinusoidal waveshape might mimic HFO after high pass filtering. 

To date, most studies on HFOs in epilepsy are based on highly human-intensive methods to 

extract the signals of interest from multichannel iEEG (20). Due to difficulties associated 

with the visual inspection of data over multiple channels and recordings lasting hours to 

days, investigators typically perform dramatic data reduction steps preceding the detailed 

analysis, such as pre-selecting electrodes or limiting the analysis to short segments of iEEG 

without any artifacts. Such data reduction techniques and the complexity associated with 

visual inspection limit the practical use of HFOs in clinical practice.

There is no standardized definition of pseudo-HFO events due to their random origins. They 

vastly differ among recordings due to the distinct data acquisition setting and environmental 

factors causing interference in the assessed signal. Various algorithms have recently been 

introduced to detect different types of pseudo-HFOs in iEEG data. Some of the early work 

utilized the comparison of the power spectrum of the background activity and HFO peak 

frequencies and comparison of HFO with respect to background activity (21). Gliske et al. 
removed non-neural artifacts, including fast transient DC shifts and noise appearing jointly 

across channels (22). Their recent work relied on extracting statistical features and fuzzy 

clustering to detect spurious HFOs (23). They also focused on removing pseudo HFOs 

resulting from EMG artifacts (24), which are biased toward a particular type of noise. 

Recent studies investigated time-frequency analysis of HFOs fused with an unsupervised 

clustering method (14) and convolutional neural network (CNN) (25,26) and reported a 

dramatic increase in HFO identification accuracy compared to straightforward filtering. 

However, in such methods exploring the time-frequency (TF) content of the signal with 

short-time-Fourier-transform, continuous wavelet transforms, or Stockwell transform might 

cause pseudo-HFOs to still remain in the pool of HFO waveforms and affect the SOZ 

localization accuracy. Specifically, in previous publications (27,28,29,30,14), including the 

authors’ own work (14), the real HFO is assumed to be an oscillatory pattern that appears as 

an isolated region in time-frequency representation. However, as we have visualized in Fig. 

4, the non-sinusoidal artifacts might appear as isolated regions in TF maps and frequently 

get classified as true HFOs. During the annotation stage of events, although the TF domain 

representation of some of the artifacts was similar to the real HFOs, we noted that through 

visual inspection of the raw events, human investigators could easily recognize these events 

as artifacts suggesting that waveform morphology plays a critical role. It is likely that during 

mapping the raw 1D signal into a 2D time-frequency map, essential characteristics of the 

signal, such as its morphology, are lost.

This study introduces a novel sparse signal representation approach founded on the 

hypothesis that real HFOs can be represented by a linear weighted combination of a small 

number of oscillatory time-frequency atoms selected from a redundant dictionary. Unlike 

real HFOs, pseudo-HFOs have either an arbitrary nature in the form of white noise or 

are very sharp, which are difficult to represent with a small number of oscillatory bases. 
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Consequently, over several iterations, the approximation error of these events was larger 

than those of real HFOs. Furthermore, we noted that artifacts with sharp spiking transients 

could not be represented locally with our predefined oscillatory Gabor atoms. In those cases, 

where the pseudo-HFOs were represented globally but not locally, their approximation error 

was similar to real HFOs. To overcome this limitation, we introduced the V-Factor, which 

computes the local error ratio to the global error. Therefore, a very localized artifact is 

expected to have a large V-Factor. This feature is particularly good for classifying sharp tiny 

non-oscillatory artifacts that might pass the amplitude-threshold-based detector.

Finally, the idea of reconstructing all initially detected HFOs in an iterative fashion using a 

predefined oscillatory dictionary allowed us to see any monotonic activity such as line noise 

that has a component at either 50 or 60 Hz. Therefore, we could detect corrupted events with 

persistent line noise using the number of selected atoms at a specific frequency (50 or 60 

Hz).

The idea of sparse representation of HFOs was first introduced by Bénar et al. (12). 

