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Abstract Objective: The novel coronavirus (severe acute respiratory syndrome coronavirus 2)
has been spreading worldwide since December 2019, posing a serious danger to human
health and socioeconomic development. A large number of clinical trials have revealed that
coronavirus disease 2019 (COVID-19) results in multi-organ damage including the urogenital
system. This study aimed to explore the potential mechanisms of genitourinary damage associ-
ated with COVID-19 infection through bioinformatics and molecular simulation analysis.
Methods: We used multiple publicly available databases to explore the expression patterns of
angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and
CD147 in major organs in the healthy and disease-specific populations, particularly the genitouri-
nary organs. Single-cell RNA sequencing was used to analyze the cell-specific expression patterns
of ACE2, TMPRSS2, CD147, cytokine receptors, and cytokine interacting proteins in genitourinary
organs, such as the bladder, kidney, prostate, and testis. Additionally, gene set enrichment
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Genitourinary organ;
Testosterone
analysis was used to investigate the relationship between testosterone levels and COVID-19
vulnerability in patients with prostate cancer.
Results: The results revealed that ACE2, TMPRSS2, and CD147 were highly expressed in
normal urogenital organs. Then, they were also highly expressed in multiple tumors and
chronic kidney diseases. Additionally, ACE2, TMPRSS2, and CD147 were significantly ex-
pressed in a range of cells in urogenital organs according to single-cell RNA sequencing.
Cytokine receptors and cytokine interacting proteins, especially CCL2, JUN, and TIMP1,
were commonly highly expressed in urogenital organs. Finally, gene set enrichment analysis
results showed that high testosterone levels in prostate cancer patients were significantly
related to the JAK-STAT signaling pathway and the Toll-like receptor signaling pathway
which were associated with COVID-19.
Conclusion: Our study provides new insights into the potential mechanisms of severe acute
respiratory syndrome coronavirus 2 damage to urogenital organs from multiple perspectives,
which may draw the attention of urologists to COVID-19 and contribute to the development
of targeted drugs.
ª 2023 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

Since December 2019, several cases of pneumonia with
unknown etiology were reported in some hospitals around
the world which garnered tremendous attention both
domestically and abroad [1]. On January 7, 2020, the Chi-
nese Center for Disease Control and Prevention discovered
the pathogen from throat swab samples, naming it severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
subsequently [2]. The World Health Organization named the
disease coronavirus disease 2019 (COVID-19) and declared
COVID-19 outbreak a pandemic on 11 March 2020, and
COVID-19 has since become one of the largest threats to the
economy and public health in the twenty-first century [3]. A
rising number of clinical trials showed that COVID-19 caused
multi-organ damage, and genitourinary organs were no
exception, despite the fact that SARS-CoV-2 is known to
cause severe lung illness, including pneumonia and acute
respiratory distress syndrome [4,5].

The specific pathogenesis of genitourinary damage
caused by SARS-CoV-2 is still not clear, and drug treatment
targets and specific effective drugs are still under inves-
tigation. Related studies have suggested that the critical
molecules for SARS-CoV-2 infection of the organism
include transmembrane serine protease 2 (TMPRSS2) and
angiotensin-converting enzyme 2 (ACE2) [6]. Our previous
research showed that ACE2 and TMPRSS2 were highly
expressed in the genitourinary organs (especially kidneys
and testis), indicating that kidney and testis were po-
tential target organs for SARS-CoV-2 [7]. Additionally,
research pointed to CD147 as a potential additional route
by which SARS-CoV-2 might infect host cells [8,9]. Su et al.
[10] found that COVID-19 patients showed increased
CD147 expression in the kidney compared to normal sub-
jects, and that the CD147-CypA axis might play a role in
the occurrence of kidney damage in COVID-19 patients.
Wang et al. [11] reported a direct interaction between
CD147 and the SARS-CoV-2 spike protein, which facilitated
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viral infection of host cells, revealing that CD147 could be
a novel receptor for SARS-CoV-2 to infect organism. Be-
sides, a growing amount of clinical evidence indicated
that cytokine storm was linked to the severity of COVID-19
and was the main factor leading to the death of COVID-19
[12,13]. These inflammatory factors hold promise as tar-
gets for specific drugs. Testosterone has been shown to
influence the expression of ACE2 and TMPRSS2, while
TMPRSS2 is highly expressed in androgen-dependent
prostate cancer (PCa) cells; therefore, PCa and
SARS-CoV-2 may intersect via TMPRSS2 pathway [14e16].
The effectiveness of ADT in patients with PCa combined
with SARS-CoV-2 infection is currently controversial and
requires further study [17].

