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• The ratio of wastewater SARS-CoV-2 to
COVID-19 cases varied over time and
space.

• Simple linear regression models fail to re-
flect this dynamic relationship.

• Neither normalization of wastewater data
nor of case data improved correlations.

• Less SARS-CoV-2 RNA was measured in
wastewater per COVID-19 case during
Omicron BA.1.

• Viral shedding dynamics, diagnostic test-
ing, and temporal offset are key factors.
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During the COVID-19 pandemic, wastewater-based surveillance has been used alongside diagnostic testing to monitor
infection rates. With the decline in cases reported to public health departments due to at-home testing, wastewater
data may serve as the primary input for epidemiological models, but training these models is not straightforward.
We explored factors affecting noise and bias in the ratio betweenwastewater and case data collected in 26 sewersheds
in California from October 2020 to March 2022. The strength of the relationship between wastewater and case data
appeared dependent on sampling frequency and population size, but was not increased by wastewater normalization
to flow rate or case count normalization to testing rates. Additionally, the lead and lag times between wastewater and
case data varied over time and space, and the ratio of log-transformed individual cases to wastewater concentrations
changed over time. This ratio decreased between the Epsilon/Alpha and Delta variant surges of COVID-19 and in-
creased during the Omicron BA.1 variant surge, and was also related to the diagnostic testing rate. Based on this anal-
ysis, we present a framework of scenarios describing the dynamics of the case to wastewater ratio to aid in data
handling decisions for ongoing modeling efforts.
1 February 2023; Accepted 2 Feb
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1. Introduction

The COVID-19 pandemic stimulated worldwide research on how
wastewater-based surveillance of SARS-CoV-2 RNA can be used to monitor
infections at the population level. Many studies have found strong correla-
tions between SARS-CoV-2 wastewater RNA samples and COVID-19 cases
ruary 2023
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via diagnostic testing (Bonanno Ferraro et al., 2021; Cluzel et al., 2022;
Greenwald et al., 2021; Ho et al., 2021), and routinewastewater surveillance
has supported decision-makers in choosing appropriate public health re-
sponses (Diamond et al., 2022; Harris-Lovett et al., 2022; Hopkins et al.,
2023).With thewidespread availability of at-home tests and decreased sever-
ity of disease due to vaccination and/or prior infection, the reliability of re-
ported case data has decreased substantially since December 2021 (Usher,
2022). To prepare for new surges due to emerging variants or waning immu-
nity there is a need to build forecasting and nowcasting models that use
wastewater data as a main input (Huisman et al., 2022; Soller et al., 2022).
For training, thesemodels require high-quality paired retrospective wastewa-
ter and diagnostic testing data. However, both thewastewater and case count
data in these retrospective datasets are imperfect, necessitating careful con-
sideration of factors contributing to noise and bias prior to modeling.

1.1. Causes of inaccuracies in wastewater data

Concentration of SARS-CoV-2 in wastewater is affected by the number
of infected individuals and their respective viral shedding dynamics, but
also by precipitation events, infiltration and inflow (McCall et al., 2022), in-
dustrial flow contributions, and many other factors (Soller et al., 2022;
Wade et al., 2022; de Araújo et al., 2023; Mitranescu et al., 2022). Flow
rates at wastewater sampling sites can be used to adjust for dilution, but
flow data is not always available, especially for samples collected from
manholes or small wastewater treatment facilities where no flow meter is
present. Additionally, the heterogeneity of sewage samples and the degrada-
tion of SARS-CoV-2 in sewers (Bivins et al., 2020) cannot be accounted for by
flownormalization. To address these sources of variabilitymany studiesmea-
sure cross-assembly phage (crAssphage) or Pepper Mild Mottle Virus
(PMMoV) as biological human fecal indicators (Greenwald et al., 2021;
Farkas et al., 2019; Langeveld et al., 2021). Physicochemical parameters
such as total nitrogen, ammonia, conductivity, total suspended solids (TSS),
and biological oxygen demand (Hoar et al., 2022; Yaniv et al., 2021) can
also be used to account for variation in wastewater strength, but they may
be substantially affected by industrial inputs (Carducci et al., 2020). Although
theUSCDChas published recommendations on thewastewater sampling pro-
cess and established a reporting database (CDC, n.d.), there is currently no
overall standard for wastewater SARS-CoV-2 sampling and analysis. Thus,
the causes of noise need to be considered individually for each dataset.