However, some challenges restricted them from using the OMP-based sparse representation 

in HFO reconstruction. The main limitation of the process (12) was that one could generally 

control the sparsity levels using two different parameters, including approximation error 

and the number of atoms. Setting both parameters to a fixed number a priori might be 

problematic as, across different subjects, the background noise level might be different, 

and the number of HFO components can also vary. Therefore, in the pseudo vs. real HFO 

discrimination scenario, we let the RF select the most discriminative approximations over 50 

iterations to distinguish between the two classes. We visualized the frequency distribution 

of selected atoms over iterations for each class in figure 7(A). In figure 4 of supplementary 

material, we also visualized the number of selected atoms from low, ripple and fast ripple 

bands. As expected, since the iEEG activity follows 1/f power spectrum, the initial atoms 

were generally selected from the lower frequency (<80Hz). As the iterations increased 

(>10), the atoms were selected not only below but also from frequencies above 80Hz for the 

real-HFO events. Although rare, for the pseudo-HFO events, atoms above 80Hz were used 

within the first 5–10 iterations. But once again, the initial atoms were generally selected 

from a frequency range below 80Hz. As the high frequency components vary from event to 

event (and also from subject to subject) in real-HFO category, no particular frequency above 

80Hz was a clear determinant in discrimination. Therefore, we extracted the approximation 

error and V-factor as features without having any bias to the frequency of the selected 

dictionary atoms. We also observed that the approximation error between iterations 15–

30 are the most important features (see figure 7(B)). As we expected, because of the 

concentration of energy in low band in raw iEEG, the OMP method starts to reconstruct 

components with higher energy in the low band first. As we move to the higher iterations, 

the algorithm starts to pick higher frequencies. As we showed in Figure 7(B), the sweet-spot 

for approximation error is between iterations 15–30, for V-factor after iteration 20, and line 

noise feature between iteration 10–15. These iterations generally correspond to the stage 

when the OMP method starts to represent the high frequency component of the events.

The evaluation of classification accuracy of real and pseudo-HFOs recorded from 

different types of electrodes shows no significant difference between these two electrodes 
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(supplementary table 3). The result confirms that the proposed method is not biased towards 

one type of electrode over another.

Later, in order to further categorize real HFOs into Rs and FRs, we defined a new adaptive 

solution (see figure 3) to reconstruct each event as long as the residual signal passed the 

initial amplitude-based detector in the R and FR range over iterations. We used the highest 

frequency indices of selected atoms to assign an event into the R and FR categories. It 

should be noted that by using a fixed level (either approximation error or the number 

of approximations) to control sparsity level, one might either fit the background noise 

by using unnecessary atoms residing in the R or FR range or might use an insufficient 

number of atoms to reconstruct the R or FR component(s). However, our sparse/regenerative 

solution made it possible to use different numbers of atoms for different events and 

prevent overfitting the background noise. Furthermore, it was shown that, regardless of 

the existence of wideband HFOs, the solution to reconstruct high-frequency bands is sparse 

(supplementary figure 4 (B)). By inspecting the frequency content of the selected atoms, we 

could further categorize real HFOs as R and the FR events. We noticed that although the FR 

rate is lower than the R, the SOZ localization accuracy of FRs was significantly higher than 

the Rs.

The computational time for the whole process shows this method is also fast enough (0.09 

s per event) to be applied for prolonged iEEG data (more information regarding the mean 

computational time exists in supplementary table 2).

Although the specificity of HFO to SOZ is critical, the type of surgical procedure and 

post-surgical outcome are important endpoints in HFO related studies. Out of 16 patients 

used in this study, 2 of them did not proceed with any surgical intervention (P5, and P9). Out 

of the remaining 14 patients, 10 of them had Engel class 1, 3 with Engel class 2, and 1 with 

Engel class 3 (supplementary table 1). In P10 and P13, RNS (responsive neurostimulation) 

was used as surgical therapy (Engel class 2 and 3 respectively). In all other cases, surgical 

therapy was the resection of electrode sites at target regions. A complete statistical analysis 

of the remaining HFOs in resection volume is proposed in supplementary figure 5. In all 

cases, the proposed method improves the localization of resected region of brain except P16. 

However, evaluation of the raw iEEG of P16 reveals that this subject had a noisy recording 

with only a small amount of non-artifact laden iEEG recording available at the selected 

interictal periods from the electrodes of concern. Thus, the percentage of HFOs falling into 

the resection volume of these subjects decreased (from 67.75% to 64.73%) after applying 

the proposed method.

5. Conclusion

This study introduces a sparse signal representation-based approach to detect the pseudo-

HFO events in long-term iEEG recordings. Instead of biasing toward a specific type of noise 

or using conventional time-frequency features, we show that real HFOs, unlike pseudo-

HFOs, can be represented with a limited number of oscillatory components. The algorithm 

successfully discriminated real from pseudo-HFOs with an accuracy of 96.65% and further 
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classified real HFOs into R and FR categories using an adaptive sparse representation 

strategy.