In this work, we shed light on the potential mechanisms
of urogenital damage induced by SARS-CoV-2. We per-
formed a series of bioinformatic analyses at the protein,
mRNA, and single cell levels based on multiple databases.
Our findings revealed the potential mechanisms of uro-
genital damage caused by SARS-CoV-2 from multiple per-
spectives, simultaneously proposing potentially effective
targets for drug therapy.
2. Materials and methods

2.1. Data sources

The mRNA and protein expression values of ACE2, TMPRSS2,
and CD147 in normal human tissue were obtained from
multiple databases, including Human Protein Atlas (HPA),
the Genotype-Tissue Expression, and the Functional Anno-
tation of the Mammalian Genome [18e20]. The mRNA
expression data of ACE2, TMPRSS2, and CD147 covering 33
types of tumors and normal controls in The Cancer Genome
Atlas were accessed from the UCSC Xena project (https://
xenabrowser.net/datapages/). To investigate the
expression differences of ACE2, TMPRSS2, and CD147 in
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kidney tissue of patients with chronic kidney disease (CKD)
and the healthy, we selected sample counts which were
larger than 20 and downloaded the GSE66494 (kidney
tissue; control vs. CKD) dataset from the Gene Expression
Omnibus database [21]. The GSE72920 dataset used for
Gene Set Enrichment Analysis (GSEA) was also obtained
from Gene Expression Omnibus database [22].

2.2. Single-cell RNA sequencing analysis

We predicted COVID-19 associated inflammatory factor re-
ceptors and interacting proteins through the STRING data-
base (version 11.5, Department of Molecular Life Sciences
and Swiss Institute of Bioinformatics, University of Zurich,
Zurich, Switzerland) and screened molecules for evidence
from experiments or databases [23]. The expression pat-
terns for ACE2, TMPRSS2, CD147, multiple cytokine re-
ceptors, and interacting proteins (including CCL2, CCL4,
CXCL8, IFNGR1, IFNGR2, IL10RB, IL1B, IL6ST, JAK1, JUN,
MAPK1, STAT3, TIMP1, and TNFRSF1A) in different cell types
of bladder, kidney, prostate, and testis were obtained from
Human Cell Landscape website (http://bis.zju.edu.cn/
HCL/index.html) [24].

2.3. GSEA

To explore the association of different testosterone levels
in PCa patients with signaling pathways related to
COVID-19, Kyoto Encyclopedia of Genes and Genomes term
enrichment analysis was carried out using GSEA software
(version 4.2.3, Broad Institute, Cambridge, MA, USA)
[25,26]. The annotated gene sets for use with GSEA soft-
ware was c2. cp.kegg.v7.5.1 (https://www.gsea-msigdb.
org/gsea/downloads.jsp). Based on the preoperative
serum testosterone levels of PCa patients in the GSE72920
dataset, the samples were divided into two groups: the
high testosterone level group and the low testosterone
level group. Enrichment score (ES) reflects the degree to
which a gene set is overrepresented at the extremes (top
or bottom) of the entire ranked list. Nominal p-value was
used to estimate the statistical significance of the ES.
GSEA changed the estimated significance threshold to
take multiple hypothesis testing into account when
evaluating a database of gene sets as a whole. To
considering the size of the set, GSEA initially normalized
the ES for each gene set, resulting in a normalized ES
(NES), then determined the false discovery rate (FDR)
associated with each NES in order to control the
percentage of false positives. The GSEA enrichment
results were filtered by the following criteria: absolute
value of NES >1, nominal p-value <0.05, and FDR <0.25.