1.2. Causes of inaccuracies in diagnostic testing data

Diagnostic testing data also includes uncertainty, which may stem from
biased allocation of and access to tests across the population, variation in
reporting date assigned to each case (e.g. symptom onset, testing date, or
date of positive test result), underreporting of at-home test results, and fluc-
tuations in testing rates across time and space (Noh and Danuser, 2021). In
2020, the WHO recommended a threshold of 5 % test positivity as a metric
of sufficient testing. However, this threshold is only valid under certain con-
ditions of contact tracing and sufficient testing of symptomatic individuals,
and may only reflect the beginning stages of the pandemic (World Health
Organization, 2020). Generally, case data may be less reliable when testing
rates are low, and as of May 26, 2022, Noh and Danuser (2021) estimated a
total rate of undetected cases of approximately 55 % for California (Noh
and Danuser, 2021). Modeling testing bias was shown to improve case
data accuracy when compared to seroprevalence (Chiu and Ndeffo-Mbah,
2021), but normalization in wastewater testing studies is typically focused
only on accounting for wastewater strength. Although the importance of
assessing testing rates prior to modeling was demonstrated in a recent
study (Daza-Torres et al., 2022), to our knowledge, few wastewater studies
have directly addressed bias in diagnostic testing data.

1.3. Correlation and the ratio between wastewater and case data

Prior research has used correlation between wastewater and case data
as a readout for the effectiveness of normalization methods, for
2

determination of lead/lag times between datasets, and as a means to state
the value of wastewater monitoring in general (Greenwald et al., 2021;
Ho et al., 2021; Mitranescu et al., 2022; Feng et al., 2021; Maal-Bared
et al., 2023). However, statistical caveats of this analysis are often ignored
– for example the fact that the correlation of two variables that measure the
same phenomenon in a time series is inflated due to autocorrelation
(Hamed, 2009; Wolfe et al., 2021). Critically, the correlation coefficient re-
flects the global relationship between the diagnostic testing andwastewater
surveillance data and does not offer an insight into the development of this
relationship over time. For this purpose, the ratio of log-scaled COVID-19
cases over log-scaled wastewater RNA concentrations may be more appro-
priate. This ratio should be representative of shedding per person assuming
perfect diagnostic testing and accurate wastewater data (not accounting for
SARS-CoV-2 RNA decay in the sewer). Log-scaling reduces extreme values
in the datasets and mimics a linear relationship between the variables, as
they are not normally distributed (Hopkins et al., 2023). Several studies
have proposed using this ratio for analysis, and have reported values be-
tween 0.24 and 0.39, or up to 0.67 after flow normalization (Wolfe et al.,
2021; Nourbakhsh et al., 2022; Rodríguez Rasero et al., 2022; Zdenkova
et al., 2022). These studies either report an average measured value for
this ratio (Wolfe et al., 2021; Zdenkova et al., 2022) or investigate temporal
changes based on model data (Nourbakhsh et al., 2022; Rodríguez Rasero
et al., 2022), however, time-series analysis of this ratio has not been per-
formed on real-world data.

1.4. Study objectives

The goal of this study was to investigate the nature of the relationship
between wastewater and case data over space and time to provide a basis
for future modeling efforts. We present a large, curated dataset with waste-
water and case data collected in California during the first two years of the
COVID-19 pandemic, when case data quality was high. Our analyses reveal
the instability of the relationship between wastewater and case counts and
identify three main variables that could affect models for predicting cases
from wastewater: dynamic lead/lag, changes in fecal shedding due to
viral variants, and changes in reporting of individual cases to public health
departments.

2. Materials& methods

2.1. Wastewater sample collection and analysis

Raw wastewater samples (n = 2480) were collected via 24-h flow- or
time-weighted composite samplers from 26 sewersheds in California be-
tween 1 and 5 times per week (Tables S1, S2). All sewer systems had sepa-
rate storm sewers, with the exception of system D, where wastewater and
storm sewers were combined. Sampling dates ranged between October 2,
2020 and June 29, 2022, although not all sewersheds were sampled for
the full time period. Sample collection points were at wastewater treatment
plant influent (“sewersheds”) and at pump stations and manholes (“sub-
sewersheds”). Samples were aliquoted (40 mL) into tubes containing the
4S method lysis mixture, shipped overnight to UC Berkeley, and analyzed
according to the laboratory procedure described by Kantor et al. (2022).
Analysis used the 4S method for total RNA extraction (Whitney et al.,
2021) followed by RT-qPCR for SARS-CoV-2 CDC N1, Pepper Mild Mottle
Virus, and Bovine Coronavirus (Greenwald et al., 2021). Quality controls
included extraction negative controls, duplicate extractions, extraction
spike-in controls (Bovine Coronavirus), triplicate RT-qPCR reactions, no-
template controls, and standard curves, as described in Kantor et al.
(2022). Data not passing quality control were removed and were replaced
with repeated analyses wherever possible.

