
Self-Supervised Learning of Graph Neural Networks: A Unified 
Review

Yaochen Xie,
Department of Computer Science & Engineering, Texas A&M University, College Station, TX 
77843

Zhao Xu,
Department of Computer Science & Engineering, Texas A&M University, College Station, TX 
77843

Jingtun Zhang,
Department of Computer Science & Engineering, Texas A&M University, College Station, TX 
77843

Zhengyang Wang,
Amazon.com Services LLC, Seattle, WA 98109

Shuiwang Ji [Senior Member, IEEE]
Department of Computer Science & Engineering, Texas A&M University, College Station, TX 
77843

Abstract

Deep models trained in supervised mode have achieved remarkable success on a variety of 

tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new 

paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising 

performance on natural language and image learning tasks. Recently, there is a trend to extend 

such success to graph data using graph neural networks (GNNs). In this survey, we provide 

a unified review of different ways of training GNNs using SSL. Specifically, we categorize 

SSL methods into contrastive and predictive models. In either category, we provide a unified 

framework for methods as well as how these methods differ in each component under the 

framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and 

differences of various methods, setting the stage for developing new methods and algorithms. 

We also summarize different SSL settings and the corresponding datasets used in each setting. 

To facilitate methodological development and empirical comparison, we develop a standardized 

testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and 

evaluation metrics.

ethanycx@tamu.edu . 

HHS Public Access
Author manuscript
IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 
01.

Published in final edited form as:
IEEE Trans Pattern Anal Mach Intell. 2023 February ; 45(2): 2412–2429. doi:10.1109/
TPAMI.2022.3170559.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Self-supervised learning; graph neural networks; deep learning; unsupervised learning; graph 
analysis; survey; review

1 Introduction

A Deep model takes some data as its inputs and is trained to output desired predictions. 

A common way to train a deep model is to use the supervised mode in which a sufficient 

amount of input data and label pairs are given. However, since a large number of labels 

are required, the supervised training becomes inapplicable in many real-world scenarios, 

where labels are expensive, limited, imbalanced [1], or even unavailable. In such cases, self-

supervised learning (SSL) enables the training of deep models on unlabeled data, removing 

the need of excessive annotated labels. When no labeled data is available, SSL serves as 

an approach to learn representations from unlabeled data itself. When a limited number 

of labeled data is available, SSL from unlabeled data can be used either as a pre-training 

process after which labeled data are used to fine-tune the pre-trained deep models for 

downstream tasks, or as an auxiliary training task that contributes to the performance of 

main tasks.

Recently, SSL has shown its promising capability in data restoration tasks, such as image 

super-resolution [2], image denoising [3, 4, 5], and single-cell analysis [6]. It has also 

achieved remarkable progress in representation learning for different data types, including 

language sequences [7, 8, 9], images [10, 11, 12, 13], and graphs with sequence models 

[14, 15] or spectral models [16]. The key idea of these methods is to define pretext training 

tasks to capture and use the dependencies among different dimensions of the input data, e.g., 
the spatial, temporal, or channel dimensions, with robustness and smoothness. Taking the 

image domain as an example, Doersch et al. [17], Noroozi and Favaro [18], and He et al. 

[19] design different pretext tasks to train convolutional neural networks (CNNs) to capture 

relationships between different crops from an image. Chen et al. [11] and Grill et al. [20] 

train CNNs to capture dependencies between different augmentations of an image.

Based on how the pretext training tasks are designed, SSL methods can be divided into 

two categories; namely contrastive models and predictive models. The major difference 

between the two categories is that contrastive models require data-data pairs for training, 

while predictive models require data-label pairs, where the labels are self-generated from 

the data, as illustrated in Figure 1. Contrastive models usually utilize self-supervision to 

learn data representation or perform pre-training for downstream tasks. Given the data-data 

pairs, contrastive models perform discrimination between positive pairs and negative pairs. 

On the other hand, predictive models are trained in a supervised fashion, where the labels 

are generated based on certain properties of the input data or by selecting certain parts of 

the data. Predictive models usually consist of an encoder and one or more prediction heads. 

When applied as a representation learning or pre-training method, the prediction heads of a 

predictive model are removed in the downstream task.

Xie et al. Page 2

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In graph data analysis, SSL can potentially be of great importance to make use of a massive 

amount of unlabeled graphs such as molecular graphs [21, 22]. With the rapid development 

of graph neural networks (GNNs) [23, 24, 25, 26, 27, 28, 29], basic components of GNNs 

[30, 31, 32, 33, 34, 35] and other related fields [36, 37] have been well studied and made 

substantial progress. In comparison, applying SSL on GNNs is still an emerging field. 

Due to the similarity in data structure, many SSL methods for GNNs are inspired by 

methods in the image domain, such as DGI [38] and graph autoencoders [39]. However, 

there are several key challenges in applying SSL on GNNs due to the uniqueness of 

the graph-structured data. To obtain good representations of graphs and perform effective 

pre-training, self-supervised models are supposed to capture essential information from both 

nodes attributes and structural topology of graphs [40]. For contrastive models, as the GPU 

memory issue of performing self-supervised learning is not a major concern for graphs, 

the key challenge lies in how to obtain good views of graphs and the selection of graph 

encoder for different models and datasets. For predictive models, it becomes essential that 

what labels should be generated so that the non-trivial representations are learned to capture 

information in both node attributes and graph structures.

To foster methodological development and facilitate empirical comparison, we review SSL 

methods of GNNs and provide unified views for both contrastive and predictive methods. 

Our unified treatment of this topic may shed light on the similarities and differences among 

current methods and inspire new methods. We also provide a standardized testbed as a 

convenient and flexible open-source platform for performing empirical comparisons. We 

summarize the contributions of this survey as follows:

• We provide thorough and up-to-date reviews on SSL methods for graph neural 

networks. To the best of our knowledge, our survey presents the first review of 

SSL specifically on graph data.

• We unify existing contrastive learning methods for GNNs with a general 

framework. Specifically, we unify the contrastive objectives from the perspective 

of mutual information. From this fresh view, different ways to perform 

contrastive learning can be considered as performing three transformations to 

obtain views. We review theoretical and empirical studies and provide insights to 

guide the choice of each component in the framework.

• We categorize and unify SSL methods with self-generated labels as predictive 

learning methods, and elucidate their connections and differences by different 

ways of obtaining labels.

• We summarize common settings of SSL tasks and commonly used datasets of 

various categories under different settings, setting the stage for developments of 

future methods.

• We develop a standardized testbed for applying SSL on GNNs, including 

implementations of common baseline methods and benchmarks, enabling 

convenient and flexible customization for future methods.

An overview of self-supervised learning methods of different categories is given in Figure 2.

Xie et al. Page 3

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A recent work [62] provides thorough and general literature reviews on self-supervised 

learning for vision, natural language processing, and graph mining tasks. While both 

[62] and our work review SSL methods as contrastive ones and non-contrastive ones, we 

distinguish our reviews from [62] by the following distinct differences.

• Liu et al. [62] and our paper propose different taxonomies for SSL methods 

from different aspects of view. Specifically, [62] categorizes contrastive methods 

by the levels of contrast such as instance-instance and context-instance, where 

mutual-information is considered as one specific subcategory at the context-

instance level. In contrast, our taxonomy provides a more unified view and 

framework from the theoretical grounding of the methods. Specifically, in our 

work, all contrastive methods are theoretically grounded by mutual information 

maximization, and the contrastive objectives are different upper bounds or 

estimators of mutual information. In our framework, different levels of contrast 

are determined by how views are selected or generated. We believe that the more 

unified view enables a more clear comparison and insightful understanding of 

commons and differences among SSL methods.

• Though adapted to graphs, the taxonomy proposed by [62] is mostly oriented 

by SSL methods for images. While SSL for graphs and images share some 

connections and similarities, there are remarkable differences between specific 

methods for the two types of data and some categorizations of images do not 

apply to graphs. For example, the relative position and the cluster discrimination 

methods categorized by [62] are image-specific contrastive methods and do 

not apply to graphs whereas view generation approaches for graphs and graph-

specific predictive tasks are not discussed in [62]. Therefore, graph-specific SSL 

reviews such as ours are important and necessary for a better understanding of 

existing methods and benefit future studies.

Recently, another concurrent survey [63] provides reviews on SSL methods for GNNs. The 

work proposes a taxonomy with more subdivided categories including generation-based, 

auxiliary property-based, contrastive-based, and hybrid methods. While [63] aims to provide 

better coverage on existing SSL methods for review, our work focuses on providing a more 

timely and unified review under comparable frameworks and provide insights into future 

SSL studies.

2 Problem Formulation

2.1 Notations

We consider an attributed undirected graph G = (V, E, α), where V = {v1, ·· ··,v|V|} denotes 

the set of its nodes, E = {e1 · · ·,e|E|} denotes the set of its edges and α:V ℝd denotes the 

mapping from a node to its attributes of d dimensions. We denote the adjacency matrix of 

G by A ∈ ℝ|V | × |V |, where Aij = 1 vi, vj ∈ E  for 1 ≤ i, j ≤ |V|, and denote the feature matrix 

of G by X ∈ ℝ|V | × d, where the i-th row Xi = α(vi) for 1 ≤ i ≤ |V|. A heterogeneous graph 

additionally includes elements ϕ: V → Tn that maps a node to a node type in Tn and ψ : E 
→ Te that maps an edge to an edge type in Te.

Xie et al. Page 4

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given the graph data (A, X) from the input space G, we are interested in the representation 

of the graph at either node-level or graph-level for any downstream prediction tasks. In 

general, we want to learn an encoder f such that the representation H = f(A, X) can achieve 

desired performance on a downstream prediction task. For node-level prediction tasks, we 

learn a node-level encoder fn:ℝ|V | × |V | × ℝ|V | × d ℝ|V | × q that takes the graph data (A, X) as 

inputs and computes the representations for all nodes Hnode = fnode(A, X) ∈ ℝ|V | × q. For graph-

level prediction tasks, we learn a graph-level encoder fg:ℝ|V | × |V | × ℝ|V | × d ℝq that computes 

a single vector hgrapℎ = fgrapℎ(A, X) ∈ ℝq as the representation of the given graph. Practically, 

graph-level encoders are usually constructed as a node-level encoder followed by a readout 

function. In many cases, a model for node-level representation learning may also be utilized 

to compute graph-level representations by adding an appropriate readout function, and vice 
versa (by removing the readout function).

We let P denote the distribution of unlabeled graphs over the input space G. Given a 

training dataset, the distribution P can be simply constructed as the uniform distribution 

over samples in the dataset. The self-supervision can contribute to the learning of graph 

encoders f by utilizing information from P and minimizing a self-supervised loss ℒssl(f, P)
determined by a specifically designed self-supervised learning task.

2.2 Paradigms for Self-Supervised Learning

Typical training paradigms to apply the self-supervision include unsupervised representation 

learning, unsupervised pretraining, and auxiliary learning.

In unsupervised representation learning, only the distribution P of unlabeled graphs is 

available for the entire training process. The problem of learning the representation of a 

given graph data (A, X) P is formulated as

f* = arg min
f

ℒssl(f, P), (1)

H* = f*(A, X) . (2)

The learned representations H* are then used in further downstream tasks such as linear 

classification and clustering.

The unsupervised pretraining, also dubbed the decoupled training by Wang et al. [64], is 

usually performed as a two-stage training [65]. It first trains the encoder f with unlabeled 

graphs. The pre-trained encoder finit is then used as the initialization of the encoder in a 

supervised fine-tuning stage. Formally, in addition to the distribution P, the learner further 

gains access to a distribution P of labeled, graphs over G × Y, where Y denotes the 

label space. Again, given the labeled training dataset, P can be simply constructed as the 

uniform distribution over labeled samples in the dataset. The pretrained encoder finit is then 

fine-tuned on P, together with a prediction head h s.t. ℎ(f(A, X)) ∈ Y and a supervised loss 

ℒsup, i.e.,

Xie et al. Page 5

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f*, ℎ* = arg min
(f, ℎ)

ℒsup(f, ℎ, P), (3)

with initialization

finit = arg min
f

ℒssl(f, P) . (4)

The unsupervised pretraining and supervised finetuning paradigm is considered as the most 

strategy to perform semi-supervised learning and transfer learning. For semi-supervised 

learning, the labeled graphs in the finetuning dataset is a portion of the pretraining dataset. 

For transfer learning, the pretraining and finetuning datasets are from different domains. 

Note that a similar learning setting called unsupervised domain adaptation has also been 

studied generally [66] or specifically in the image domain [67], where the encoder is 

pre-trained on labeled data but finetuned on unlabeled data under self-supervision. Since the 

paradigm is not specifically studied in the graph domain, we do not discuss the learning 

setting in detail in this survey.

The auxiliary learning, also known as joint training [65], aims to improve the performance 

of a supervised primary learning task by including an auxiliary task under self-supervision. 

Formally, we let Q denote the joint distribution of graph data and labels for the primary 

learning task and P denote the marginal of graph data. We want to learn both the decoder f 
and the prediction head h, where h is trained under supervision on Q and f is trained under 

both supervision and self-supervision on P. The learning problem is formulated as

f*, ℎ* = arg min
(f, ℎ)

ℒsup(f, ℎ, Q) + λℒssl(f, P), (5)

where λ is a positive scalar weight that balances the two terms in the loss.