3. Results

3.1. ACE2, TMPRSS2, and CD147 expression in
human normal tissue from various public databases

To comprehensively study the mRNA and protein expression
of ACE2, TMPRSS2, and CD147 in normal human tissue, we
comprehensively analyzed transcriptomic and protein assay
datasets from multiple public databases. According to the
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results, the small intestine, duodenum, kidney, gallbladder,
testis, heart muscle, and colon had significant levels of
ACE2 mRNA expression, and ACE2 protein was detected at
high levels in the tissue of the duodenum, small intestine,
colon, rectum, gallbladder, kidney, testis, and placenta
(Fig. 1A and B). TMPRSS2 mRNA was highly expressed in the
prostate, stomach, pancreas, colon, small intestine, duo-
denum, rectum, salivary gland, kidney, lung, esophagus,
and bladder, and its protein was detected at high levels in
the rectum and kidney, detected at medium levels in
parathyroid gland, stomach, colon, pancreas, epididymis,
and prostate (Fig. 1C and D). CD147 mRNA was highly
expressed in heart muscle, colon, adrenal gland, testis,
kidney, skeletal muscle, stomach, endometrium, adipose
tissue, and urinary bladder, and its protein was detected at
high levels in stomach, duodenum, small intestine, colon,
kidney, testis, epididymis, placenta, and appendix (Fig. 1E
and F).

Combining the above databases, it can be found that
ACE2, TMPRSS2, and CD147 are highly expressed in uro-
genital organs like kidney, testis, prostate, and bladder,
indicating that they are likely to be target organs of
SARS-CoV-2 other than lung and have the potential to be
invaded and infected by SARS-CoV-2.

3.2. ACE2 and CD147 protein expressions in human
plasma

To explore ACE2 and CD147 protein expressions in plasma,
we obtained the abundance and distribution of ACE2 and
CD147 proteins from PeptideAtlas based on mass spec-
trometry proteomics and HPA blood atlas based on prox-
imity extension assays. The concentration of ACE2 protein
in plasma was estimated to be 400 ng/L based on the
spectrum counts of mass spectrometry-based proteomics in
the PeptideAtlas, whereas the concentration of CD147
protein in plasma was around 340 ng/L (Fig. 2A and B). The
average concentration of ACE2 and CD147 proteins in
plasma was somewhat greater in men than in women during
long-term health research involving 76 participants and
three visits over 2 years, according to the protein profiling
statistics based upon proximity extension assays (Olink,
Uppsala, Sweden) (Fig. 2C and D). It can be speculated that
men may be more vulnerable to SARS-CoV-2 than women
due to the differential expression levels of ACE2 and CD147
proteins in plasma.

3.3. ACE2, TMPRSS2, and CD147 expression
patterns in specific patient populations

By analyzing the mRNA expression differences of ACE2,
TMPRSS2, and CD147 in 33 tumor tissue and their corre-
sponding normal tissue, it was found that ACE2, TMPRSS2,
and CD147 were expressed in almost all tumor types.
Among them, ACE2 was highly expressed in kidney renal
papillary cell carcinoma, kidney renal clear cell carcinoma,
rectum adenocarcinoma, and colon adenocarcinoma;
TMPRSS2 was highly expressed in prostate adenocarcinoma,
kidney chromophobe, colon adenocarcinoma, rectum
adenocarcinoma, stomach adenocarcinoma, and lung
adenocarcinoma, while CD147 was highly expressed in
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Figure 1 The expression of ACE2, TMPRSS2, and CD147 in normal human tissue from multiple public databases. (A) The mRNA
expression pattern of ACE2 in HPA, GTEx, and FANTOM5; (B) The protein expression pattern of ACE2 in HPA; (C) The mRNA
expression pattern of TMPRSS2 in HPA, GTEx, and FANTOM5; (D) The protein expression pattern of TMPRSS2 in HPA; (E) The mRNA
expression pattern of CD147 in GTEx; (F) The protein expression pattern of CD147 in HPA. ACE2, angiotensin-converting enzyme 2;
TMPRSS2, transmembrane serine protease 2; HPA, Human Protein Atlas; GTEx, the genotype-tissue Expression; FANTOM5, the
Functional Annotation Of The Mammalian Genome.
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almost all kinds of tumors (Fig. 3AeF). Besides, compared
with the control group, the mRNA expression levels of ACE2
and CD147 were higher in the kidney tissues of patients
with CKD, whereas the expression of TMPRSS2mRNA did not
differ in the two groups (Fig. 3GeI).