2.2. Wastewater data preparation

Wastewater data were preprocessed as previously described (Kantor
et al., 2022). Briefly, RT-qPCR outliers were removed, Cq values were
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converted to gene copy numbers using an aggregated standard curve, RT-
qPCR replicates were combined by taking the geometric mean, and sample
weight was used to calculate the gene copies per milliliter of wastewater.
Extraction replicates were combined by taking the geometric mean. Five
outliers that could be directly attributed to changes in plant operations or
autosampler failures were manually removed.

The wastewater concentration was normalized by flow to reduce the ef-
fects of dilution by precipitation, groundwater infiltration, and industrial
wastewater. Precipitation data for the years 2020–2022 were downloaded
from the NOAA (National Oceanic and Atmospheric Administration)
website for each county (Menne et al., 2012). Using this dataset, we calcu-
lated the median dry flow for each sewershed by taking the median of daily
flow rates for all days that were recorded as dry (precipitation <0.2 in.)
within the county. We then used this median dry flow to recalculate the
SARS-CoV-2 RNA concentration in the wastewater and removed the indus-
trial proportion of flow estimated by the wastewater agencies from the
daily flow, as in Eq. (1) (Method 1). A second variation on this method
(Method 2) entailed normalizing values only for days on which precipita-
tion occurred. For Method 2, values were normalized according to Eq. (1)
to offset a potential dilution and remove the industrial flow proportion,
and all other values were normalized according to Eq. (2) to remove only
the industrial flow proportion. We tested different time frames of up to
three days after rain events to account for potential delays in the effect of
precipitation on the dilution of the signal, however, including only the
day of the rain event resulted in the highest correlations (not shown).

c normalizedð Þ ¼ c rawð Þ
100% � f industrial

∗
q

qdry median
(1)

c normalizedð Þ ¼ c rawð Þ
100% � f industrial

(2)

where c(normalized) is the flow-normalized RNA concentration (gc/mL), c
(raw) is the measured SARS-CoV-2 RNA concentration (gc/mL), q is the
daily flow (MGD), qdry median is the median dry flow (MGD), findustrial is
the percentage of total flow estimated to come from industrial sources.

Normalization with PMMoV, TSS and conductivity was performed ac-
cording to the following Eq. (3).

c normalizedð Þ ¼ c rawð Þ � np medianð Þ
np rawð Þ ð3Þ

where c(normalized) is the normalized SARS-CoV-2 RNA concentration
(gc/mL), c(raw) is the measured SARS-CoV-2 RNA concentration (gc/
mL), np(raw) is the concentration of the normalization parameter, and np
(median) is the median concentration of the normalization parameter.

Previous studies recommend applying a 7-day or 10-day moving aver-
age to the wastewater data (Daza-Torres et al., 2022). However, as the sam-
pling frequencies in our dataset varied over time and space, lowess
smoothing and interpolation was chosen for analysis of lag and lead times
and for data visualization (Greenwald et al., 2021). The smoothing coeffi-
cient alpha was defined as alpha = X/n, where n was the total number of
data points at a given site. We note that because lowess smoothing depends
on the total number and density of data points, it may have led to slightly
different effects on data from different sites. Unless stated, other analyses
were performed on the original wastewater dataset to maintain the integ-
rity of the recorded data.