3 Contrastive Learning

The study of contrastive learning has made significant progress in natural language 

processing and computer vision. Inspired by the success of contrastive learning in images, 

recent studies propose similar contrastive frameworks to enable self-supervised training 

on graph data. Given training graphs, contrastive learning aims to learn one or more 

encoders such that representations of similar graph instances agree with each other, and 

that representations of dissimilar graph instances disagree with each other. We unify existing 

approaches to constructing contrastive learning tasks into a general framework that learns to 

discriminate jointly sampled view pairs (e.g. two views belonging to the same instance) from 

independently sampled view pairs (e.g. views belonging to different instances). In particular, 

we obtain multiple views from each graph in the training dataset by applying different 

transformations. Two views generated from the same instance are usually considered as a 

positive pair and two views generated from different instances are considered as a negative 

pair. The agreement is usually measured by metrics related to the mutual information 

between two representations.

Xie et al. Page 6

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One major difference among graph contrastive learning methods lies in (a) the objective 

for discrimination task given view representations. In addition, due to the unique data 

structure of graphs, graph contrastive learning methods also differ in (b) approaches that 

views are obtained, and (c) graph encoders that compute the representations of views. 

A graph contrastive learning method can be determined by specifying its components 

(a)–(c). In this section, we summarize graph contrastive learning methods in a unified 

framework and then introduce (a) and (b) individually used in existing studies. In Appendix 

C, we introduce graph neural networks specifically adopted in contrastive learning as graph 

encoders and provide further comparisons and discussions on their effects in contrastive 

learning. Moreover, we summarize all contrastive methods being reviewed by this survey in 

Supplementary Table 1 for more clear comparisons.

3.1 Overview of Contrastive Learning Framework

In general, key components that specify a contrastive learning framework include 

transformations that compute multiple views from each given graph, encoders that compute 

the representation for each view, and the learning objective to optimize parameters in 

encoders. An overview of the framework is shown in Figure 4. Concretely, given a graph (A, 
X) as a random variable distributed from P, multiple transformations T1, ⋯, Tk are applied 

to obtain different views w1, ···, wk of the graph. Then, a set of encoding networks f1, ···, 

fk take corresponding views as their inputs and output the representations h1, ···, hk of the 

graph from each views. Formally, we have

wi = Ti(A, X), (6)

hi = fi wi , i = 1, ⋯, k . (7)

We assume wi = (Ai, Xi) = Ti(A, X) in this survey since existing contrastive methods consider 

their views as graphs. However, note that not all views wi are necessarily graphs or sub-

graphs in a general sense. In addition, certain encoders can be identical to each other or 

share their weights.

During training, the contrastive objective aims to train encoders to maximize the agreement 

between view representations computed from the same graph instance. The agreement is 

usually measured by the mutual information ℐ hi, hj  between a pair of representations hi 

and hj. We formalize the contrastive objective as

max
fi i = 1

k

1
∑i ≠ j σij

∑
i ≠ j

σijℐ hi, hj , (8)

Where σij ∈ {0, 1}, and σij = 1 if the mutual information is computed between hi and hj, 

and σij = 0 otherwise, and hi and hj are considered as two random variables belonging to 

either a joint distribution or the product of two marginals. To enable efficient computation 

of the mutual information, certain estimators ℐ of the mutual information are usually used 

instead as the learning objective. Note that some contrastive methods apply projection heads 

Xie et al. Page 7

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[10, 49] to the representations. For the sake of uniformity, we consider such projection heads 

as parts of the computation in the mutual information estimation.

During inference, one can either use a single trained encoder to compute the representation 

or a combination of multiple view representations such as the linear combination or the 

concatenation as the final representation of a given graph. Three examples of using encoders 

in different ways during inference are illustrated in Figure 5.

3.2 Contrastive Objectives based on MI Estimations

Given a pair of random variables (x, y), the mutual information ℐ(x, y) measures the 

information that x and y share, given by

ℐ(x, y) = DKL(p(x, y) p(x)p(y)) (9)

= Ep(x, y) log p(x, y)
p(x)p(y) , (10)

where DKL denotes the Kullback-Leibler (KL) divergence. The contrastive learning seeks to 

maximize the mutual information between two views as two random variables. In particular, 

it trains the encoders to be contrastive between representations of a positive pair of views 

that comes from the joint distribution p(vi, vj) and representations of a negative pair of views 

that comes from the product of marginals p(vi)p(vj).

In order to computationally estimate and maximize the mutual information in the contrastive 

learning, three typical lower-bounds to the mutual information are derived [68], namely, the 

Donsker-Varadhan representation ℐ(DV )
 [69, 70], the Jensen-Shannon estimator ℐ(JS)

 [71] and 

the noise-contrastive estimation ℐ(NCE)
 (InfoNCE) [12, 72]. Among the three lower-bounds, 

ℐ(JS)
 and ℐ(NCE)

 are commonly used as objectives [10, 38, 41, 49] in the contrastive learning 

in graphs.

A mutual information estimation is usually computed based on a discriminator 

D:ℝq × ℝq ℝ that maps the representations of two views to an agreement score between 

the two representations. The discriminator D can be either parametric or non-parametric. 

For example, the discriminator can optionally apply a set of projection heads [10, 49] to 

the representations h1, ···, hk before computing the pairwise similarity. We formalize the 

optional projection heads as g1, ···, gk such that

zi = gi hi , i = 1, ⋯, k, (11)

where gi can be an identical mapping, a linear projection or an MLP. Parameterized gi are 

optimized simultaneously with the encoders fi in Eqn. (8), given by

max
fi, gi i = 1

k

1
∑i ≠ j σij

∑
i ≠ j

σijℐgi, gj hi, hj , (12)

Xie et al. Page 8

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In following subsections, we introduce the three lower bounds as specific estimations of 

mutual information and a non-bound estimation of mutual information. We further compare 

and discuss the effect of different MI estimations in contrastive learning in Appendix D.

3.2.1 Donsker-Varadhan Estimator—The Donsker-Varadhan (DV) estimator, also 

knwon as the DV representation of the KL divergence, is a lower-bound to the mutual 

information and hence can be applied to maximize the mutual information. Given hi and hj, 

the lower-bound is computed as

ℐ(DV ) hi, hj = Ep hi, hj D hi, hj

−logEp hi p hj eD hi, hj ,
(13)

where p(hi, hj) denotes the joint distribution of the two representations hi, hj and p(hi)p(hj) 

denotes the product of marginals. For simplicity and to include the graph data distribution 

P, we assume transformations Ti to be deterministic and encoders fi to be injective, and 

have p hi, hj = p hi p hj ∣ hi = p fi Ti(A, X) p fj Tj(A, X) ∣ (A, X)  We hence re-write Eqn. 

(13) as

ℐ(DV ) hi, hj = E(A, X) P D hi, hj

−logE (A, X), A′, X′ P × P eD hi, hj′ ,
(14)

where hi and hj in the first term are computed from (A, X) distributed from P, hi and hj
′

in the second term are computed from (A, X) and (A′, X′) identically and independently 

distributed from P, respectively. In following formulations, we use the later notation 

includes P.

3.2.2 Jensen-Shannon Estimator—Compared to the Donsker-Varadhan estimator, 

the Jensen-Shannon (JS) estimator enables more efficient estimation and optimization of the 

mutual information by computing the JS-divergence between the joint distribution and the 

product of marginals.

Given two representations hi and hj computed from the random variable (A, X) and a 

discriminator D, DGI [38], InfoGraph [41], Hu et al. [43] and MVGRL [10] computes the 

JS estimator

ℐ(JS) hi, hj = E(A, X) P log D hi, hj +
E (A, X), A′, X′ P × P log(1 − D(hi, hj

′)) ,
(15)

where hi, hj in the first term are computed from (A, X) distributed from P, hi and hj
′ in 

the second term are computed from (A, X) and (A′, X′) identically and independently 

distributed from the distribution P. To further include edge features, Peng et al. [42] derives 

the graphic mutual information (GMI) based on MI decomposition and optimizes GMI via 

JS estimator. Note that [41] and [10] depict a softplus version of the JS estimator,

Xie et al. Page 9

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℐ(JS − SP ) hi, hℎ = E(A, X) P[−sp(−D′ hi, hj))] −
E (A, X), A′, X′ P × P[sp(D′(hi, hj

′))],
(16)

where sp(x) = log(1 + ex). We consider the JS estimators in Eqn. (15) and Eqn. (16) to be 

equivalent by letting D hi, hj = sigmoid D′ hi, hj .

For the the negative pairs of graphs (A, X), A′, X′ P × P in particular, DGI [38] 

samples one graph (A, X) from the training dataset and applies a stochastic corruption 

C to obtain A′, X′ = C(A, X). For node-level tasks, MVGRL [10] follows DGI to 

obtain negative samples by corrupting given graphs. InfoGraph [41] independently 

samples two graphs from the training dataset as a negative pair, which is followed 

by MVGRL for graph-level tasks. Discriminators in JS estimators usually compute 

the agreement score between two vectors by their inner product with sigmoid, i.e., 

D hi, hj = sigmoid zi
Tzj = sigmoid(gi hi

Tgj hj ).

3.2.3 InfoNCE—InfoNCE ℐ(NCE)
 is another lower-bound to the mutual information ℐ. 

It is shown by You et al. [49] that maximizing InfoNCE it equivalent to maximizing the 

Donsker-Varadhan estimator. Given the representations hi and hj of two views of random 

variable (A, X), the discriminator D, and the number of negative samples N, the InfoNCE is 

formalized as

ℐ(NCE) hi, hj = E(A, X) P D hi, hj −

EK PN log ∑
A′, X′ ∈ K

eD hi, hj′ /N (A, X)

= E[(A, X), K] P × PN log eD hi, hj

∑ A′, X′ ∈ K eD hi, hj′

+logN,

(17)

where K consists of N random variables identically and independently distributed from P, 

hi, hj are the representations of the i-th and j-th views of (A, X), and hj
′ is the representation 

of the j-th view of (A′, X′)

In practice, we compute the InfoNCE on mini-batches of size N + 1. For each sample x in a 

mini-batch B, we consider the set of the rest N samples as a sample of K. We then discard 

the constant term log N in Eqn. (17) and minimize the loss

ℒInfoNCE = − 1
N + 1 ∑

x ∈ B
log eD hi, hj

∑x′ ∈ B\ x eD hi, hj′
. (18)

Intuitively, the optimization of InfoNCE loss aims to score the agreement between hi and hj 

of views from the same instance x higher than between hi and hj
′ from the rest N negative 

samples B \ {x}. GraphCL [49] and GRACE [46] include additional contrast among 

Xie et al. Page 10

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the same view of different instances (i.e., hi and hj
′) or different nodes in the same view 

(intra-view contrast [46]), leading to the optimization of lower bounds of InfoNCE, which 

are still lower bounds of MI.

Discriminators in typical InfoNCE compute the agreement score between two vectors by 

their inner product, i.e., D hi, hj = zi
Tzj = gi hi

Tgj hj . A specific type of the InfoNCE loss, 

known as the NT-Xent [73] loss, includes normalization and a preset temperature parameter 

τ in the computation of discriminator D in the InfoNCE loss, i.e., D hi, hj = gi hi
Tgj hj /τ. 

The discriminator in You et al. [49] computes the agreement score between vectors with 

normalizations, i.e., D hi, hj = gi(hi)Tgj(hj)/τ
gi(hi) gj(hj) , where ‖·‖denotes the ℓ2-norm.

3.2.4 Other Mutual Information Estimators—There are other objectives that have 

been used in some studies, and optimizing these objectives can also encourage higher mutual 

information. Although the objectives differ from the above upper bound MI estimators

However, these objectives may not be provable lower-bounds to the mutual information, and 

optimizing these objectives does not guarantee the maximization of the mutual information.

For example, Jiao et al. [44] proposes to minimize the triplet margin loss [74], which 

is commonly used in deep metric learning [75]. Given representations hi, hj and the 

discriminator D, the triplet margin loss is formalized as

ℒtriplet = E (A, X), A′, X′ P × P max D hi, hj

−D(hi, hj
′) + ϵ, 0} ,

(19)

where D(hi, hj) is computed as sigmoid (hi
Thj) or based on the Euclidean distance ‖hi − 

hj‖ and ϵ is the margin value. While the triplet loss differs from previous MI-based 

objectives in formulations, Khosla et al. [76] show that the triplet loss is a special case 

of the InfoNCE (NT-Xent) loss when there is only one negative sample where the margin 

value ϵ corresponds to the temperature parameter τ in NT-Xent. Moreover, the Bayesian 
Personalized Ranking (BPR) loss [77] used in Jiao et al. [44] is also equivalent to the 

InfoNCE loss when letting N = 1 and D hi, hj = hi
Thj.

3.2.5 Projection Heads: Parametric MI Estimation—Many contrastive learning 

studies [10, 41, 49] propose to include projection heads gi when computing the MI 

estimations. For example, Hassani and Khasahmadi [10], Sun et al. [41] use 3-layer 

MLPs, You et al. [49] use 2-layer MLPs as the projection heads and Sun et al. 