3.4. Cell-specific expression of ACE2, TMPRSS2 and
CD147 in bladder, kidney, prostate, and testis

The expression patterns of ACE2, TMPRSS2, and CD147 in
single cells of the bladder, kidney, prostate, and testis
were visualized by Human Cell Landscape website. In the
kidney, ACE2 mRNA was highly expressed in proximal
347
tubule cells and was low or not expressed in other kinds of
cells (Fig. 4A). In testis, ACE2 mRNA was highly expressed
in Sertoli cells, myoid cells, spermatogonial stem cells,
and Leydig cells, while it was low expressed in other types
of cells (Fig. 4B). In the kidney, TMPRSS2 mRNA was highly
expressed in intercalated cells, IC-tran-PC, distal tubule
cells, and T cells, and low expressed in some proximal
tubule cells, macrophage, and conventional dendritic
cells, but not expressed in podocyte or mast cells
(Fig. 4C). In the prostate, TMPRSS2 mRNA was highly
expressed in all cell types, especially in epithelial cells,
neuroendocrine cells, and fibroblasts (Fig. 4D). In the
testis, TMPRSS2 mRNA was expressed at high levels in



Figure 2 The ACE2 and CD147 protein concentration and distribution between male and female in plasma. (A and B) The con-
centration of ACE2 and CD147 in human plasma is quantified by mass spectrometry-based plasma proteomics and estimated from
spectral counts in a publicly available data set obtained from the PeptideAtlas (ACE2: 400 ng/L, CD147: 340 ng/L); (C and D) Violin
plot showing the distribution of ACE2 and CD147 between male and female in plasma, based on proximity extension assays (Olink)
for a longitudinal wellness study covering 76 individuals with three visits during 2 years; and protein expression levels are reported
as NPX. ACE2, angiotensin-converting enzyme 2; NPX, normalized protein expression.
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elongated spermatid and spermatogonial stem cells, and
expressed at low levels in early primary spermatocyte,
round spermatid, sperm1, sperm2, and macrophages,
while not expressed in differentiating spermatogonia, late
primary spermatocyte, endothelial cells, myoid cells,
Sertoli cells, or Leydig cells (Fig. 4E). In the bladder,
CD147 mRNA was highly expressed in all types of cells
except B cells, especially in smooth muscle cells and mast
cells (Fig. 4F). In contrast, CD147 mRNA was highly
expressed in almost all types of cells in the kidney, pros-
tate, and testis (Fig. 4GeI).
3.5. Cell-specific expression of cytokine receptors
and cytokine interacting proteins in bladder,
kidney, prostate, and testis