2.3. COVID-19 case data collection and preparation

Masked daily case counts per sewershed were provided by the Califor-
nia Department of Public Health, based on sewershed boundaries provided
by wastewater agencies. Cases were attributed to the earlier of 1) the date
of diagnostic testing or 2) the reported date of first symptoms, when both
dates were available. Sewershed population estimates were based on re-
ports by the wastewater agencies and, if unavailable, government census
3

data (Table S1). Daily case counts were masked below 3 cases for
sewersheds representing populations of 200,000 or less, and below 5
cases for populations of 50,000 or less, but instances of zero cases were re-
ported as zero. During data preparation, masked values were filledwith the
mean of the masked ranges (Table S3). Case counts and testing rates were
normalized to a population of 100,000 and a centered 7-day moving aver-
age value was calculated to smooth weekly periodicity. For log-scaled anal-
yses, days with zero average cases were dropped prior to analysis.

2.4. Normalization of case data to account for diagnostic testing rates

County-level diagnostic testing rate data were acquired from publicly
available sources (COVID-19 Time-Series Metrics by County and State,
2022). In order to compensate for fluctuations in how accurately the case
count data reflected the true incidence of infection, we adjusted the re-
ported cases to the diagnostic testing rates according to the following equa-
tions. Eq. (4) linearly inflates the daily cases according to the fraction of
utilized testing capacity on a given day. Eq. (5) compensates for a positivity
rate bias as defined by Chiu and Ndeffo-Mbah (2021).

n0c ¼ nc
nt max

nt
ð4Þ

n0c ¼
p

n−0:5
t

� 100;where p ¼ nc
nt

ð5Þ

where nc’ is the adjusted number of cases, nc is the original number of cases,
nt is the number of tests, nt max is the maximum number of tests ever re-
ported on a single day within the study period, and p is the test positivity
rate. As described in Section 2.3, all values are normalized by sewershed
population size.

2.5. Data analysis

The data analysis pipeline was created in Python 3.7 using the Pandas
v1.3.5 and Numpy v1.21.6 libraries. The rank correlation of smoothed
daily cases with raw and normalized wastewater sampling data was quan-
tified for each sewershed using the Kendall's Tau b coefficient (SciPy
v1.7.3) (Greenwald et al., 2021). Autocorrelation and lowess smoothing
were calculated using Statsmodels v0.10.2, and data visualization was per-
formed using Plotnine v0.9.0.

For analyses of individual surges, the following timeframes were used:
the first major surge we observed (including Epsilon, Alpha, and other
minor variants) was defined from the start of the time series (October
2020) to April 15, 2021, the Delta surge from April 16 to November 26,
2021, and the Omicron BA.1 surge from November 27 to March 15, 2022
based on California Department of Public Health (CDPH, n.d.) and
COVID-CG (COVID CG, n.d.) and our wastewater sequencing data (unpub-
lished).

To assess the stability of the relationship of log-scaled COVID-19 cases
and log-scaled wastewater SARS-CoV-2 concentrations, we implemented
a linear regression model with Scikit-Learn v1.13 using these inputs during
the Epsilon/Alpha variant surge for sewersheds D1, D2, K, L, and M. This
model was then applied to the subsequent Delta and Omicron variant
surges and evaluated using the R2 goodness-of-fit parameter (Table S4).
The data analysis pipeline and all necessary datasets are available at GitHub
(github.com/RebeccaSchill/WBE).

3. Results and discussion

We analyzed the SARS-CoV-2 RNA concentration in 2480 wastewater
samples from 26 sewersheds sampled between 1 and 5 times per week
from approximately October 2020–April 2022. This data was paired with
sewershed-specific COVID-19 daily case counts and county-level diagnostic
testing rates and positivity rates. Populations of the sewersheds ranged
from 12,000 to 4 million, and flow rates ranged from 0.2 to 243 million

http://github.com/RebeccaSchill/WBE
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gallons per day (Table S1). Precipitation was infrequent (0% - 26% of days
in the time series for each site), due to a combination of drought and med-
iterranean climate in California.

3.1. Denoising via normalization of wastewater and case data

We first compared methods for removing noise from the wastewater
and case data. As previously described, denoising efficacy was evaluated
based on changes to Kendall's tau calculated for the relationship between
wastewater and case data (Table 1) (Greenwald et al., 2021; Zheng et al.,
2022). Flow normalization marginally improved the correlation for 14
sewersheds, but the effect of normalization was minimal, likely because
of infrequent precipitation (Table S5). Normalization of the wastewater
data from two major sewersheds (D1 and D2) to PMMoV, TSS, or conduc-
tivity also did not increase correlations with case data (Table 1, Table S6).
Other studies have shown that normalization of wastewater to PMMoV
can decrease noise, but successes have been inconsistent and appear to be
dependent on the laboratory method used for virus concentration and ex-
traction, as well as sewershed size (Graham et al., 2021; Kim et al., 2021;
Nagarkar et al., 2021), and possible dietary variation. Our laboratory
method for RNA extraction (4S, Whitney et al., 2021) lacked bead-
beating and therefore may not have achieved complete and consistent
lysis of PMMoV, required for accurate quantification.