Compared to our previous work (14), the proposed sparse method surpassed the STFT-

GMM fusion in classification accuracy (96.65% vs. 80.09% respectively) for two reasons: 

First, the STFT-GMM uses the time-frequency plane features that are blinded to the 

waveform morphology. Moreover, the GMM process is an unsupervised clustering method. 

In other words, GMM requires large data for the reliable estimation of the density/

distribution of clusters in an automated fashion. If the fraction of pseudo-HFOs vs. real 

HFOs is small, then captured pseudo-HFO events might be insufficient to form a cluster and 

could get merged with real HFOs.

One of the limitations of this work is the lack of physiological and pathological HFO 

discrimination using sparse representation. Earlier work showed that HFOs could also be 

found in the healthy brain (31,32,33,34). These oscillatory events, so-called physiological 

HFOs, are generated in functional tissue and might be confused with epileptogenic HFO 

so-called pathological HFO. Although different studies have been performed to understand 

the mechanism of physiological HFOs (35,36,37) and the differences between pathological 

and physiological oscillations (34,38,39,40,41,42,43,44), the complete answer is lacking, 

and this topic is still an open question for further research. One suggestion is to detect 

stereotypical HFOs (39) as pathological events. However, the purpose of this study is to 

remove pseudo-HFOs, and we did not focus on the discrimination of physiological and 

pathological HFOs.

Moreover, one of the limitations of the study is that since we employed a binary 

classification scheme, all events including ambiguous ones are mapped either to the real 

or pseudo-HFO categories by RF model. In a future work, rather than being binary, the 

inter-rater variability can be incorporated into the study and one can assign a variable that 

represents the confidence of the experts with their annotation and the model might produce 

a decision that associated with the probability of an event being a real or pseudo-HFO. 

This can be helpful to see the difference between more obvious pseudo-HFO examples and 

difficult ones.

Finally, a future application of this study could be to extend the analysis to the iEEG 

recorded in the operating room during electrode implantation. Due to the existence of 

different devices in surgery, data recorded intraoperatively might be corrupted with a 

massive amount of noise and artifacts. Since there is no need to wait for the accumulation of 

a large number of events to build clusters as in Liu et al. (14) work, this new sparse method 

can be executed in a real-time fashion intraoperatively over brief recording periods towards 

early detection of the SOZ before the prolonged monitoring.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic diagram of the proposed method. (A) The raw iEEG data first goes into the 

amplitude-threshold-based HFO detector which implements sub-band filtering (in ripple and 

fast ripple bands separately). The raw event will be captured if the HFO detector accepts 

that event and it will be placed into the initial pool of HFOs including both real and pseudo-

ones. (B) All initially detected events enter the OMP algorithm, and they are reconstructed 

using the oscillatory atoms selected from a redundant multi-resolution dictionary. Features 

(ε, V , …) are extracted at each iteration of this representation process from the residual signal 

and the selected atoms. (C) The binary classification is performed using a random forest 

classifier, and the pseudo-HFOs (red) are eliminated from the pool of candidate events.
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Figure 2. 
Section (A) shows examples of analytical dictionary atoms and their corresponding Wigner-

Ville transform. Line 1–5 represents the different dyadic dictionary (σ = 2−j  starting from 

j = 4 to j = 0. Section (B) represents an HFO atom with different shifts in our dictionary. 

(C) A schematic description of sparse representation using the Gabor atoms in dictionary. 

The HFO event y is represented by the combination of a small number of dictionary 

atoms where their indices are coded in sparse vector α. The nonzero entries are marked by 

black rectangles, while white rectangles present the zero coefficient. The residual signal is 

represented with r.
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Figure 3. 
The schematic diagram of HFO representation using the OMP procedure. (A) The HFO 

event divides into two different bands: ripple band (80:250 Hz) and fast ripple band 

(250:600 Hz). We reconstruct the ripple and fast ripple waveforms separately using adaptive 

sparse representation (gray box). Finally, we find the reconstructed HFO events by merging 

these two waveforms. (B) Adaptive sparse representation: The HFO waveforms (R and FR 

bands) go through a regenerative process to find the real HFO components. We continue 

to reconstruct these filtered bandpass events as long as the residual waveform satisfies the 

amplitude-threshold-detector’s constraints. The outputs of this box are the reconstructed 

waveform and the frequency of atoms used in the reconstruction process. The highest 

frequency of selected atoms will be used to divide the HFO events into the Rs and FRs.
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Figure 4. 
Real HFO and pseudo-HFO/artifacts in an iEEG recording. (A) Black waveforms: 

continuous iEEG recording, grey waveform: continuous filtered data above 80 Hz, blue 

events: real HFO events, red events: pseudo-HFO events. (B, C) Examples of events 

captured by the initial HFO detector are shown in this figure. For each one, the raw event 