Most cytokine receptors and cytokine interacting proteins
were observed to be expressed in one or more urogenital
organs (including bladder, kidney, prostate, and testis)
according to HPA (Table S1). Taking into account the crucial
role of cytokines in the progression of COVID-19, we
modeled a signature of cytokine receptors and their
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interacting proteins including CCL2, CCL4, CXCL8, IFNGR1,
IFNGR2, IL10RB, IL1B, IL6ST, JAK1, JUN, MAPK1, STAT3,
TIMP1, and TNFRSF1A, and then explored their expression
patterns in single cells from urogenital organs (including
bladder, kidney, prostate, and testis) by Human Cell
Landscape. Visualization showed that CCL2, CCL4, CXCL8,
JUN, and TIMP1 were highly expressed in almost all types of
bladder cells, and multiple cytokine receptors and cytokine
interacting proteins (CCL2, CCL4, CXCL8, IL1B, JUN, and
TIMP1) were highly expressed in macrophages (Fig. 5A).
CCL2, CCL4, CXCL8, IL6ST, JUN, and TIMP1 were highly
expressed in almost all types of renal cells (Fig. 5B). CCL2,
CCL4, CXCL8, IFNGR1, JUN, and TIMP1 were highly
expressed in almost all types of prostate cells (Fig. 5C).
IFNGR1, IFNGR2, IL6ST, JAK1, JUN, MAPK1, STAT3, and
TIMP1 were highly expressed in almost all types of testic-
ular cells, meanwhile more than half of the cytokine re-
ceptors and cytokine interacting proteins (IFNGR1, IFNGR2,
IL10RB, IL6ST, JAK1, JUN, MAPK1, STAT3, TIMP1, and
TNFRSF1A) were highly expressed in endothelial cells,
myoid cells, Sertoli cells, and Leydig cells. What’s more,
almost all the cytokine receptors and cytokine interacting
proteins were highly expressed in macrophages (Fig. 5D).



Figure 3 Expression patterns of ACE2, TMPRSS2, and CD147 mRNA in specific patient populations. (A) The mRNA expression
patterns of ACE2 in 33 kinds of tumors in TCGA; (B) Differential mRNA expression of ACE2 in 33 kinds of tumor tissue and normal
tissue from TCGA; (C) The mRNA expression patterns of TMPRSS2 in 33 kinds of tumors in TCGA; (D) Differential mRNA expression of
TMPRSS2 in 33 kinds of tumor tissue and normal tissue from TCGA; (E) The mRNA expression patterns of CD147 in 33 kinds of tumors
in TCGA; (F) Differential mRNA expression of CD147 in 33 kinds of tumor tissue and normal tissue from TCGA; (G) The mRNA

Asian Journal of Urology 10 (2023) 344e355

349



K. Zhao, D. Zhang, X. Xu et al.
3.6. GSEA enrichment plots of PCa patients with
high testosterone level

GSEA was performed on GSE72920 dataset, which contains
preoperative serum testosterone levels of PCa patients.
The enrichment results were filtered according to the
following criteria: absolute value of NES >1, nominal
p-value <0.05, and FDR <0.25. Forty-seven signal pathways
with significant correlation were screened in the high
testosterone level group, while one signal pathway with
significant correlation was screened in the low testosterone
level group. The enrichment results of GSEA showed that
high levels of testosterone in PCa patients were positively
correlated with the JAK-STAT signaling pathway and Toll-
like receptor signaling pathway (Fig. 6A and B). These re-
sults suggested that high level of testosterone in PCa pa-
tients may contribute to the activation of the JAK-STAT
signaling pathway and Toll-like receptor signaling pathway,
which were also reported to be activated in COVID-19 pa-
tients [27e30].

4. Discussion

With the global epidemic of COVID-19, more and more
patients with COVID-19 have urogenital problems, which
have prompted people to worry about the potential
long-term damage to urogenital organs after SARS-CoV-2
infection. Therefore, our research focused on whether
SARS-CoV-2 may directly damage the genitourinary organs,
mainly the bladder, kidney, prostate, and testis, as well as
its possible pathogenesis. In addition, we also studied the
susceptibility difference of SARS-CoV-2 in different
populations and the potential relationship between
SARS-CoV-2 and PCa.