Normalization of the sewershed-level case counts to the county-level di-
agnostic testing rate (Eq. (4)) reduced the strength of the correlation to
wastewater data. Accounting for the test positivity rate in addition to test-
ing rate in a bias function (Eq. (5)) resulted in a more modest decrease in
correlation (Table 1). This suggests that additional calibration of the testing
bias model (e.g. with regional seroprevalence data) is likely required.

3.2. The correlations between wastewater and case data differed by sewershed

Flow-normalized Kendall's tau for wastewater and case data from differ-
ent sewersheds exhibited a wide range, from 0.27 to 0.74 (Fig. 1). In gen-
eral, larger treatment plants with more frequent sampling and less
masking of individual case data showed the highest tau values (Table S3).
Meanwhile, smaller sewersheds appeared subject to higher noise, for sev-
eral possible reasons. First, when the total absolute number of infected indi-
viduals are low, as is often typical in small sewersheds, each individual
contributes a higher fraction of the total wastewater SARS-CoV-2 concen-
tration, and sampling effects (e.g. missing a flush) can create more noise
(Wade et al., 2022). Additionally, the effect of mobility (e.g. one infected
person entering or leaving the sewershed) (Gudra et al., 2022), variability
in personal water use, and dynamic viral shedding profiles (de Araújo
et al., 2023) are stronger.

Second, consistentwith recommendations from theUSCDC (Centers for
Disease Control and Prevention, 2022), we found that sewersheds with
fewer than 2 samples per week tended to produce weaker correlations,
and these were often smaller treatment facilities. This is in line with reports
of lower sampling capacities at smaller wastewater treatment plants (Hill
et al., 2022). Many of these small sewersheds also had fewer than 50 total
sampling events (Table S1). Additionally, we note that the time series of
wastewater and case counts were autocorrelated (Durbin-Watson statistic
d < 1.5 in all sewersheds), and autocorrelation may have increased with in-
creasing sampling frequency, affecting tau values differently in each
sewershed.
Table 1
Average Kendall's correlation of log-scaled values (for all chosen sewersheds) before and
and unsmoothed wastewater data. Averages represent all 26 sewersheds.

Wastewater data normalization metho

Case data normalization methods No normalization Flow (

No normalization 0.57 0.58
Normalized by testing capacity (Eq. (4)) 0.50 0.50
Normalized by testing bias (Eq. (5)) 0.54 0.54
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Third, a larger proportion of daily case data was masked in the smallest
sewersheds, with a median value of 45 % of data masked (Table S3). Two
sewersheds with a masking proportion > 95 % were removed from further
analyses. Lastly, within-sewershed fluctuations in diagnostic testing rates
may also have led to differences in wastewater-case correlation between
sewersheds (Lieberman-Cribbin et al., 2020) (see Section 3.6).Wewere un-
able to assess disparities in testing rates given that testing rate data were
available at the county level only, which may not be representative of indi-
vidual sewersheds. Overall, the collection of high-resolution datasets im-
proves the reliability of the relationship between case counts and
wastewater data and the accuracy of forecasting models (Vaughan et al.,
2023). These findings motivate policy to report detailed diagnostic testing
and COVID-19 case data and to provide support for smaller communities
to increase wastewater sampling frequency in locations where case data
may be the least accurate (Medina et al., 2022).

3.3. Lag between case data and wastewater data was dynamic over time and
space

Modeling work may need to take into consideration the lead/lag be-
tween case counts and wastewater data. As previous studies have reported
wastewater lead times over case data of between 0 and 14 days (Olesen
et al., 2021), we hypothesized that lead time could vary substantially by
sewershed and over time due to factors such as evolving virus variants, sew-
age travel distance, and access to and frequency of diagnostic testing (Bibby
et al., 2021). To assess lead/lag times, we first smoothed the wastewater
data to remove noise (see Methods; Section 2.2), then calculated the
cross-correlation Kendall's tau-b between the flow-normalized wastewater
data and case data shifted in each direction by 1 to 14 days (see Methods;
Fig. S1A). A wastewater lag/lead time between −3 days and + 4 days
was detected in four of the seven sewersheds that were sampled throughout
the entire time series, but the corresponding increases in Kendall's tau-b
were very low with a maximum increase of 3 %.