[41] applies a linear projection to the graph-level representation. The projection heads 

are shown to significantly improve the contrastive learning performance [11]. For 

contrastive learning on heterogeneous graphs, it is common to apply individual projections 

to representations of different type of nodes. For example, Jiang et al. [78] adopt 

D hu, hv = W ϕ(u)hu
T W ϕ(v)hv = hu

TW Rhv for nodes u and v with types ϕ(v) and ϕ(v) connected 

by the relationship R, where W R = W ϕ(u)
T W ϕ(b).

Xie et al. Page 11

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We consider MI estimators that include projection heads as parametric estimators and 

those without projection heads as non-parametric estimators. Then a reasonable explanation 

to the observation that the contrastive methods with projection heads usually achieve 

better performance is that parametric estimators provide better estimation to the mutual 

information.

3.3 Graph View Generation

To generate views from a graph sample distributed from P, one usually applies different 

types of graph transformations (or augmentations) T. Here, we only consider cases where 

T still outputs the graph-structured data. We summarize the existing transformations applied 

to graph data in three categories, feature transformations, structure transformations and 

sampling-based transformations. Feature transformations can be formalized as

Tfeat(A, X) = A, TX(X) , (20)

where TX:ℝ|V | × d ℝ|V | × d performs the transformation on the feature matrix X. Structure 

transformations can be formalized as

Tstruct(A, X) = TA(A), X , (21)

where TA:ℝ|V | × |V | ℝ|V | × |V | performs the transformation on the adjacency matrix A. And the 

sampling-based transformations are in the form

Tsample(A, X) = (A[S; S], X[S]), (22)

where S ⊆ V denotes a subset of nodes and [·] selects certain rows (and columns) from 

a matrix based on indices of nodes in S. We consider the transformations applied in 

the existing contrastive learning methods to generate different views as a single or a 

combination of instantiations of the three types of transformations above. Note that when 

node-level representations are of interest, the node-level contrasts are usually included. We 

consider nodes representations to be computed from views generated by ego-nets sampling 

from given graphs.

3.3.1 Feature Transformations—Given an input graph (A, X), a feature transformation 

only performs transformation to the attribute matrix X, i.e., T(A, X) = A, TX(X) .

Node attribute masking [49] is one of the most common way to apply the feature 

transformations. The node attribute masking randomly masks a small portion of attributes of 

all node with constant or random values. Concretely, given the input attribute matrix X, we 

specify TX X  for the node attribute masking as

TX
(mask)(X) = X * 1 − 1m + M * 1m, (23)

where * denotes the element-wise multiplication, M denotes a matrix with masking values 

and 1m denotes the masking location indicator matrix. Given the masking ratio r, elements 

in 1m are set to 1 individually with a probability r and 0 with a probability 1 − r. To employ 

adaptive masking, Zhu et al. [45] propose to sample 1m with centrality-based probabilities, 

Xie et al. Page 12

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



including degree centrality, eigenvector centrality, and PageRank centrality. The values in M 
specifies different masking strategies. For example, M = 0 applies a constant masking, M ~ 

N(0, Σ) replaces the original values by Gaussian noise and M ~ N(X, Σ) adds Gaussian noise 

to the original values.

In addition to contrastive models such as [49], attributes masking is also commonly applied 

in predictive models [3, 6] for regularized reconstruction. The node attribute masking forces 

the encoders to captures better dependencies between the masked attributes and unmasked 

context attributes and recover the masked value from its context during encoding.

3.3.2 Structure Transformations—Given an input graph (A, X), a structure 

transformation only performs transformation to the adjacency matrix A and remains X to 

be the same, i.e., T(A, X) = TA(A), X . Existing contrastive methods apply two types of 

structure transformations, edge perturbation that randomly adds or drops edges between 

pairs of nodes and graph diffusion that creates new edges based on the accessibility from one 

node to another.

Edge perturbation [48, 49] randomly adds or drops edges in a given graph. Similarly to the 

node attribute masking, it applies masks to the adjacency matrix A. In particular, we have

TA
(pert)(A) = A * 1 − 1p + (1 − A) * 1p, (24)

where * denotes the element-wise multiplication and 1p denotes the perturbation location 

indicator matrix. Given the perturbation ratio r, elements in 1p are set to 1 individually with 

a probability r and 0 with a probability 1 − r. In addition, 1p is a symmetric matrix.

Diffusion [10] creates new connections between nodes based on random walks, aiming at 

generating a global view (S, X) of the graph in contrast to the local view (A, X). Two 

instantiations of diffusion transformations are proposed to use in [10], namely, the heat 

kernel TA
(ℎeat) and the Personalized PageRank TA

(PPR), formulated as follows.

TA
(ℎeat)(A) = exp tAD−1 − t , (25)

TA
(PPR)(A) = α In − (1 − α)D−1/2AD−1/2 −1, (26)

where D ∈ ℝ|V | × |V | is a diagonal degree matrix, α denotes the teleport probability in a random 

walk and t denotes the diffusion time.

Centrality-based edge removal [45] randomly removes edges based on pre-computed 

probabilities determined by the centrality score of each edge. Centrality-based probabilities 

for edge removal reflects the importance of each edge, where less important edges are more 

likely to be removed. In particular, the centrality score of an edge (u, v) ∈ E is computed as 

wuv = (ϕc(u) + ϕc(u))/2, where ϕc(u) and ϕc(v) are the centrality of nodes u and v connected 

by the edge and a higher centrality score leads to lower probability puv of edge removal.

Xie et al. Page 13

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3.3 Sampling-Based Transformations—We consider sampling-based 

transformations that sample node-induced sub-graphs from a given graph (A, X), i.e., 
Tsample(A, X) = (A[S; S], X[S]) with S ⊆ V Note that more generalized sub-graph sampling 

methods that sample both nodes from V and edges from E can be considered as a 

combination of the node-induced sub-graph sampling and the edge perturbation. As different 

sampling-based transformations are determined by the set S of sampled nodes from the 

node-set V, we categorize the sampling-based transformations by how the set S is obtained. 

Existing contrastive methods apply three approaches to obtain the node subset S, uniform 

sampling, random walk sampling, and ego-nets sampling.

Uniform sampling and nodes dropping can be considered as the two simplest sampling-

based transformation approaches. The transformation in [10] samples sub-graphs by 

uniformly sampling a given number of nodes S from V and edges of the sampled nodes. 

In addition, transformation methods in [49] include node dropping as one of the graph 

transformations, where each node has a certain probability to be dropped from the graph. We 

denote the set of dropped nodes by D and we have S = V \ D.

Ego-nets sampling can be considered as a sampling-based transformation to unify the 

contrast performed between graph-level representation and node-level representations in the 

general contrastive learning framework, such as in DGI [38], InfoGraph [41] and MVGRL 
[10]. In other words, we consider that node-level representations are computed by node-level 

encoders from certain views, namely, ego-nets, of a given graph. Given a typical graph 

encoder with L layers, the computation of the representation of each node vi only depends 

on its L-hop neighborhood, also known as the L-ego-net of node vi. We hence consider the 

computing of node-level representations as performing L-ego-net sampling and a node-level 

encoder with L layers. In particular, for each node vi in a given graph, the transformation Ti, 

samples the L-ego net surrounding node vi as the view wi computed as

wi = Ti(A, X) = A NL vi ; NL vi , X NL vi , (27)

NL vi = v:d v, vi ≤ L (28)

where L denotes the number of layers in the node-level encoder fi, d denotes the shortest 

distance between two nodes and (A[·;·],X[·]) selects a sub-graph from (A, X).

Random walk sampling is proposed in GCC [48] to sample sub-graphs based on random 

walks starting from a given node. The subset of nodes S ∈ V is collected iteratively. At each 

iteration, the walk has a probability pij to travel from node vi to node vj and has a probability 

of pr = 0.8 to return to the start node. GCC considers the random walk sampling with restart 

as a further transformation of the r-ego-net centered at the start node. Given the center (start) 

node, the random walk sampling can be hence considered as a stronger sampling-based 

transformation than the ego-nets sampling.

Network Schema and Meta-path views are proposed in HeCo [79] as two specific views 

for the contrastive learning of heterogeneous graphs. Given a target node of type t, the 

network schema view is a special case of 1-ego-nets consisting of neighbor nodes whose 

Xie et al. Page 14

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



types are connected to the target node type in the network schema, and excluding nodes 

with the same type t. When computing the representation for a network schema view, 

aggregations are computed individually for each node type. The meta-path view consists of 

all meta-paths between the target node and other nodes of the same type. When computing 

the representation for a meta-path view, nodes of other types are masked and the information 

is aggregated along individual meta-paths.

3.3.4 Discussions of Graph View Generation—Currently, there is no theoretical 

analysis guiding the generation of the view for graphs. However, Tian et al. [80] 

theoretically and empirically analyze the problem in a general view and image domain, 

considering the generation of the view from the aspect of mutual information. In particular, 

a good view generation should minimize the MI between two views I(v1, v2), subject to I(v1, 

y) = I(v2, y) = I(x, y). Intuitively, to guarantee that contrastive learning works, the generated 

views vi should not affect the information that determines the prediction for the downstream 

task, under which restriction, stronger disagreement between views leads to better learning 

results. Following the above idea, AD-GCL [81] proposes to generate views of graphs 

that achieve the above minimum under constraints by parameterizing the above types of 

transformations and propose learnable transformations. In particular, the transformations 

are learned in an adversarial manner - the transformation (views generator) is trained to 

minimize I(v1, v2) subject to I(v1, y) = I(v2, y) = I(x, y), whereas the encoder is trained 

to maximize I(v1, v2). Following a similar principle, InfoGCL [82] proposes to discretely 

select optimal views from a list of candidate views based on the mutual information with 

downstream tasks.

From the manifold point of view, a recent analytic study [83] proposes the expansion 

assumption and explains the data augmentation as to prompt the continuity in the 

neighborhood for each instance. It indicates similar requirements for the view generating 

by augmentation, i.e., an ideal augmentation should satisfy the following two conditions, 

1) the (augmentation) neighborhood of an instance does not intersect the neighborhood of 

instances that belong to the other class in the downstream task, 2) the neighborhood of an 

instance should be as large as possible, subject to 1.

To this end, the learning on datasets with different downstream tasks may benefit from 

different types of transformations. For example, the property of a social network to be 

predicted in a downstream task may be more tolerant of minor changes in node attributes, 

for which the feature transformations can be more suitable. On the other hand, the property 

of a molecule usually depends on bonds in some functional groups, for which the edge 

perturbation may harm the learning while the sub-graph sampling could help. Empirically, 

You et al. [49] observes similar results. For example, edge perturbation is found contributory 

to the performance on social network datasets but harmful to some molecule data.

4 Predictive Learning

Compared with contrastive learning methods, predictive learning methods train the graph 

encoder f together with a prediction head g under the supervision of informative labels 

self-generated for free. We use the term “predictive” instead of “generative” categorized 

Xie et al. Page 15

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by Liu et al. [62] to avoid confusion, as not all methods introduced in this section are 

necessarily generative models. Categorized by how the prediction targets are obtained, we 

summarize predictive learning frameworks for graphs into (1) graph reconstruction that 

learns to reconstruct certain parts of given graphs, (2) invariance regularization that aims 

to directly learn robust and informative representations, (3) graph property prediction that 

learns to model non-trivial properties of given graphs, and (4) multi-stage self-training with 

pseudo-labels. In this section, we let H ∈ ℝ|V | × q denote the desired node-level representation 

and hi denote the representation of node vi. The general frameworks of three types of 

predictive learning methods are shown in Figure 6. We summary all predictive methods 

being reviewed by this survey in Supplementary Table 2 for a more clear comparison.

4.1 Graph Reconstruction

Graph reconstruction provides a natural self-supervision for the training of graph neural 

networks. The prediction targets in graph reconstruction are certain parts of the given graphs 

such as the attribute of a subset of nodes or the existence of edge between a pair of nodes. 

In graph reconstruction tasks, the prediction head g is usually called the decoder which 

reconstructs a graph from its representation.

4.1.1 Non-Probabilistic Graph Autoencoders—The autoencoders, firstly proposed 

in [84], have been widely applied for the learning of data representations. Given the success 

in the image domain and natural language modeling, various variations of graph autoencoder 

[85] are proposed to learn graph representations. Aiming at learning the graph encoder f, 
graph autoencoders are trained to reconstruct certain parts of an input graph, given restricted 

access to the graph or under certain regularization to avoid identical mapping.

GAE [39] represents the simplest version of the graph autoencoders. It performs the 

reconstruction on the adjacency matrix A from the input graph (A, X). Formally, it computes 

the reconstructed adjacency matrix A by

A = g(H) = σ HHT , (29)

H = f(A, X), (30)

and is optimized by the binary cross-entropy loss between A and A. As GAE is originally 

proposed to learn node-level representations for link prediction problem, it assumes two 

linked nodes should have similar representations. GraphSAGE [86] introduces a similar 

framework with the self-supervision of the adjacency matrix based on a different objective 

including negative sampling. In addition, a recent work SuperGAT [87] includes the GAE 

objective as a self-supervised auxiliary loss during training a graph attention network 

to guide the learning of more expressive attention operators. Similarly, SimP-GCN [88] 

applies node-pair similarity as a substitute of the adjacency matrix to construct a self-

supervised auxiliary task.