Our study found that ACE2, TMPRSS2, and CD147 mRNAs
are highly expressed in urogenital organs (including kidney,
testis, bladder, and prostate), which is based on RNA
sequence data of human normal tissue in several publicly
available databases (HPA, the Genotype-Tissue Expression,
and the Functional Annotation of the Mammalian Genome),
suggesting that they may be potential target organs for
SARS-CoV-2. Acute kidney injury incidence in COVID-19 pa-
tients ranged from 1% to 46% according to a retrospective
analysis [31]. A prospective cohort study of 701
COVID-19 patients found that, in addition to changes in
renal function tests like elevated blood urea nitrogen,
reduced glomerular filtration rate, and elevated serum
creatinine, which indicated severe damage to renal tissue,
26.7% of the patients had hematuria and 43.9% had pro-
teinuria [32]. By using a real-time reverse
transcription-polymerase chain reaction, Wang et al. [33]
identified positive SARS-CoV-2 mRNA in the urine sediment
of certain patients. These findings suggested that
SARS-CoV-2 could directly infect the kidney via ACE2,
expression patterns of ACE2 in GSE66494; (H) The mRNA expressio
patterns of CD147 in GSE66494. ACE2, angiotensin-converting enzym
kidney disease; ns, no significant. *p<0.05, **p<0.01, ***p<0.001,
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TMPRSS2, and CD147 molecules, contributing to the devel-
opment of acute kidney injury. Studies have indicated that
10%e22% of men in the acute infection phase of COVID-19
could develop orchitis or epididymitis, and another
research discovered SARS-CoV-2 in testicular tissue speci-
mens of dead patients with COVID-19 through transmission
electron microscopy, suggesting that testicular inflamma-
tion caused by COVID-19 may be attributable to the direct
invasion of SARS-CoV-2 [34e36]. Another study claimed that
SARS-CoV-2 was not found in the semen of individuals
recovering from COVID-19, but it could not completely
exclude the possibility that SARS-CoV-2 was present in
semen fluid during acute infection accompanied severe
manifestations of COVID-19 [37]. Although ACE2, TMPRSS2,
and CD147 mRNAs were expressed in the prostate, espe-
cially TMPRSS2 mRNA, SARS-CoV-2 mRNA was not found in
the prostate secretions of COVID-19 individuals, which may
be attributed to low ACE2 expression [38e40]. Besides, one
study focused on the incidence of urinary frequency in in-
dividuals with COVID-19 and discovered that seven out of 57
COVID-19 patients receiving treatment had urinary fre-
quency, which the researchers hypothesized might be
related to viral cystitis [41]. Another study excluded bac-
terial urinary tract infections in patients without viral
testing also reported urinary symptoms related to COVID-19,
including urinary frequency and nocturia, suggesting that
the urinary symptoms may be caused by SARS-CoV-2 [42].

Single-cell RNA transcriptomic data revealed that ACE2
mRNA was highly expressed in proximal tubule cells in the
kidney. Diffuse proximal tubule damage with loss of brush
boundary, non-isometric vacuolar degeneration, and even
significant necrosis were found in postmortem renal pa-
thology in COVID-19 individuals [43,44]. In addition, CD147
molecule was shown to participate in kidney injury
related to COVID-19. Based on immunohistochemical re-
sults, in COVID-19 patients, the distribution of CD147
expanded from the basal to the circumferential pattern,
including the interface and the tip, which may facilitate
the invasion of SARS-CoV-2 from this luminal surface into
the cytoplasm of tubular epithelial cells [10]. In the testis,
ACE2 was highly expressed in Sertoli cells, myoid
cells, and spermatogonial stem cells. The adhesion of
SARS-CoV-2 to ACE2 receptor may hinder the normal
function of Sertoli and Leydig cells, which may increase
the expression of ACE2 and cause an inflammatory
response, affecting male spermatogenesis [45]. Addition-
ally, fever may also be the cause of the poor sperm quality
seen in patients with the acute stage of COVID-19 [46].
SARS-CoV-2 may damage the uroepithelial cells of COVID-
19 patients since viral mRNAs were found in the urine of
the patients, meanwhile ACE2 and CD147 mRNAs were
detected in the tissue of bladder. The location of
expression, whether the basal or tubular expression is still
unclear; therefore, the infection may occur through
capillary infection or urinary infection [41].
n patterns of TMPRSS2 in GSE66494; (I) The mRNA expression
e 2; TMPRSS2, transmembrane serine protease 2; CKD, chronic
****p<0.0001.