We next examinedwhether thewastewater lead/lag changed during pe-
riods when different variants predominated. Overall, varying wastewater
lead times from+1 to+13 dayswere observed in 12 of 17 sewersheds dur-
ing the Epsilon/Alpha variant-dominated surge. This lead time was also ob-
served in 14 out of 20 sewersheds during the Delta variant surge but faded
during the Omicron variant surge, where wastewater data lagged and led
case data in an equal number of sewersheds (Fig. S1B, S1C, S1D). The dy-
namic behavior of the time shift between wastewater and case data across
variants is demonstrated in detail at two sewersheds (D1 and K) in Fig. 2.
Notably, during the first surge we observed, the peaks in wastewater and
case data are not aligned, resulting in very long lead times. This is likely
due to a combination of testing fluctuations over the winter holidays and
the multiple overlapping surges of different variants (Epsilon, Alpha,
Gamma, and others). The wastewater lead time lessened significantly dur-
ing the Delta surge in both sewersheds and disappeared during theOmicron
surge. This aligns with previous reports of reduced wastewater lead times
after the Alpha surge (Hopkins et al., 2023; Xiao et al., 2022; de Araújo
et al., 2022).

The use of cross-correlation to determine lag/lead times between case
data and wastewater data is based on the assumption that there is a static
lag between the two datasets. Static lag could reasonably stem from near-
constant factors such as sewer transit time (constant within a sewershed)
or delay between infection and symptom onset that would trigger
after applying different normalization methods to 7-day moving average case data

ds

Method 1, Eq. (1)) Flow (Method 2, Eqs. (1) & (2)) PMMoV

0.57 0.47
0.49 0.12
0.53 0.14



Fig. 1. The Kendall's correlation coefficient between log-scaled cases and unsmoothed log-scaled wastewater SARS-CoV-2 RNA concentrations (y-axis) increased with
increasing sewershed population (x-axis) and was affected by weekly sampling frequency (point size) and by the fraction of case data that was masked (point color).

Fig. 2. Lag betweenwastewater and individual case data varied over time and between sewersheds. Flow-adjustedwastewater SARS-CoV-2 concentrations in gene copies per
milliliter (orange), COVID-19 cases per 100,000 people (blue), including a lowess smoother (alpha = 0.05) are shown for two sewersheds. Sewershed D1 (top) represents a
population of 750,000, with high sampling frequency, while sewershed K (bottom) represents 480,000 people with intermittently reduced sampling frequency. Vertical lines
indicate minima and maxima of the timeseries of cases (blue) and wastewater (orange). Labels indicate the wastewater lead time at the surge peak in days.
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diagnostic testing (assumed constant for each variant). However, our find-
ings of dynamic lag over time and across sewersheds suggest that other fac-
tors are at play. Wastewater sampling frequency, population-level
immunity, or changes in diagnostic testing strategy/availability differed
between surges and locations and likely affected lead times. Previous
studies have highlighted that lead time calculations need to be adapted
to different purposes, for example real-time decision-making versus ret-
rospective data analysis (Olesen et al., 2021). In this study, due to the
applied smoothing methods, lag calculations do not represent real-
time data availability, but instead reveal a potential delay in measurable
signal between wastewater and diagnostic testing. Our findings of dy-
namic lead times suggest that cross-correlation, and by extension, sim-
ple linear regression models (Table S4), are therefore insufficient for
describing the relationship between case and wastewater data for retro-
spective data analysis, and dynamic lead times will affect input data for
modeling.