Xie et al. Page 16

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MGAE [50] follows the idea of denoising autoencoder [89]. Given a graph (A, X), MGAE 

performs reconstructions on multiple randomly corrupted feature matrices Xi i = 1

m
 with a 

single-layer autoencoder fθ and the objective

∑
i = 1

m
‖X − fθ(A, Xi)‖

2 + λ‖θ‖2, (31)

where θ denotes the weights in the single-layer encoder, λ denotes the hyper-parameter for 

l2-regularization, and Hi: = fθ A, Xi  is considered as the reconstructed representation. To 

enable non-linearity, [50] proposes to stack multiple single-layer autoencoders. Formally, 

given the reconstructed representation H(ℓ−1) at the (ℓ−1) layer, the ℓ layer is trained by 

optimizing

∑
i = 1

m
‖H (ℓ − 1) − Hi

(ℓ)‖2 + λ θℓ
2, (32)

Hi
(ℓ) = fθℓ A, H i

(ℓ − 1) , (33)

where hi
(ℓ − 1)

 denotes the corrupted representation from (ℓ−1)-th layer. The reconstructed 

representation at the last layer is then considered as the representation for downstream tasks.

GALA [51] introduces a multi-layer autoencoder with symmetric encoder and decoder, 

unlike GAE and MGAE. Motivated by the Laplacian smoothing [90] effect of GCN 

encoders, GALA designs the decoder by performing Laplacian sharpening [90], which 

prompts the decoded representation of each node to be dissimilar to the centroid of its 

neighbors. A Laplacian sharpening layer in the decoder g in computed by

X(ℓ) = 2X(ℓ − 1) − D−1AX(ℓ − 1), (34)

where X(ℓ)
 and X(ℓ − 1)

 denote the decoded representation and D denotes the degree matrix. 

GALA reconstructs the feature matrix by optimizing the mean squared error ‖X − X‖2
 with

X = g(A, H), H = f(A, X) . (35)

Attribute masking [43], also referred to as graph completion [91], is another strategy 

to pre-train graph encoder f under the graph autoencoder framework by reconstructing 

masked node attributes. The encoder f computes the node-level representations H given the 

graph with its node attributes randomly masked. And a linear projection is applied to H 
as the decoder g to reconstruct the masked attributes. When the edge attributes are also 

available, one can also perform reconstruction on the masked edge attributes. Although the 

attribute masking is not explicitly named as graph autoencoders, we categorize it as graph 

autoencoders since the encoders are trained by performing reconstruction on the entire or 

certain parts of the input graph.

Xie et al. Page 17

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1.2 Variational Graph Autoencoders—Although sharing a similar encoder-decoder 

structure with standard autoencoders, variational autoencoders as generative models are built 

upon a different mathematical foundation assuming an existing prior distribution of latent 

representation that generates the observed data. Primarily targeted in learning the generation 

of the observed data, variational graph autoencoders also shown promising performance in 

learning good graph representations.

VGAE [39] introduces the simplest version of variational graph autoencoders. VGAE 

performs reconstruction on the adjacency matrix and is composed a inference 

model (encoder) q(H ∣ A, X) = ∏i = 1
|V | N hi ∣ μi(A, X), Σi(A, X)  parameterized by graph neural 

networks μ, Σ and a generative model (decoder) p(A|H) modeled by the inner product of 

latent variables. VGAE optimizes the variational lower bound

Eq(H ∣ A, X)[logp(A ∣ H)] − KL[q(H ∣ A, X) p(H)], (36)

where KL(·) denotes the KL-divergence and p(H) denotes the prior given by the Gaussian 

distribution.

ARGA/ARVGA [52] propose to regularize the autoencoder with an adversarial network 

[92] which enforces the distribution of the latent variable to match the Gaussian prior. 

In addition to the encoder and decoder, a discriminator is trained to distinguish fake data 

generated by the encoder and the real data sampled from the Gaussian distribution. As 

the adversarial regularization is provably an equivalence of the JS-divergence between the 

distribution of the latent variable and the Gaussian prior, ARGA/ARVGA can achieve a 

similar effect to VGAE but with stronger regularization.

SIG-VAE [53] replace the inference model in the variational graph autoencoder a hierarchy 

of multiple stochastic layers to enable more flexible model of the latent variable. In 

particular, the inference model is given by p(H|A, X) = p(H|A, X, μ, Σ), where μ and Σ are 

considered as random variables computed by stacked stochastic layers with noise injected to 

each layer. The marginalized p(H|A, X) is hence not necessarily a Gaussian distribution and 

enabled higher flexibility and expressivity.

There exist other variations of the variational graph autoencoders such as JTVAE [93] and 

DGVAE [94]. However, those variational graph autoencoders focus on the generation of 

graphs. As we mainly consider the learning of representations, we omit the introduction to 

those methods.

4.1.3 Autoregressive Reconstruction—Following the idea of GPT [95] for the 

generative pretraining of language models, GPT-GNN [54] proposes a autoregressive 

framework to perform reconstruction on given graphs. Ash both variational autoencoders 

and the autoregressive models are generative and based on reconstruction, graph 

autoregressive models differ from that they perform reconstruction iteratively. In particular, 

GPT-GNN consists of a graph encoder f, decoders gn and ge for node generation and 

edge generation, respectively. Given a graph with its nodes and edges randomly masked, 

GPT-GNN generates one masked node and its edges at a time and optimizes the likelihood 

Xie et al. Page 18

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the node and edges generated in the current iteration. GPT-GNN iteratively generates 

nodes and edges until all masked nodes are generated.

4.2 Representation Invariance Regularization

Adopting predictive objectives based on invariance regularization is recently trending 

for both image and graph domains. Methods adopting invariance regularization directly 

computes losses on representations and usually follows a similar framework to contrastive 

learning, i.e., to obtain two augmented graphs of the given graph, and compute the 

representations of the two graphs, but their objective does not include any contrast nor 
requires paired or negative samples. Hence they are categorized as predictive approaches. 

In particular, the objective seeks to minimize the difference between representation 

of two distorted graphs, encouraging representations of the graphs to be invariant to 

random distortions. Certain approaches are introduced to enable the learning informative 

representations, preventing trivial solutions to be learned.

Inspired by BYOL [20] in the image domain, BGRL [47] proposes a variation of contrastive 

learning framework, which eliminates the need of negative samples. Given a mini-batch of 

graphs B, it compute node representations Hx,a and Hx,b of two augmented graphs from each 

x in B and minimize the following invariance-based loss with a parametric predictor pθ

ℒBYOL = EB PN − 2
N ∑

x ∈ B

pθ Hx, a
THx, b

pθ Hx, a Hx, b
. (37)

As no negative sample is included, certain mechanisms and restrictions, such as updating 

an offline encoder with exponential moving average [20] and batch normalization, are 

required in the framework to prevent degenerate solutions and achieve similar effect 

of optimizing MI bound objectives. BGRL and BYOL are commonly acknowledged as 

variations of contrastive methods. While the framework of BGRL follows the typical 

contrastive framework, the computation of the above invariance-based objective does not 

require paired samples or negative samples.

CCA-SSG [60] proposes an invariance-based objective inspired by a well-studied idea of 

canonical correlation analysis [96, 97]. The proposed objective consists of an invariance 

term minimizing the difference between two representations and a decorrelation term 

minimizing the correlation among dimensions of the representations, fomulated as

ℒCCA = EB PN Ha − Hb
2

+λ Ha
THa − I 2 + Hb

THb − I 2 ,
(38)

where Ha and Hb are batched node representations of graphs with two augmentations a and 

b. Similarly to Barlow-Twins [98], CCA-SSG uses batched representations to estimate the 

correlations among different dimensions. Both CCA-SSG and Barlow-Twins encourage the 

learning of imformative representation by reducing the correlation or redundancies among 

dimensions.

Xie et al. Page 19

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LaGraph [61] proposes another invariance-based objective based on the assumption that 

all observed graph data have their latent counterparts, analogically to inaccessible clean 

counterparts of observed noisy data such as images. The proposed objective is derived as an 

self-supervised upper bound to the supervised latent graph prediction loss, formulated as

ℒLaGraph = E(A, X) PEJ D(A, H) − X 2/ V

+λ 1J ⊙ H − H ′ 2/ |J | 1/2 ,
(39)

where D is a decoder network, J is a random subset of node indices, H is the node 

representation matrix of the given graph, H′ is the representation of the graph whose 

nodes in J are masked, and 1J ⊙ means the invariance is computed on the masked nodes 

only. Different from the above two methods, LaGraph computes the representations for the 

original graph and its masked version, instead of two randomly augmented graphs, and only 

computes the invariance on masked nodes. The characteristics come from the derivation of 

the objective.

One intuition behind the invariance regularization-based methods is that the learned 

representation are expected to contain enough information of the given data but be 

invariance to distortions on the data. Both CCA-SSG and LaGraph discuss the relationships 

between invariance-based method and the Information Bottleneck principle [99] indicating 

the above intuition. Moreover, LaGraph further discusses its relationship with denoising 

autoencoder and mutual information-based methods.

4.3 Graph Property Prediction

In addition to the reconstruction, an efficient way to perform self-supervised predictive 

learning is to design the prediction tasks based on informative graph properties that are 

not explicitly provided in the graph data. Commonly applied properties for self-supervised 

training include topology properties, statistical properties, and domain-knowledge involved 

properties.

S2GRL [55] generalizes the adjacency matrix reconstruction task to a k-hop connectivity 
prediction task between two given nodes, motivated by that the interaction between two 

nodes is not limited to their direct connection. In particular, given encoded representations 

of any pair of nodes, the prediction head performs classification on the absolute difference 

between the representations. S2GRL then trains the encoder and prediction head to classify 

the hop counts between the pair of nodes.

Meta-path prediction [57] provides a self-supervision for heterogeneous graphs, such as 

molecules, which include multiple types of nodes and edges. A meta-path of length ℓ is 

defined as a sequence (t1, ···, tℓ) where ti denotes the type of the i-th edge in the path. Given 

two nodes in a heterogeneous graph and K meta-paths, the encoder f and prediction heads gi 

(i = 1, ···, K) are trained to predict if the two nodes are connected by each of the meta-paths 

as a binary classification task. In [57], the predictions of the K meta-paths are included as K 
auxiliary learning tasks in addition to the main learning task.

Xie et al. Page 20

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GROVER [56] performs self-supervised learning on molecular graph data with two 

predictive learning tasks. In contextual property prediction, the encoder and prediction 

head is trained to predict the “atom-bond-count” relationship within the k-hop neighborhood 

of a given node (atom), e.g. “O-double bond-2” if there are two atoms “O” connected to the 

given atom with double bonds. In addition, a graph-level motif prediction task is applied 

to involve the self-supervision of domain knowledge. For molecular graphs, the motifs are 

instantiated by the functional groups in molecules. Given a list of motifs, the graph-level 

prediction head predicts the existence of each motif, as a multi-label classification task.

4.4 Self-Training with Pseudo-Labels

Instead of the labels obtained from input graphs, the prediction targets in self-training 

methods are pseudo-labels obtained from the prediction in a previous stage utilizing a 

small portion of labeled data [1] or even randomly initialized. The self-trained graph neural 

networks can be either applied under a semi-supervised setting or further finetuned for 

downstream tasks. We consider the node-level classification for an instance.

Under the node-level semi-supervised setting, the multi-stage self-training [100] is 

proposed to utilize the labeled nodes to guide the training on unlabeled nodes. Concretely, 

given both the labeled node set and unlabeled node set, the graph neural network is first 

trained on the labeled set. After the training, it performs prediction on the unlabeled set and 

the predicted labels with high confidence are considered as the pseudo-labels and moved to 

the labeled node set. Then a fresh graph neural network is trained on the updated labeled set 

and the above operations are performed multiple times.

M3S [58] applies DeepCluster [101] and an aligning mechanism to generate pseudo-labels 

on the basis of multi-stage self-training. In particular, a K-mean cluster is performed on 

node-level representations at each stage and the labels obtained from clustering are then 

aligned with the given true labels. A node with clustered pseudo-label is added to the labeled 

set for self-training in the next stage only if it matches the prediction of the classifier 

in the current stage. Compared to the basic multi-stage self-training, M3S considers the 

DeepCluster and the aligning mechanism as a self-checking mechanism and hence provides 

stronger self-supervision.

ICF-GCN [59] proposes to optimize the GCN model and pseudo-labels for nodes 

simultaneously in an Expectation-Maximization (EM) manner. In particular, the E-step 

updates the GCN based on the given pseudo-labels whereas the M-step updates the pseudo-

labels based on the GCN predictions. Similarly to M3S, ICF-GCN performs clustering on 

hidden representations to obtain GCN predicted classes. To avoid the alignment issue, both 

pseudo-labels and the clustered node classes are represented in relational matrix of shape |V| 

× |V|, where an element value 1 indicates two nodes belong to the same class and 0 indicates 

different classes.

A recent study [? ] provides the theoretical justification for the self-training with pseudo-

labels based on an assumption of the expansion property and generalizes the self-training 

methods from semi-supervised settings into the unsupervised setting. Intuitively, the 

examples with correct pseudo-labels will be utilized to denoise the incorrectly pseudo-

Xie et al. Page 21

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



labeled examples and high accuracy can be achieved due to the expansion assumption. 