Figure 4 Cell-specific mRNA expressions of ACE2, TMPRSS2, and CD147 in bladder, kidney, prostate, and testis. (A) Cell-specific
expression of ACE2 from Human Cell Landscape Kidney2 (http://bis.zju.edu.cn/HCL/search.html); (B) Cell-specific expression of
ACE2 from Human Cell Landscape Testis_Guo (http://bis.zju.edu.cn/HCL/search.html); (C) Cell-specific expression of TMPRSS2
from Human Cell Landscape Kidney2 (http://bis.zju.edu.cn/HCL/search.html); (D) Cell-specific expression of TMPRSS2 from
Human Cell Landscape Prostate1 (http://bis.zju.edu.cn/HCL/search.html); (E) Cell-specific expression of TMPRSS2 from Human
Cell Landscape Testis_Guo (http://bis.zju.edu.cn/HCL/search.html); (F) Cell-specific expression of CD147 from Human Cell
Landscape Bladder1 (http://bis.zju.edu.cn/HCL/search.html); (G) Cell-specific expression of CD147 from Human Cell Landscape
Kidney2 (http://bis.zju.edu.cn/HCL/search.html); (H) Cell-specific expression of CD147 from Human Cell Landscape Prostate1
(http://bis.zju.edu.cn/HCL/search.html); (I) Cell-specific expression of CD147 from Human Cell Landscape Testis_Guo (http://bis.
zju.edu.cn/HCL/search.html). ACE2, angiotensin-converting enzyme 2; TMPRSS2, transmembrane serine protease 2; HPA, Human
Protein Atlas; GTEx, the Genotype-Tissue Expression; FANTOM5, the Functional Annotation of The Mammalian Genome.
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Figure 5 Cell-specific expression of cytokine receptors and cytokine interacting proteins in bladder, kidney, prostate, and testis.
(A) Cell-specific expression of cytokine receptors and cytokine interacting proteins from Human Cell Landscape Bladder1 (http://
bis.zju.edu.cn/HCL/search.html); (B) Cell-specific expression of cytokine receptors and cytokine interacting proteins from Human
Cell Landscape Kidney2 (http://bis.zju.edu.cn/HCL/search.html); (C) Cell-specific expression of cytokine receptors and cytokine
interacting proteins from Human Cell Landscape Prostate1 (http://bis.zju.edu.cn/HCL/search.html); (D) Cell-specific expression
of cytokine receptors and cytokine interacting proteins from Human Cell Landscape Testis_Guo (http://bis.zju.edu.cn/HCL/
search.html).
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An increasing mass of clinical evidence indicates that
cytokine storm is linked to COVID-19 severity and is a major
factor in COVID-19 fatality [13]. In comparison to patients
with mild and moderate symptoms, individuals with severe
symptoms had greater levels of inflammatory factors, such
as IL-2, IL-6, IL-7, IL-10, IP-10, MCP-1, TNF-a, MIP1A, and
G-CSF [47]. In light of the crucial role that cytokines play in
the pathogenic process of COVID-19, we established the
signatures of cytokine receptors and cytokine interacting
proteins, including CCL2, CCL4, CXCL8, IFNGR1, IFNGR2,
IL10RB, IL1B, IL6ST, JAK1, JUN, MAPK1, STAT3, TIMP1, and
TNFRSF1A. It is worth noting that CCL2, JUN, and TIMP1 are
observed to be highly expressed in urogenital organs and
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they may play a greater role in cytokine storm-induced
systemic inflammatory responses. In addition, our results
found that multiple cytokine receptors and cytokine
interacting proteins were expressed at high levels in mac-
rophages that might damage macrophages by interfering
with their normal functioning, particularly in the high
cytokine microenvironment of critically ill patients. Pa-
tients with severe COVID-19 may benefit from medications
that prevent and reduce cytokine storms, including corti-
costeroids, hydroxychloroquine, chloroquine, tocilizumab,
mesenchymal stem cells, and others that are currently
being tested in clinical trials. Our study suggests that CCL2,
JUN, and TIMP1 are promising new targets for drug
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Figure 6 GSEA enrichment plots of GSE72920 dataset. (A) GSEA enrichment plot: JAK-STAT signaling pathway; (B) GSEA
enrichment plot: Toll-like receptor signaling pathway. GSEA, Gene Set Enrichment Analysis; JAK-STAT, Janus kinase-signal trans-
ducers and activators of transcription.
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development to inhibit cytokine storm related to COVID-19.
We believe that identifying and treating cytokine storms is
a key part of saving patients with severe COVID-19.