(black waveform), filtered event above 80 Hz (red waveform) using a 4th order Butterworth 

high pass filter, and the short-time-Fourier-transform of the raw event are shown.
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Figure 5. 
Illustration of extracted features for HFO (A) and pseudo-HFO (B) examples with their 

corresponding residual signal at different iterations (6, 8, 10, and 20) and the extracted 

approximation error, V-Factor features at iteration 1–50. (C) The shaded plot of the 

approximation error for P10 and P3. (D) The shaded plot of V-Factor for P4 and P6. In 

P3 and P10, approximation error is an important feature to distinguish between HFO and 

pseudo-HFO, while in P4 and P6, the V-Factor is a critical feature for classification. (E) 

The shaded plot of approximation error and V-Factor across all subjects at different sparsity 
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levels. (F) Area under the curve (AUC) values of the approximation error, V-Factor, and line 

noise at different sparsity levels.
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Figure 6. 
(A) Comparison of the proposed method with STFT-GMM published by Liu et al (14), 

STFT-RF which is using RF classifier, and discrete cosine transform reconstruction. The 

proposed method had 96.65% classification accuracy, while the DCT-RF, STFT-RF, and 

GMM-STFT had 93.53%, 82.29%, and 80.08% classification accuracy, respectively. (B) 

Classification accuracy of HFO events (top) classification accuracy of pseudo-HFO events 

(bottom) across subjects. (C) Boxplot of the overall accuracy of different methods (all tests: 

p-value<0.001, Wilcoxon signed-rank test, *** indicates the significance level p<0.001).
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Figure 7. 
(A) the frequency of selected atoms by OMP over iterations. (B, first row) Selected features 

by the random forest classifier for the discrimination of real vs. pseudo-HFOs over 50 

iterations. The indices of selected features (x-axis) and their corresponding thresholds (y-

axis) are shown for approximation error (ε), variation factor (V ) and line noise (L). This 

figure illustrated the sparsity of approximation error and line noise features. (B, second row) 

The importance factor of each feature: Each figure represents the importance factor of one 

feature, i.e., approximation error, V-Factor, and line noise accordingly.
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Figure 8. 
(A) Spatial distribution of HFO before and after noise/pseudo-HFO removal using the 

proposed method. The first row of each figure represents the distribution of HFO detected 

by the initial detector. The second row represents the distribution of remaining events after 

the second step pseudo-HFO removal using the proposed method. For each patient, SOZ 

channels were pointed with a red arrow and resected volume (in case that patient went 

through the second surgery) represented by red dot-dashed boxes. HFO coming from each 

channel was color-coded based on the maximum amount of HFO from a single channel. 
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Channel labels (abbreviation) are noted beneath each subplot. (B) SOZ improvement across 

all subjects. The blue bar represents the SOZ accuracy of the HFO detector, and the 

added orange bar shows the improvement is obtained after pseudo-HFO removal using the 

proposed method. (C) Boxplot of the SOZ localization accuracy before and after using the 

proposed method. There is a significant improvement in SOZ accuracy across all subjects 

(p-value<0.001, Wilcoxon signed-rank test, *** indicates the significance level p<0.001).
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Figure 9. 
(A) 2-Dimensional histogram of highest frequency components detected in HFOs passed the 

algorithm over channels. First column shows the distribution of HFO for P-4 and second 

column shows the distribution of P9. For each patient, SOZ channels were pointed with a red 

arrow. (B) The percentage of Rs and FRs in each patient. This bar plot shows that compared 

to Rs, FRs are more scarce events in iEEG recording, and in some cases, they might be 

smaller than 3% of the total events (P3, P7, P15, P16). (C) Bar plot of SOZ accuracy across 

each subject. As P3, P7, P15, and P16 did not have a sufficient amount of fast ripple, i.e., 

smaller than 3% of the total number of events, we removed them from the analysis. (D) 

Delineation of R and FR to SOZ localization (p-value<0.05 Wilcoxon signed-rank test, * 

indicates the significance level 0.01<p<0.05).
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