Under the unsupervised setting, it theoretically shows that a classifier trained with arbitrarily 

assigned pseudo-labels can still achieve good accuracy for some permutation of the classes.

5 Summary of Learning Tasks and Datasets

The self-supervised learning methods are usually applied to and evaluated on two common 

types of graph-related learning tasks, the graph-level inductive learning and the node-level 

transductive learning. The graph-level inductive learning aims to learn models predicting 

graph-level properties, and the models are trained and perform prediction on different sets 

of graphs. On the other hand, the node-level transductive learning aims to learn models 

performs node-level property prediction, trained and performing prediction on the same sets 

of large graphs. In this section, we summarize datasets under the two types of learning tasks. 

The statistics of common datasets are shown in Table 5.

5.1 Graph-Level Inductive Learning

Graph-level learning tasks are performed as inductive learning tasks on multiple graphs 

[38]. Commonly used datasets for graph-level learning tasks can be divided into three types, 

chemical molecule datasets, protein datasets, and social network datasets.

Chemical Molecular Property Prediction.—In a molecular graph, each node 

represents an atom in a molecule where the atom index is indicated by the node attribute 

and each edge represents a bond in the molecule. Datasets for chemical molecular property 

prediction are also categorized as small molecule datasets in TUDataset [102]. Traditional 

molecule classification datasets such as NCI1 [103] and MUTAG [104] are the most 

commonly used datasets for unsupervised graph representation learning in self-supervision 

related studies [10, 49]. In addition, the molecule property prediction models can be also 

trained in a self-supervised pre-training and finetuning fashion for semi-supervised learning 

and transfer learning. Recent works [43, 49, 56] build their pre-training molecule dataset 

by sampling unlabeled molecules from the ZINC15 [105] database containing 750 million 

molecules. MoleculeNet [21] also provides a collection of molecular graph datasets for 

molecule property prediction, which is suitable for downstream graph classification. Among 

all the datasets in MoleculeNet, the classification datasets such as BBBP, Tox21, and HIV 

are used for the evaluation of several self-supervised learning methods [43, 49, 56].

Protein Biological Function Prediction.—The protein is a particular type of molecule 

but is represented differently by graph data. In a protein graph, nodes represent amino acids 

and an edge indicates the two connected nodes are less than 6 Angstroms apart. Datasets 

for chemical molecular property prediction are also categorized as bioinfomatics datasets in 

TUDataset. Similar to the chemical molecule datasets, protein datasets can be used in both 

unsupervised representation learning, such as PROTEINS [106] and DD [107], and in the 

two-stage training.

Social Network Property Prediction.—A social network graph dataset considers each 

entity (e.g. a user or an author) as a node and their social connections as edges. As 

social networks in different datasets represent differently, social network graph datasets 

Xie et al. Page 22

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are not typically used for transfer learning. Social network graph datasets used in recent 

self-supervised studies [48, 49] are typical datasets for graph classification [108] such as 

COLLAB, REDDIT-B and IMDB-B.

5.2 Node-Level Transductive Learning

Node-level learning tasks can be performed as transductive learning tasks on large 

graphs [38], where are nodes and the complete graph structure, together with labels 

of a portion of nodes, are available for training. The citation network datasets [109], 

including CORA [110], CITESEER [111] and PUBMED [112] are commonly used for 

node-level transductive learning. There are three typical ways to use the citation network 

datasets. Contrastive learning methods [10, 38, 41] are usually evaluated on the social 

network datasets by performing unsupervised representation learning followed by a linear 

classification with fixed representations, whereas predictive learning studies usually perform 

unsupervised representation learning followed by clustering [50, 51] or semi-supervised link 

prediction [39, 55] on the social network datasets.

Motivated by the concern that current GNN evaluations becomes saturated on above 

citation network datasets, Shchur et al. [113] construct four additional node-level datasets, 

Coauthor-CS, Coauthor-Physics from the Microsoft Academic Graph [114], Amazon-
Photos, and Amazon-Computers from the Amazon Co-purchase Graph [115]. The four 

datasets contain larger graphs with more nodes and edges. And their learning tasks are hence 

more challenging compared to the citation network datasets.

5.3 Node-Level Inductive Learning

Node-level inductive learning performs training and testing on separate subsets. There are 

two typical ways to split the nodes for training and testing. First, in cases that all nodes 

are from the same large graph, a random subset of nodes are selected for testing and is 

masked out together with their edges during training, in contrast to the transductive learning 

where all nodes and the complete graph structure are used during training. Two commonly 

used node-level inductive learning datasets in the first case are Reddit [86] and Flickr 
[116]. Each node in Reddit represents a post and posts are connected by edges if they are 

commented by the same user. The node classification task is to predict which community 

the post belongs to. For the Flickr dataset, each node represents an image uploaded to Flickr 

and an edge between nodes indicates that they share common properties such as the same 

geographic location or commented by the same user. The task is to predict the class (based 

on tags) each image belongs to.

In cases that all nodes belong to separate graphs, the training and testing nodes are split 

by graphs. Zitnik and Leskovec [117] build a inductive learning dataset in the second 

case containing 395K unlabeled protein obtained from protein–protein interaction (PPI) 

networks and perform finetuning on PPI networks consisting of 88K proteins labeled with 

40 fine-grained biological functions, obtained from Zitnik et al. [118]. Each node in a graph 

represents a protein and an edge indicates the existance of interaction between the proteins. 

The task of PPI is to predict the gene ontology sets a protein belongs to.

Xie et al. Page 23

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6 An Open-Source Library

We develop an open-source library DIG: Dive into Graphs [119]1, which includes a module, 

known as sslgraph, for self-supervised learning of GNNs. DIG-sslgraph is based on Pytorch 

[120] and Pytorch Geometric [121] and aims at easy implementation and standardized 

evaluation of SSL methods for graph neural networks. In particular, we provide a unified 

and highly customizable framework for contrastive learning methods, standardized data 

interface, and evaluation tools that are compatible for evaluating both contrastive methods 

and predictive methods. The overview of the library is shown in Supplementary Figure 1.

Given the developed unified contrastive framework as a base class, particular contrastive 

learning methods can be easily implemented by specifying their objective, functions for 

view generation, and their encoders. We also pre-implement four state-of-the-art contrastive 

methods for either node-level or graph-level tasks based on the unified framework, 

including InfoGraph [41], GRACE [46], MVGRL [58], and GraphCL [49]. The provided 

data interface includes datasets from TUDataset [102] and the citation network dataset 

[109]. Other datasets from Pytorch Geometric and new datasets processed by Pytorch 

Geometric are also supported by our data interface. The provided evaluation tools and 

data interface allow standardized evaluations of SSL methods and fair comparisons with 

existing SSL methods under common evaluation settings, including unsupervised graph-

level representation learning, semi-supervised graph classification (or transfer learning, 

depending on the datasets), and unsupervised node-level representation learning. Altogether, 

our open-source library provides a complete and extensible framework for developing 

and evaluating SSL methods for GNNs. To show the efficiency and effectiveness of the 

DIG-sslgraph library, we compare the training time, memory consumption, and downstream 

accuracy of four SSL methods on multiple datasets between the original implementations 

and DIG counterparts. The results are shown and discussed in Appendix G.

7 Challenges and Future Directions

While existing SSL approaches have shown promising effectiveness on learning from graph 

data, there still exist several challenges due to the more complicated structure and more 

diverse tasks of graphs. In this section, we discuss the remaining challenges as well as 

potential directions for future studies on Graph self-supervised learning.

The optimal views generation w.r.t specific downstream tasks are still unclear for 
contrastive methods.

The performance of the learned representation or pre-trained model on downstream tasks 

heavily depends on the selection of transformations to generate views. The optimal view 

generation also depends on specific downstream tasks. However, there is still no way to 

obtain the optimal view for each downstream task even the task is available. Several studies 

have explored approaches to utilizing better views for contrast based on adversarial learning 

[81] or searching [82], but views generated by the two approaches are still not optimal 

due to their limited search space for graph transformations. In particular, Xu et al. [82] 

1The open-source library is now publicly available at the URL: https://github.com/divelab/DIG/

Xie et al. Page 24

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/divelab/DIG/


only considers a finite set of graph transformations whose search space is also limited. 

In addition, Suresh et al. [81] only considers parameterized structural transformations, and 

more complicated learnable view generation involving feature-space, structure-space, and 

sampling-based transformation are still challenging and are limited by the development 

of graph generation studies [122, 123, 124, 125]. Moreover, the above methods require 

available downstream tasks at the pretraining stage. They become inapplicable when 

downstream tasks are unavailable or in the unsupervised representation learning setting. 

Hence it is also desired to study universally optimal views under the downstream task-

agnostic setting.

There is no unified theory or theoretical framework for predictive methods.

Unlike contrastive methods grounded by the problem of mutual information maximization, 

the predictive methods, especially the graph property prediction and invariance 

regularization-based methods, utilize different pretext learning tasks motivated by individual 

hypotheses and based on empirical studies. However, they lack guidance from unified 

theoretical frameworks to design specific pretext tasks for different downstream tasks. 

The information bottleneck principle may be used to interpret the effectiveness of several 

predictive methods but further study and investigation are desired.

Richer domain knowledge can be better utilized as self-supervision.

For graph machine learning tasks oriented by other research areas such as biomedical 

researches and quantum physics, existing constraints and rules from domain knowledge 

naturally contain rich supervision benefiting the learning of downstream tasks. Including 

domain knowledge has shown to be effective for both contrastive methods [126] and 

predictive methods [56]. Currently, only simple domain knowledge-based tasks such as the 

motif prediction [56] are adopted. Future studies on designing novel tasks better utilizing 

domain knowledge such as functional groups and quantum mechanisms are promising 

directions.

Scaling-up and efficiency issues are to be addressed.

Many existing SSL approaches suffer from memory issues and computing efficiency issues 

in terms of time consumption when scaled up to larger graphs. For contrastive methods, 

the scaling-up issue becomes more critical as their performance usually relies on a larger 

number of samples in a mini-batch. In addition, as the contrastive framework requires 

computing representations of multiple views, their memory consumption is times higher 

than predictive approaches. When the computing of view generation for contrastive methods 

or the graph properties computation for predictive methods is heavy, the computation time 

may increase sharply as the graph scales up. The above issues prevent the application 

of existing methods to extremely large graphs in industrial scenarios or other research 

areas (e.g., protein networks and particles in materials). Currently, studies addressing the 

scaling-up issue for SSL methods are still lacking and less explored.

Xie et al. Page 25

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Explainability of SSL for GNN requires further studies.

The explainability for GNNs is critical in multiple application scenarios to assure the 

reliability and security of GNN models. For example, in drug discovery, it is important to 

understand which functional group in a molecular graph leads to the GNN decision for 

a property prediction. A survey work [127] provides a thorough introduction to existing 

explanation methods for GNNs. However, existing SOTA studies focus on the explanation 

under supervised setting and require downstream tasks to perform explanation, and only 

limited methods, such as gradient-based methods, can be adapted to explain pre-trained 

GNN encoders without given the downstream prediction head. A recent work [128] proposes 

the task-agnostic explanation framework to enable high-quality GNN explanations without 

downstream tasks. The task-agnostic framework can be utilized to explain GNNs trained 

through SSL. More studies and investigations are desired in this direction.

8 Conclusion

Despite recent successes in natural language processing and computer vision, the self-

supervised learning applied to graph data is still an emerging field and has significant 

challenges to be addressed. Existing methods employ self-supervision to graph neural 

networks through either contrastive learning or predictive learning. We summarize current 

self-supervised learning methods and provide unified reviews for the two approaches. We 

unify existing contrastive learning methods for GNNs with a general contrastive framework, 

which performs mutual information maximization on different views of given graphs with 

appropriate MI estimators. We demonstrate that any existing method can be realized by 

determinating its MI estimator, views generation, and graph encoder. We further provide 

detailed descriptions of existing options for the components and discussions to guide 

the choice of those components. For predictive learning, we categorize existing methods 

into graph reconstruction, property prediction, and self-training based on how labels are 

generated from the data. A thorough review is provided for methods in all three types of 

predictive learning. Finally, we summarize common graph datasets of different domains and 

introduce what learning tasks the datasets are involved in to provide a clear view to conduct 

future evaluation experiments. Altogether, our unified treatment of SSL in GNNs in terms 

of methodologies, datasets, evaluations, and open-source software is anticipated to foster 

methodological developments and facilitate empirical comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation grants IIS-2006861 and DBI-2028361, and 
National Institutes of Health grant 1R21NS102828. We thank the scientific community for providing valuable 
feedback and comments, which lead to improvements of this work.

Xie et al. Page 26

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Biographies

Yaochen Xie received the B.S. degree in Statistics from University of Science and 

Technology of China, Hefei, China, in 2018. Currently, he is working towards the Ph.D. 

degree in the Department of Computer Science and Engineering, Texas A&M University, 

College Station, Texas. His research interests include machine learning, deep learning, and 

graph data mining.

Zhao Xu received the MS degree in Biomedical Engineering from University of Michigan, 

Ann Arbor, Michigan, in 2017. Currently, she is working toward the PhD degree in the 

Department of Computer Science and Engineering, Texas A&M University, College Station, 

Texas. Her research interests include machine learning, deep learning and data mining.