Male, cancer, and CKD patients are more vulnerable to
experiencing symptoms of COVID-19, according to a number
of systematic reviews and meta-analysis studies [48e51].
We found that the average plasma levels of ACE2 and CD147
proteins in males were higher than those in females, which
may be one of the factors that lead to men being more
susceptible to SARS-CoV-2 and more prone to experience
severe symptoms of COVID-19. However, it has been re-
ported that soluble plasma ACE2 levels could not represent
the probability of COVID-19 infection, because that
SARS-CoV-2 attaches to membrane ACE2, and the expres-
sion of membrane ACE2 may provide more pertinent in-
formation about this problem [52]. In addition, our findings
revealed that ACE2, TMPRSS2, and CD147 mRNAs were
detected to be highly expressed in a variety of tumor tissue
and patients with CKD, supporting the results of the meta-
analysis and systematic reviews that patients suffering
malignancy and CKD were more probable to experience
severe symptoms of COVID-19. Therefore, the symptoms
particular to these populations should receive special
clinical attention.

Early in the pandemic, the researchers studied the
relationship between androgen and susceptibility of
SARS-CoV-2, because clinical research results showed that
men were relatively likely to have severe symptoms of
COVID-19. The risk of infection was considerably lower in
patients with PCa receiving ADT than in those who did not
receive ADT in a sizable population-based study covering
4532 men with confirmed SARS-CoV-2 infection. The authors
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came to the conclusion that PCa patients treated with ADT
emerged to be partly shielded from SARS-CoV-2 infection
[53]. According to our enrichment results of GSEA, high
levels of testosterone in PCa patients may contribute to
activating signaling pathways related to SARS-CoV-2 infec-
tion, including the JAK-STAT signaling pathway and the
Toll-like receptor signaling pathway. We hypothesize that
ADT for patients with PCa may have a protective effect
against SARS-CoV-2. Given that studies have demonstrated
that testosterone controls the expression of ACE2 and
TMPRSS2, ADT may reduce testosterone levels and TMPRSS2
expression [14,22]. In addition, testosterone may be
involved in COVID-19 susceptibility difference between
males and females, owing to the hormone differences be-
tween them. Children often have fewer COVID-19 symptoms
than adults, which may be explained by the correlation
between testosterone and COVID-19 symptoms [54].

In summary, our study discloses the possible mechanism
of urogenital damage caused by SARS-CoV-2, and provides
new targets for the development of targeted drugs. These
findings imply that the potential injury caused by SARS-CoV-2
to urogenital organs should be addressed carefully.
Furthermore, for male patients recovering from COVID-19,
especially those with reproductive problems originally, the
function of the urogenital system should be carefully eval-
uated. However, our research has some limitations: firstly,
the data were gathered from several publicly available da-
tabases and more experimental and clinical data are
required to confirm the bioinformatics analysis findings;
secondly, the sample size of the datasets used for GSEA is
small, and relevant findings still need to be confirmed in a
wider population.



K. Zhao, D. Zhang, X. Xu et al.
5. Conclusion

In this study, we analyzed the potential targets of
SARS-CoV-2 infection from mRNA, protein, and single cells
levels, and discussed its possible pathogenic mechanisms.
At the same time, we also explored the susceptibility dif-
ferences of SARS-CoV-2 in different populations, and
analyzed the possible reasons for the differences. In
conclusion, our findings reveal the possible mechanisms of
SARS-CoV-2 damage to the genitourinary organs and provide
novel targets for the development of targeted drugs.
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