3.4. The ratio of cases per wastewater RNAwas not constant over time and space

To explore the dynamic nature of the relationship between wastewater
and case data, we calculated the ratio of log(cases) per log(wastewater con-
centration) (see Fig. S2 for example). For five large sewersheds sampled
continuously throughout the analyzed time frame (Fig. 3), we found that
the magnitude of the ratio was different at each sewershed, likely affected
by the accuracy of the population estimates. The ratio also changed over
time: during the Epsilon/Alpha surge, the ratio remained stable overall be-
fore decreasing to a minimum just before the peak of the Delta surge. The
ratio then recovered and increased to a maximum during the first Omicron
surge. Towards the end of this surge, the ratio decreased once more. These
developments were similar at sewersheds D1, D2, and K, but less
Fig. 3.Ratio of log(cases per 100,000) over log(wastewater concentration) at sewershed
surges (separated by vertical gray lines). Smoothed lines were generated with lowess (alp
(0.55). For each sewershed shown, case data masking was below 5 % of all data points.
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pronounced or more stochastic in sewersheds L and M and others where
sampling was less frequent (Fig. 3; see Fig. S3 for all sewersheds).

3.5. Ratio of cases per wastewater RNA differed by variant

To test for the effect of evolving virus variants on wastewater surveil-
lance data, we calculated point estimates for the ratios in each sewershed
as follows: for each variant surge, we identified the maximum number of
cases per 100,000 people (centered 7-day average) and the maximum
lowess-smoothed wastewater concentration reported. Then, we calculated
the ratio by dividing the log-scaled maximum cases by the log-scaled max-
imum wastewater concentration. We could not isolate the Epsilon and
Alpha variants, as the surges partially coincided. Although our analysis
was limited to 5 sewersheds, we observed a significant increasing trend in
the ratio from the Delta variant to the Omicron variant (Fig. 4). The de-
crease between the Epsilon/Alpha and Delta variants could be observed
as well but the difference was not statistically significant. The ratio appears
consistently lower for sewershed K but sewershed-specific differences were
not significant (Kruskall-Wallis, p = 0.429).

Additionally, we found that a linear regression model trained to predict
case data from flow-normalized unsmoothed wastewater data for Alpha/
Epsilon surge deteriorated in fit during the Delta and Omicron BA.1 vari-
ants (see Table S4). Overall, these findings agree with the reports of in-
creased fecal and oro-nasopharyngeal viral loads during the Delta surge
(Li et al., 2022; Prasek et al., 2022) and with reduced fecal shedding ob-
served with the Omicron variant (Bloemen et al., 2022; Yuan et al.,
2022).While SARS-CoV-2 oro-nasopharyngeal viral loadwas reportedly re-
duced after vaccination (Bramante et al., 2022; Levine-Tiefenbrun et al.,
2021; McEllistrem et al., 2021), more research is needed to determine po-
tential effects of vaccination and prior infection on fecal shedding rates.
s D1 (n=262), D2 (n=244), K (n=172), L (n=121), andM (n=131), for three
ha= 0.05), and the dashed line represents themedian ratio across all 5 sewersheds
Two outliers were removed at sewershed M for visualization.

Image of Fig. 3


Fig. 4. The ratio of log(cases) over log(wastewater RNA) changes for each variant at sewersheds D1, D2, K, L, and M. The ratio was calculated from the peaks of the three
surges after lowess smoothing (alpha = 5 / total samples). The difference between the Omicron BA.1 variant and the other variants was statistically significant (Mann-
Whitney, * p = 0.032, ** p = 0.008), while the difference between the Epsilon/Alpha and other variants to the Delta variant was not (p = 0.421).
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3.6. Diagnostic testing rates influenced the cases-to-wastewater RNA ratio

Given the drop in the cases-to-wastewater RNA ratio during the pre-
Delta period, we hypothesized that changes in diagnostic testing dynamics
might influence this ratio. Indeed, we observed that low testing rates
corresponded with low ratios throughout the time series, including during
the pre-Delta trough (Fig. 5). Correlations between cases-to-wastewater ra-
tios and diagnostic testing rates over time were significant in several
sewersheds (Table S7). Notably, the strengths of these relationships
Fig. 5. Time series from 5 sewersheds (D1, D2, K, L,M) of themedianweekly COVID-19
mL) (middle) and the ratio between them (bottom). For each sewershed, for a given wee
color of the data points represents the daily diagnostic testing rate per 100,000 people,
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differed for sewersheds in the same county (Table S7), suggesting that
sewershed-level testing rates differed from those at the county level or the
quality of wastewater data differed for sewersheds in the same county. Ad-
ditionally, themeasurement uncertaintywas likely higher during periods of
low case counts and low wastewater concentrations, which could also have
contributed to the change in the ratio observed during these periods.