Jingtun Zhang received the BSc degree in computer science and technology from 

University of Science and Technology of China, Hefei, China, in 2020. Currently, he is 

working toward the MCS degree in the Department of Computer Science and Engineering, 

Texas A&M University, College Station, Texas. His research interests include machine 

learning, software engineering, and data mining.

Zhengyang Wang is currently an applied scientist at Amazon.com LLC. He received his 

PhD degree in computer science from Texas A&M University, College Station, Texas, in 

2020. And he received the MSc degree in mathematics and computer science from New 

York University, New York City, New York, in 2015. His research interests include machine 

learning, deep learning, and data mining.

Xie et al. Page 27

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Amazon.com


Shuiwang Ji received the PhD degree in computer science from Arizona State University, 

Tempe, Arizona, in 2010. Currently, he is a Professor and Presidential Impact Fellow in the 

Department of Computer Science and Engineering, Texas A&M University, College Station, 

Texas. His research interests include machine learning, deep learning, graph and image 

analysis, and quantum systems. He received the National Science Foundation CAREER 

Award in 2014. He is currently an Associate Editor for IEEE Transactions on Pattern 

Analysis and Machine Intelligence, ACM Transactions on Knowledge Discovery from Data, 

and ACM Computing Surveys. He regularly serves as an Area Chair or equivalent roles 

for data mining and machine learning conferences, including AAAI, ICLR, ICML, IJCAI, 

KDD, and NeurIPS. He is a senior member of IEEE.

REFERENCES

[1]. Yang Y and Xu Z, “Rethinking the value of labels for improving class-imbalanced learning,” in 
Advances in Neural Information Processing Systems, 2020.

[2]. Ulyanov D, Vedaldi A, and Lempitsky V, “Deep image prior,” in Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 2018.

[3]. Xie Y, Wang Z, and Ji S, “Noise2Same: Optimizing a self-supervised bound for image denoising,” 
in Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 20 320–20 330.

[4]. Laine S, Karras T, Lehtinen J, and Aila T, “High-quality self-supervised deep image denoising,” 
Advances in Neural Information Processing Systems, vol. 32, pp. 6970–6980, 2019.

[5]. Krull A, Buchholz T-O, and Jug F, “Noise2Voidlearning denoising from single noisy images,” 
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 
2129–2137.

[6]. Batson J and Royer L, “Noise2Self: Blind denoising by self-supervision,” in Proceedings of the 
36th International Conference on Machine Learning, vol. 97, 2019, pp. 524–533.

[7]. Devlin J, Chang M, Lee K, and Toutanova K, “BERT: pre-training of deep bidirectional 
transformers for language understanding,” in Proceedings of the 2019 Conference of the 
North American Chapter of the Association for Computational Linguistics: Human Language 
Technologies, 2019, pp. 4171–4186.

[8]. Wu J, Wang X, and Wang WY, “Self-supervised dialogue learning,” in Proceedings of the 57th 
Annual Meeting of the Association for Computational Linguistics, 2019, pp. 3857–3867.

[9]. Wang H, Wang X, Xiong W, Yu M, Guo X, Chang S, and Wang WY, “Self-supervised learning 
for contextualized extractive summarization,” in Proceedings of the 57th Annual Meeting of the 
Association for Computational Linguistics, 2019, pp. 2221–2227.

[10]. Hassani K and Khasahmadi AH, “Contrastive multi-view representation learning on graphs,” in 
Proceedings of the 37th International Conference on Machine Learning, 2020.

[11]. Chen T, Kornblith S, Norouzi M, and Hinton G, “A simple framework for contrastive learning 
of visual representations,” in Proceedings of the International Conference on Machine Learning, 
2020.

[12]. Oord A. v. d., Li Y, and Vinyals O, “Representation learning with contrastive predictive coding,” 
arXiv preprint arXiv:1807.03748, 2018.

[13]. Tian Y, Krishnan D, and Isola P, “Contrastive multi-view coding,” arXiv preprint 
arXiv:1906.05849, 2019.

Xie et al. Page 28

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[14]. Perozzi B, Al-Rfou R, and Skiena S, “Deepwalk: Online learning of social representations,” in 
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and 
Data Mining, 2014, pp. 701–710.

[15]. Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y, and Jaiswal S, “graph2vec: 
Learning distributed representations of graphs,” arXiv preprint arXiv:1707.05005, 2017.

[16]. Tsitsulin A, Mottin D, Karras P, Bronstein A, and Muller E, “SGR: Self-supervised spectral 
graph representation learning,” arXiv preprint arXiv:1811.06237, 2018.

[17]. Doersch C, Gupta A, and Efros AA, “Unsupervised visual representation learning by context 
prediction,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 
1422–1430.

[18]. Noroozi M and Favaro P, “Unsupervised learning of visual representations by solving jigsaw 
puzzles,” in European conference on computer vision. Springer, 2016, pp. 69–84.

[19]. He K, Fan H, Wu Y, Xie S, and Girshick R, “Momentum contrast for unsupervised visual 
representation learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, 2020.

[20]. Grill J-B, Strub F, Altche F, Tallec C, Richemond P, Buchatskaya E, Doersch C, Avila Pires B, 
Guo Z, Gheshlaghi Azar M, Piot B, kavukcuoglu k., Munos R, and Valko M, “Bootstrap your 
own latent - a new approach to self-supervised learning,” in Advances in Neural Information 
Processing Systems, vol. 33, 2020, pp. 21 271–21 284.

[21]. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, Leswing K, and Pande V, 
“Moleculenet: a benchmark for molecular machine learning,” Chemical Science, vol. 9, no. 2, pp. 
513–530, 2018. [PubMed: 29629118] 

[22]. Wang Z, Liu M, Luo Y, Xu Z, Xie Y, Wang L, Cai L, and Ji S, “Advanced graph and 
sequence neural networks for molecular property prediction and drug discovery,” arXiv preprint 
arXiv:2012.01981, 2020.

[23]. Kipf TN and Welling M, “Semi-supervised classification with graph convolutional networks,” in 
International Conference on Learning Representations, 2017.

[24]. Xu K, Hu W, Leskovec J, and Jegelka S, “How powerful are graph neural networks?” in 
International Conference on Learning Representations, 2019.

[25]. Gao H and Ji S, “Graph U-Nets,” in Proceedings of the 36th International Conference on 
Machine Learning, 2019, pp. 2083–2092.

[26]. Liu M, Wang Z, and Ji S, “Non-local graph neural networks,” arXiv preprint arXiv:2005.14612, 
2020.

[27]. Cai L, Li J, Wang J, and Ji S, “Line graph neural networks for link prediction,” arXiv preprint 
arXiv:2010.10046, 2020.

[28]. Liu M, Gao H, and Ji S, “Towards deeper graph neural networks,” in Proceedings of the 26th 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2020, pp. 
338–348.

[29]. Cai L and Ji S, “A multi-scale approach for graph link prediction,” in Proceedings of the 34th 
AAAI Conference on Artificial Intelligence, 2020, pp. 3308–3315.

[30]. Gao H, Wang Z, and Ji S, “Large-scale learnable graph convolutional networks,” in Proceedings 
of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 
2018, pp. 1416–1424.

[31]. Gao H, Chen Y, and Ji S, “Learning graph pooling and hybrid convolutional operations for text 
representations,” in Proceedings of the Web Conference, 2019, pp. 2743–2749.

[32]. Gao H, Liu Y, and Ji S, “Topology-aware graph pooling networks,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 43, no. 12, pp. 4512–4518, 2021. [PubMed: 33646947] 

[33]. Wang Z and Ji S, “Second-order pooling for graph neural networks,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 2020.

[34]. Yuan H and Ji S, “StructPool: Structured graph pooling via conditional random fields,” in 
Proceedings of the 8th International Conference on Learning Representations, 2020.

[35]. Gao H and Ji S, “Graph representation learning via hard and channel-wise attention networks,” 
in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & 
Data Mining. ACM, 2019, pp. 741–749.

Xie et al. Page 29

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[36]. Yuan H, Tang J, Hu X, and Ji S, “XGNN: Towards model-level explanations of graph neural 
networks,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 2020, pp. 430–438.

[37]. Liu Y, Yuan H, Cai L, and Ji S, “Deep learning of high-order interactions for protein interface 
prediction,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 2020, pp. 679–687.

[38]. Veličković P, Fedus W, Hamilton WL, Liò P, Bengio Y, and Hjelm D, “Deep graph infomax,” in 
International Conference on Learning Representations, 2019.

[39]. Kipf TN and Welling M, “Variational graph autoencoders,” arXiv preprint arXiv:1611.07308, 
2016.

[40]. Ma Y and Tang J, Deep Learning on Graphs. Cambridge University Press, 2020.

[41]. Sun F-Y, Hoffman J, Verma V, and Tang J, “Infograph: Unsupervised and semi-supervised graph-
level representation learning via mutual information maximization,” in International Conference 
on Learning Representations, 2019.

[42]. Peng Z, Huang W, Luo M, Zheng Q, Rong Y, Xu T, and Huang J, “Graph representation learning 
via graphical mutual information maximization,” in Proceedings of The Web Conference 2020, 
2020, pp. 259–270.

[43]. Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, and Leskovec J, “Strategies for pre-training 
graph neural networks,” in International Conference on Learning Representations, 2020.

[44]. Jiao Y, Xiong Y, Zhang J, Zhang Y, Zhang T, and Zhu Y, “Sub-graph contrast for scalable self-
supervised graph representation learning,” in IEEE International Conference on Data Mining. 
IEEE, 2020, pp. 222–231.

[45]. Zhu Y, Xu Y, Yu F, Liu Q, Wu S, and Wang L, “Graph contrastive learning with adaptive 
augmentation,” in Proceedings of The Web Conference 2021, 2021.

[46]. —, “Deep graph contrastive representation learning,” in ICML Workshop on Graph 
Representation Learning and Beyond, 2020.

[47]. Thakoor S, Tallec C, Azar MG, Munos R, Veličković P, and Valko M, “Large-scale representation 
learning on graphs via bootstrapping,” arXiv preprint arXiv:2102.06514, 2021.

[48]. Qiu J, Chen Q, Dong Y, Zhang J, Yang H, Ding M, Wang K, and Tang J, “GCC: Graph 
contrastive coding for graph neural network pre-training,” in Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1150–
1160.

[49]. You Y, Chen T, Sui Y, Chen T, Wang Z, and Shen Y, “Graph contrastive learning with 
augmentations,” in Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 
5812–5823.

[50]. Wang C, Pan S, Long G, Zhu X, and Jiang J, “Mgae: Marginalized graph autoencoder for graph 
clustering,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge 
Management, 2017, pp. 889–898.

[51]. Park J, Lee M, Chang HJ, Lee K, and Choi JY, “Symmetric graph convolutional autoencoder 
for unsupervised graph representation learning,” in Proceedings of the IEEE/CVF International 
Conference on Computer Vision, 2019, pp. 6519–6528.

[52]. Pan S, Hu R, Long G, Jiang J, Yao L, and Zhang C, “Adversarially regularized graph autoencoder 
for graph embedding,” in Proceedings of the 27th International Joint Conference on Artificial 
Intelligence, 2018, pp. 2609–2615.

[53]. Hasanzadeh A, Hajiramezanali E, Narayanan K, Duffield N, Zhou M, and Qian X, “Semi-
implicit graph variational auto-encoders,” in Advances in Neural Information Processing 
Systems, vol. 32, 2019, pp. 10 712–10 723.

[54]. Hu Z, Dong Y, Wang K, Chang K-W, and Sun Y, “GPT-GNN: Generative pre-training of 
graph neural networks,” in Proceedings of the 26th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining, 2020, pp. 1857–1867.

[55]. Peng Z, Dong Y, Luo M, Wu X-M, and Zheng Q, “Self-supervised graph representation learning 
via global context prediction,” arXiv preprint arXiv:2003.01604, 2020.

[56]. Rong Y, Bian Y, Xu T, Xie W, Wei Y, Huang W, and Huang J, “Self-supervised graph transformer 
on large-scale molecular data,” in Advances in Neural Information Processing Systems, 2020.

Xie et al. Page 30

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[57]. Hwang D, Park J, Kwon S, Kim K-M, Ha J-W, and Kim HJ, “Self-supervised auxiliary learning 
with meta-paths for heterogeneous graphs,” arXiv preprint arXiv:2007.08294, 2020.

[58]. Sun K, Lin Z, and Zhu Z, “Multi-Stage self-supervised learning for graph convolutional networks 
on graphs with few labeled nodes,” in Proceedings of the AAAI Conference on Artificial 
Intelligence, vol. 34, no. 04, 2020, pp. 5892–5899.

[59]. Hu Z, Kou G, Zhang H, Li N, Yang K, and Liu L, “Rectifying pseudo labels: Iterative feature 
clustering for graph representation learning,” in Proceedings of the 30th ACM International 
Conference on Information & Knowledge Management, 2021, p. 720–729.

[60]. Zhang H, Wu Q, Yan J, Wipf D, and Philip SY, “From canonical correlation analysis to 
self-supervised graph neural networks,” in Advances in Neural Information Processing Systems, 
2021.

[61]. Xie Y, Xu Z, and Ji S, “Self-supervised representation learning via latent graph prediction,” arXiv 
preprint arXiv:2202.08333, 2022.

[62]. Liu X, Zhang F, Hou Z, Wang Z, Mian L, Zhang J, and Tang J, “Self-supervised learning: 
Generative or contrastive,” arXiv preprint arXiv:2006.08218, 2020.

[63]. Liu Y, Pan S, Jin M, Zhou C, Xia F, and Yu PS, “Graph self-supervised learning: A survey,” 
arXiv preprint arXiv:2103.00111, 2021.

[64]. Wang Y, Zhang J, Guo S, Yin H, Li C, and Chen H, “Decoupling representation learning and 
classification for gnn-based anomaly detection,” in Proceedings of the 44th International ACM 
SIGIR Conference on Research and Development in Information Retrieval, 2021, p. 1239–1248.

[65]. Jin W, Derr T, Liu H, Wang Y, Wang S, Liu Z, and Tang J, “Self-supervised learning on graphs: 
Deep insights and new direction,” arXiv preprint arXiv:2006.10141, 2020.

[66]. Ganin Y and Lempitsky V, “Unsupervised domain adaptation by backpropagation,” in 
International Conference on Machine Learning. PMLR, 2015, pp. 1180–1189.

[67]. Sun Y, Tzeng E, Darrell T, and Efros AA, “Unsupervised domain adaptation through self-
supervision,” arXiv preprint arXiv:1909.11825, 2019.

[68]. Hjelm RD, Fedorov A, Lavoie-Marchildon S, Grewal K, Bachman P, Trischler A, and Bengio 
Y, “Learning deep representations by mutual information estimation and maximization,” in 
International Conference on Learning Representations, 2019.

[69]. Donsker MD and Varadhan SRS, “Asymptotic evaluation of certain markov process expectations 
for large time. iv,” Communications on Pure and Applied Mathematics, vol. 36, pp. 183–212, 
1983.

[70]. Belghazi MI, Baratin A, Rajeshwar S, Ozair S, Bengio Y, Courville A, and Hjelm D, “Mutual 
information neural estimation,” in Proceedings of the 35th International Conference on Machine 
Learning, vol. 80. PMLR, 2018, pp. 531–540.

[71]. Nowozin S, Cseke B, and Tomioka R, “f-gan: Training generative neural samplers using 
variational divergence minimization,” in Advances in Neural Information Processing Systems, 
2016, pp. 271–279.

[72]. Gutmann M and Hyvärinen A, “Noise-contrastive estimation: A new estimation principle for 
unnormalized statistical models,” in Proceedings of the Thirteenth International Conference on 
Artificial Intelligence and Statistics, 2010, pp. 297–304.

[73]. Sohn K, “Improved deep metric learning with multi-class n-pair loss objective,” in Advances in 
Neural Information Processing Systems, vol. 29, 2016, pp. 1857–1865.

[74]. Schroff F, Kalenichenko D, and Philbin J, “Facenet: A unified embedding for face recognition 
and clustering,” in Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, 2015, pp. 815–823.

[75]. Hoffer E and Ailon N, “Deep metric learning using triplet network,” in International workshop on 
similarity-based pattern recognition. Springer, 2015, pp. 84–92.

[76]. Khosla P, Teterwak P, Wang C, Sarna A, Tian Y, Isola P, Maschinot A, Liu C, and Krishnan 
D,“Supervised contrastive learning,” Advances in Neural Information Processing Systems, vol. 
33, 2020.

[77]. Rendle S, Freudenthaler C, Gantner Z, and Schmidt-Thieme L, “Bpr: Bayesian personalized 
ranking from implicit feedback,” in Proceedings of the Twenty-Fifth Conference on Uncertainty 
in Artificial Intelligence, 2009, p. 452–461.

Xie et al. Page 31

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[78]. Jiang X, Jia T, Fang Y, Shi C, Lin Z, and Wang H, “Pre-training on large-scale heterogeneous 
graph,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and 
Data Mining, 2021, pp. 756–766.

[79]. Wang X, Liu N, Han H, and Shi C, “Self-supervised heterogeneous graph neural network with 
co-contrastive learning,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge 
Discovery and Data Mining, 2021, pp. 1726–1736.

[80]. Tian Y, Sun C, Poole B, Krishnan D, Schmid C, and Isola P, “What makes for good views for 
contrastive learning?” arXiv preprint arXiv:2005.10243, 2020.

[81]. Suresh S, Li P, Hao C, and Neville J, “Adversarial graph augmentation to improve graph 
contrastive learning,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[82]. Xu D, Cheng W, Luo D, Chen H, and Zhang X, “Infogcl: Information-aware graph contrastive 
learning,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[83]. Wei C, Shen K, Chen Y, and Ma T, “Theoretical analysis of self-training with deep networks on 
unlabeled data,” in International Conference on Learning Representations, 2021.

[84]. Kramer MA, “Nonlinear principal component analysis using autoassociative neural networks,” 
AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

[85]. Hamilton WL, “Graph representation learning,” Synthesis Lectures on Artificial Intelligence and 
Machine Learning, vol. 14, no. 3, pp. 1–159, 2020.

[86]. Hamilton W, Ying Z, and Leskovec J, “Inductive representation learning on large graphs,” in 
Advances in Neural Information Processing Systems, 2017, pp. 1024–1034.

[87]. Kim D and Oh A, “How to find your friendly neighborhood: Graph attention design with 
self-supervision,” in International Conference on Learning Representations, 2021.

[88]. Jin W, Derr T, Wang Y, Ma Y, Liu Z, and Tang J, “Node similarity preserving graph convolutional 
networks,” in Proceedings of the 14th ACM International Conference on Web Search and Data 
Mining. ACM, 2021.

[89]. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, and Bottou L, “Stacked denoising 
autoencoders: Learning useful representations in a deep network with a local denoising 
criterion.” Journal of Machine Learning Research, vol. 11, no. 12, 2010.

[90]. Taubin G, “A signal processing approach to fair surface design,” in Proceedings of the 22nd 
annual conference on Computer graphics and interactive techniques, 1995, pp. 351–358.

[91]. You Y, Chen T, Wang Z, and Shen Y, “When does self-supervision help graph convolutional 
networks?” in International Conference on Machine Learning. PMLR, 2020, pp. 10 871–10 880.

[92]. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, and 
Bengio Y, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, 
vol. 27, 2014, pp. 2672–2680.

[93]. Jin W, Barzilay R, and Jaakkola T, “Junction tree variational autoencoder for molecular graph 
generation,” in International Conference on Machine Learning. PMLR, 2018, pp. 2323–2332.

[94]. Li J, Li TYJ, Zhang H, Zhao K, Rong Y, and Cheng H, “Dirichlet graph variational autoencoder,” 
in Advances in Neural Information Processing Systems, 2020.

[95]. Radford A, Wu J, Child R, Luan D, Amodei D, and Sutskever I, “Language models are 
unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[96]. Hotelling H, “Relations between two sets of variates,” in Breakthroughs in statistics. Springer, 
1992, pp. 162–190.

[97]. Hardoon DR, Szedmak S, and Shawe-Taylor J, “Canonical correlation analysis: An overview 
with application to learning methods,” Neural computation, vol. 16, no. 12, pp. 2639–2664, 2004. 
[PubMed: 15516276] 

[98]. Zbontar J, Jing L, Misra I, LeCun Y, and Deny S, “Barlow twins: Self-supervised learning via 
redundancy reduction,” in International Conference on Machine Learning. PMLR, 2021, pp. 12 
310–12 320.

[99]. Tishby N, Pereira FC, and Bialek W, “The information bottleneck method,” in Proceedings of 
the 37-th Annual Allerton Conference on Communication, Control and Computing, 1999, pp. 
368–377.

Xie et al. Page 32

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[100]. Li Q, Han Z, and Wu X-M, “Deeper insights into graph convolutional networks for semi-
supervised learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 
no. 1, 2018.

[101]. Caron M, Bojanowski P, Joulin A, and Douze M, “Deep clustering for unsupervised learning 
of visual features,” in Proceedings of the European Conference on Computer Vision, 2018, pp. 
132–149.

[102]. Morris C, Kriege NM, Bause F, Kersting K, Mutzel P, and Neumann M, “Tudataset: A 
collection of benchmark datasets for learning with graphs,” in ICML 2020 Workshop on Graph 
Representation Learning and Beyond, 2020.

[103]. Wale N and Karypis G, “Comparison of descriptor spaces for chemical compound retrieval and 
classification,” in Sixth International Conference on Data Mining, 2006, pp. 678–689.

[104]. Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, and Hansch C, “Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds correlation with 
molecular orbital energies and hydrophobicity,” Journal of Medicinal Chemistry, vol. 34, no. 2, 
pp. 786–797, 1991. [PubMed: 1995902] 

[105]. Sterling T and Irwin JJ, “Zinc 15–ligand discovery for everyone,” Journal of Chemical 
Information and Modeling, vol. 55, no. 11, pp. 2324–2337, 2015. [PubMed: 26479676] 

[106]. Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ, and Kriegel H-P, 
“Protein function prediction via graph kernels,” Bioinformatics, vol. 21, pp. i47–i56, 2005. 
[PubMed: 15961493] 

[107]. Dobson PD and Doig AJ, “Distinguishing enzyme structures from non-enzymes without 
alignments,” Journal of Molecular Biology, vol. 330, no. 4, pp. 771–783, 2003. [PubMed: 
12850146] 

[108]. Yanardag P and Vishwanathan S, “Deep graph kernels,” in Proceedings of the 21th ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, p. 1365–
1374.

[109]. Yang Z, Cohen W, and Salakhudinov R, “Revisiting semi-supervised learning with graph 
embeddings,” in International conference on machine learning. PMLR, 2016, pp. 40–48.

[110]. McCallum AK, Nigam K, Rennie J, and Seymore K, “Automating the construction of internet 
portals with machine learning,” Information Retrieval, vol. 3, no. 2, pp. 127–163, 2000.

[111]. Giles CL, Bollacker KD, and Lawrence S, “Citeseer: An automatic citation indexing system,” 
in Proceedings of the Third ACM Conference on Digital Libraries. Association for Computing 
Machinery, 1998, p. 89–98.

[112]. Sen P, Namata G, Bilgic M, Getoor L, Galligher B, and Eliassi-Rad T, “Collective classification 
in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[113]. Shchur O, Mumme M, Bojchevski A, and Günnemann S, “Pitfalls of graph neural network 
evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[114]. Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu B-J, and Wang K, “An overview of microsoft 
academic service (MAS) and applications,” in Proceedings of the 24th international conference 
on world wide web, 2015, pp. 243–246.

[115]. McAuley J, Targett C, Shi Q, and Van Den Hengel A, “Image-based recommendations on styles 
and substitutes,” in Proceedings of the 38th international ACM SIGIR conference on research 
and development in information retrieval, 2015, pp. 43–52.

[116]. Zeng H, Zhou H, Srivastava A, Kannan R, and Prasanna V, “GraphSAINT: Graph sampling 
based inductive learning method,” in International Conference on Learning Representations, 
2020.

[117]. Zitnik M and Leskovec J, “Predicting multicellular function through multi-layer tissue 
networks,” Bioinformatics, vol. 33, no. 14, pp. i190–i198, 2017. [PubMed: 28881986] 

[118]. Zitnik M, Feldman MW, Leskovec J et al. , “Evolution of resilience in protein interactomes 
across the tree of life,” Proceedings of the National Academy of Sciences, vol. 116, no. 10, pp. 
4426–4433, 2019.

[119]. Liu M, Luo Y, Wang L, Xie Y, Yuan H, Gui S, Yu H, Xu Z, Zhang J, Liu Y, Yan K, Liu H, Fu 
C, Oztekin BM, Zhang X, and Ji S, “DIG: A turnkey library for diving into graph deep learning 
research,” Journal of Machine Learning Research, vol. 22, no. 240, pp. 1–9, 2021.

Xie et al. Page 33

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[120]. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein 
N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy 
S, Steiner B, Fang L, Bai J, and Chintala S, “Pytorch: An imperative style, high-performance 
deep learning library,” in Advances in Neural Information Processing Systems 32, 2019, pp. 
8024–8035.

[121]. Fey M and Lenssen JE, “Fast graph representation learning with PyTorch Geometric,” in ICLR 
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[122]. You J, Ying R, Ren X, Hamilton W, and Leskovec J, “GraphRNN: Generating realistic graphs 
with deep auto-regressive models,” in Proceedings of the 35th International Conference on 
Machine Learning, vol. 80. PMLR, 2018, pp. 5708–5717.

[123]. Shi C*, Xu M*, Zhu Z, Zhang W, Zhang M, and Tang J, “Graphaf: a flow-based autoregressive 
model for molecular graph generation,” in International Conference on Learning Representations, 
2020.

[124]. Zang C and Wang F, “Moflow: An invertible flow model for generating molecular graphs,” in 
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and 
Data Mining, 2020, p. 617–626.

[125]. Luo Y, Yan K, and Ji S, “Graphdf: A discrete flow model for molecular graph generation,” in 
Proceedings of the 38th International Conference on Machine Learning, vol. 139. PMLR, 2021, 
pp. 7192–7203.

[126]. Li P, Wang J, Li Z, Qiao Y, Liu X, Ma F, Gao P, Song S, and Xie G, “Pairwise 
half-graph discrimination: A simple graph-level self-supervised strategy for pre-training graph 
neural networks,” in Proceedings of the Thirtieth International Joint Conference on Artificial 
Intelligence, 2021, pp. 2694–2700.