Although low diagnostic testing rates may partially explain low ratios
between surges, we note that the cases-to-wastewater RNA ratio recovers
more quickly than the testing rates, suggesting that undertesting cannot
cases per day (top), median weekly flow-adjustedwastewater SARS-CoV-2 RNA (gc/
k, a minimum of two data points was required for a weeklymedian to be shown. The
and the shape indicates the county in which the sewershed is located.

Image of Fig. 4
Image of Fig. 5


Table 2
Scenarios that can lead to changes in the ratio of log transformed case to wastewater data.

Ratio Changes to factors contributing to case data Changes to factors contributing to wastewater signal Both

Increase Increased diagnostic testing rates without
proportional increase in incidence

Increase in incidence that is captured in the case data but is not
reflected in wastewater data due to lower shedding rate or duration

Tested cases increase before this is
reflected in the wastewater data

Tested cases increase more steeply than is
reflected in the wastewater data

Decrease Increase in incidence reflected in wastewater data
is not reported in case data due to undertesting

Higher wastewater values due to increased shedding rate or duration Wastewater values increase before cases
reflect the change (undertesting)
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be the only cause of lower ratios (Fig. 5). This is underlined by the fact that
normalizing by testing rates (via Eqs. (4) and (5)) did not completely flatten
the cases-to-wastewater ratio over time (Fig. S4). Critically, differences in
the slopes of the case and wastewater curves may also have affected the
ratio between them. As has been shown in previous studies (Daza-Torres
et al., 2022), we suggest that proportionally more cases remained unde-
tected at the very beginning of a surge until the diagnostic testing rates
adapted, as the case curves increased more steeply than the wastewater
curves before the peak of each surge (Fig. S5). This affected the ratio as
well (Table 2). After the peak of each surge, the decline in wastewater
RNA concentrations was more gradual than the decline in cases, perhaps
due to prolonged fecal shedding (Zhang et al., 2021). We echo the sugges-
tion by Daza-Torres et al. (2022), that input data for modeling should be
drawn from time periods with adequate testing. Future work could assess
testing behavior and the distribution of tests across the population (e.g.
symptomatic vs. asymptomatic, retesting, etc.), to further adjust case data.

4. Conclusions

Based on our observations, we define a framework of key factors that
may affect the cases-to-wastewater SARS-CoV-2 RNA ratio over time,
encompassing variation in diagnostic testing rates, changes to fecal shed-
ding, and fluctuations in the temporal off-set between wastewater surveil-
lance and case count data (Table 2). Future efforts could model these
factors to come to a more accurate understanding of the ground truth
case counts. Additional work could also incorporate hospitalization
(Hopkins et al., 2023), vaccination, mobility and other data types that
were not considered here. Importantly, modeling work should ensure that
the case data used to train a predictive model are drawn from a period
(s) when testing was adequate (Daza-Torres et al., 2022). Additionally,
we found that within our dataset, wastewater data varied in quality, and
our analysis was limited by the changing frequency of wastewater sample
collection throughout each time series. Thus, wastewater data to be used
for modeling requires careful curation and potentially smoothing. How-
ever, we observed that smoothing led to the loss of extreme values, many
of which were important maxima and minima. Smoothing can hide or
delay rapid changes in the time series, affecting the lead/lag between
wastewater data and case counts. Future work should compare raw and
smoothed model inputs to ensure that smoothing maintains the integrity
of the data.

Looking forward, once sewershed-specific models have been estab-
lished, subsequent modeling will benefit from the fact that the sewersheds
themselves will remain relatively consistent: the structure of the sewer sys-
tem itself, transit time of sewage, noise from precipitation, and industrial
discharge can be taken into account with ongoing data and existing normal-
ization methods. These models will be independent from case counts and
testing, and thus independent from lead/lag times relative to cases. The
key factor subject to change will be fecal shedding rate and duration
(Table 2).Models will require updated in vivo studies of fecal shedding pro-
files to adjust for new SARS-CoV-2 variants and evolving immunity in the
population. Overall, this approach will reduce uncertainty to an extent.
However, wastewater surveillance is limited in that uncertainties cannot
be completely eliminated and they may still prevent a quantitative predic-
tion of COVID-19 cases from SARS-CoV-2 concentrations in wastewater.
8

Thus, the largest potential of WBE may lie in trend analysis and detection
of variants of concern, as is currently implemented by the CDC National
Wastewater Surveillance System (Centers for Disease Control and
Prevention, 2023).
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