[127]. Yuan H, Yu H, Gui S, and Ji S, “Explainability in graph neural networks: A taxonomic survey,” 
arXiv preprint arXiv:2012.15445, 2020.

[128]. Xie Y, Katariya S, Tang X, Huang E, Rao N, Subbian K, and Ji S, “Task-agnostic graph 
explanations,” arXiv preprint arXiv:2202.08335, 2022.

Xie et al. Page 34

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A comparison between the contrastive model and the predictive model in general.

Xie et al. Page 35

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
An overview of self-supervised learning methods. We categorize self-supervised learning 

methods into two branches: contrastive methods and predictive methods. For contrastive 

methods, we further divide them regarding either views generation or objective. From 

the aspect of views generation, Infograph [41], DGI [38] and GMI [42] contrast views 

between nodes and graph; Hu et al. [43] and Jiao et al. [44] contrast views between nodes 

and subgraph; MVGRL [10] and GCA [45] contrast views between nodes and subgraph 

or structurally transformed graph; GRACE [46] and BGRL [47] contrast views between 

nodes and structurally transformed graph or featurally transformed graph. Above methods 

include node-level representation to generate local/global contrastive pairs. Dissimilarly, 

following methods use global representation only to generate global/global contrastive 

pairs. GCC [48] contrasts views between subgraphs; GraphCL [49] contrasts views of 

subgraphs and randomly transformed graphs. From aspect of objective, Infograph [41], 

DGI [38], Hu et al. [43], MVGRL [10] and GMI [42] employ Jensen-Shannon estimator; 

GCC [48], GraphCL [49], GRACE [46] and GCA [45] employ InfoNCE (NT-Xent); Jiao 

et al. [44] use other MI estimators. For the predictive methods, we further divide them 

into graph reconstruction, property prediction, self-training, and invariance regularization 

methods. Under graph reconstruction, GAE [39], MGAE [50], and GALA [51] utilize the 

non-probabilistic graph autoencoder; VGAE [39], ARGA/ARVGA [52], and SIG-VAE [53] 

utilize variational graph autoencoder; GPT-GNN [54] applies autoregressive reconstruction. 

Under property prediction, S2GRL [55] performs the prediction of k-hop connectivity 

as a statistical property; GROVER [56] performs predictions of a statistical contextual 

property and a domain-knowledge involved property; Hwang et al. [57] predict a topological 

property, meta-path. M3S [58] and ICF-GCN [59] employs self-training and node clustering 

to provide self-supervision. BGRL [47], CCA-SSG [60], and LaGraph [61] derive self-

supervised objectives involving invariance regularization without requiring negative pairs. 

SSL methods for heterogeneous graphs are marked with underlines. We discuss and 

Xie et al. Page 36

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



summarize SSL methods for heterogeneous graphs and dynamic graphs in Appendix A. 

We further discuss and compare contrastive and predictive methods in Appendix B.

Xie et al. Page 37

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Paradigms for self-supervised learning. Top:in unsupervised representation learning, 

graphs only are used to train the encoder through the self-supervised task. The learned 

representations are fixed and used in downstream tasks such as linear classification and 

clustering. Middle: unsupervised pre-training trains the encoder with unlabeled graphs 

by the self-supervised task. The pre-trained encoder’s parameters are then used as the 

initialization of the encoder used in supervised fine-tuning for downstream tasks. Bottom: 

in auxiliary learning, an auxiliary task with self-supervision is included to help learn the 

supervised main task. The encoder is trained through both the main task and the auxiliary 

task simultaneously.

Xie et al. Page 38

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The general framework of contrastive methods. A contrastive method can be determined 

by defining its views generation, encoders, and objective. Different views can be generated 

by a single or a combination of instantiations of three types of transformations. Commonly 

employed transformations include node attribute masking as feature transformation, edge 

perturbation and diffusion as structure transformations, and uniform sampling, ego-nets 

sampling, and random walk sampling as sample-based transformations. Note that we 

consider a node representation in node-graph contrast [13, 38, 41] as a graph view with 

ego-nets sampling followed by a node-level encoder. For graph encoders, most methods 

employ graph-level encoders and node-level encoders are usually used in node-graph 

contrast. Common contrastive objectives include Donsker-Varadhan representation, Jensen-

Shannon estimator, InfoNCE, and other non-bound objectives. An estimator is parametric if 

projection heads are employed, and is non-parametric otherwise. Examples of three specific 

contrastive learning methods are illustrated in the figure. Red lines connect options used in 

MVGRL [10]; green lines connect options adopted in GraphCL [49]; yellow lines connect 

options taken in GCC [48].

Xie et al. Page 39

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Different ways of using encoders during inference. Top: encoders for multiple views are 

used and output representations are merged by combinations such as summation [10] or 

concatenation. Middle: only the main encoder [47] and the corresponding view are used 

during inference. Bottom: the given graph is directly input to the only encoder [48, 49] 

shared by all views to compute its representation.

Xie et al. Page 40

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Illustrations of three predictive learning frameworks. For predictive learning methods, self-

generated labels provide self-supervision to train the encoder together with prediction heads 

(or the decoder). We conclude predictive learning methods into three categories by how 

the prediction targets are obtained. Top left: the prediction targets in graph reconstruction 

are certain parts of given graphs. For example, GAE [39] performs reconstruction on 

the adjacency matrix, and MGAE [50] performs reconstruction on randomly corrupted 

node attributes. Top right: the supervision comes from the invariance regularization and 

additional constraints that are derived based on different theoretical frameworks and promote 

the learning of informative representations. Bottom left: the prediction targets in property 

prediction models are implicit and informative properties of given graphs. For example, 

S2GRL [55] predicts k-hop connectivity between two given nodes. Moreover, GROVER [56] 

utilizes motifs (functional groups) of molecules based on domain-knowledge as prediction 

targets. Bottom right: the prediction targets in self-training are pseudo-labels. In M3S [58], 

the graph neural network is trained iteratively on a pseudo-label set initialized as the set 

of given ground-truth labels. Clustering and prediction are conducted to update the pseudo-

label set based on which a fresh graph neural network is then trained. Such operations are 

performed multiple times as multi-stage.

Xie et al. Page 41

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xie et al. Page 42

TA
B

L
E

 1

Su
m

m
ar

y 
an

d 
st

at
is

tic
s 

of
 c

om
m

on
 g

ra
ph

 d
at

as
et

s 
fo

r 
se

lf
-s

up
er

vi
se

d 
le

ar
ni

ng
. U

ns
up

er
vi

se
d 

cl
as

si
fi

ca
tio

n 
re

fe
rs

 to
 p

er
fo

rm
in

g 
un

su
pe

rv
is

ed
 

re
pr

es
en

ta
tio

n 
le

ar
ni

ng
 f

ol
lo

w
ed

 b
y 

lin
ea

r 
cl

as
si

fi
ca

tio
n.

D
at

as
et

s
L

ea
rn

in
g 

ta
sk

s
Ta

sk
 le

ve
l

C
at

eg
or

y
# 

gr
ap

hs
A

vg
. n

od
es

A
vg

. e
dg

es
# 

cl
as

se
s

N
C

I1

U
ns

up
er

vi
se

d 
or

 s
em

i-
su

pe
rv

is
ed

 c
la

ss
if

ic
at

io
n

G
ra

ph

Sm
al

l m
ol

ec
ul

es
41

10
29

.8
7

32
.3

0
2

M
U

T
A

G
Sm

al
l m

ol
ec

ul
es

11
13

17
.9

3
19

.7
9

2

P
T

C
-M

R
Sm

al
l m

ol
ec

ul
es

34
4

14
.2

9
14

.6
9

2

P
R

O
T

E
IN

S
B

io
in

fo
rm

at
ic

s 
(p

ro
te

in
s)

11
78

39
.0

6
72

.8
2

2

D
D

B
io

in
fo

rm
at

ic
s 

(p
ro

te
in

s)
18

8
28

4.
32

71
5.

66
2

C
O

L
L

A
B

So
ci

al
 n

et
w

or
ks

50
00

74
.4

9
24

57
.7

8
2

R
D

T-
B

So
ci

al
 n

et
w

or
ks

20
00

42
9.

63
49

7.
75

2

R
D

T-
M

5K
So

ci
al

 n
et

w
or

ks
49

99
50

8.
52

59
4.

87
5

IM
D

B
-B

So
ci

al
 n

et
w

or
ks

10
00

19
.7

7
96

.5
3

2

B
B

B
P

U
ns

up
er

vi
se

d 
tr

an
sf

er
 le

ar
ni

ng
 f

or
 c

la
ss

if
ic

at
io

n
G

ra
ph

Sm
al

l m
ol

ec
ul

es
20

39
24

.0
5

25
.9

4
2

To
x2

1
Sm

al
l m

ol
ec

ul
es

78
31

18
.5

1
25

.9
4

12
 (

m
ul

ti-
la

be
l)

To
xC

as
t

Sm
al

l m
ol

ec
ul

es
85

75
18

.7
8

19
.2

6
16

7 
(m

ul
ti-

la
be

l)

SI
D

E
R

Sm
al

l m
ol

ec
ul

es
14

27
33

.6
4

35
.3

6
27

 (
m

ul
ti-

la
be

l)

C
lin

To
x

Sm
al

l m
ol

ec
ul

es
14

78
26

.1
3

27
.8

6
2

M
U

V
Sm

al
l m

ol
ec

ul
es

93
08

7
24

.2
3

26
.2

8
17

 (
m

ul
ti-

la
be

l)

H
IV

Sm
al

l m
ol

ec
ul

es
41

12
7

25
.5

3
27

.4
8

2

B
A

C
E

Sm
al

l m
ol

ec
ul

es
15

13
34

.1
2

36
.8

9
2

C
O

R
A

U
ns

up
er

vi
se

d 
or

 s
em

i-
su

pe
rv

is
ed

 c
la

ss
if

ic
at

io
n 

(t
ra

ns
du

ct
iv

e)

N
od

e/
L

in
k

C
ita

tio
n 

ne
tw

or
k

1
2,

70
8

5,
42

9
7

C
IT

E
SE

E
R

C
ita

tio
n 

ne
tw

or
k

1
3,

32
7

4,
73

2
6

P
U

B
M

E
D

C
ita

tio
n 

ne
tw

or
k

1
19

,7
17

44
,3

38
3

C
oa

ut
ho

r 
C

S

N
od

e

C
ita

tio
n 

ne
tw

or
k

1
18

,3
33

81
,8

94
15

C
oa

ut
ho

r 
P

hy
.

C
ita

tio
n 

ne
tw

or
k

1
34

,4
93

24
7,

96
2

5

A
m

az
on

 P
ho

to
s

E
-c

om
m

er
ce

 n
et

w
or

k
1

7,
65

0
11

9,
08

1
8

A
m

az
on

 C
om

p.
E

-c
om

m
er

ce
 n

et
w

or
k

1
13

,7
52

24
5,

86
1

10

P
P

I
U

ns
up

er
vi

se
d 

cl
as

si
fi

ca
tio

n 
(i

nd
uc

tiv
e)

N
od

e
B

io
in

fo
rm

at
ic

s 
(p

ro
te

in
s)

24
56

,9
44

81
8,

71
6

12
1 

(m
ul

ti-
la

be
l)

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xie et al. Page 43

D
at

as
et

s
L

ea
rn

in
g 

ta
sk

s
Ta

sk
 le

ve
l

C
at

eg
or

y
# 

gr
ap

hs
A

vg
. n

od
es

A
vg

. e
dg

es
# 

cl
as

se
s

F
lic

kr
So

ci
al

 n
et

w
or

k
1

89
,2

50
89

9,
76

5
7

R
ed

di
t

So
ci

al
 n

et
w

or
k

1
23

2,
96

5
11

,6
06

,9
19

50

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 February 01.


	Abstract
	Introduction
	Problem Formulation
	Notations
	Paradigms for Self-Supervised Learning

	Contrastive Learning
	Overview of Contrastive Learning Framework
	Contrastive Objectives based on MI Estimations
	Donsker-Varadhan Estimator
	Jensen-Shannon Estimator
	InfoNCE
	Other Mutual Information Estimators
	Projection Heads: Parametric MI Estimation

	Graph View Generation
	Feature Transformations
	Structure Transformations
	Sampling-Based Transformations
	Discussions of Graph View Generation


	Predictive Learning
	Graph Reconstruction
	Non-Probabilistic Graph Autoencoders
	Variational Graph Autoencoders
	Autoregressive Reconstruction

	Representation Invariance Regularization
	Graph Property Prediction
	Self-Training with Pseudo-Labels

	Summary of Learning Tasks and Datasets
	Graph-Level Inductive Learning
	Chemical Molecular Property Prediction.
	Protein Biological Function Prediction.
	Social Network Property Prediction.

	Node-Level Transductive Learning
	Node-Level Inductive Learning

	An Open-Source Library
	Challenges and Future Directions
	The optimal views generation w.r.t specific downstream tasks are still unclear for contrastive methods.
	There is no unified theory or theoretical framework for predictive methods.
	Richer domain knowledge can be better utilized as self-supervision.
	Scaling-up and efficiency issues are to be addressed.
	Explainability of SSL for GNN requires further studies.

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	TABLE 1

