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Abstract
Purpose To create an algorithm able to accurately detect IVC filters on radiographs without human assistance, capable of 
being used to screen radiographs to identify patients needing IVC filter retrieval.
Methods A primary dataset of 5225 images, 30% of which included IVC filters, was assembled and annotated. 85% of the 
data was used to train a Cascade R-CNN (Region Based Convolutional Neural Network) object detection network incor-
porating a pre-trained ResNet-50 backbone. The remaining 15% of the data, independently annotated by three radiologists, 
was used as a test set to assess performance. The algorithm was also assessed on an independently constructed 1424-image 
dataset, drawn from a different institution than the primary dataset.
Results On the primary test set, the algorithm achieved a sensitivity of 96.2% (95% CI 92.7–98.1%) and a specificity of 
98.9% (95% CI 97.4–99.5%). Results were similar on the external test set: sensitivity 97.9% (95% CI 96.2–98.9%), specific-
ity 99.6 (95% CI 98.9–99.9%).
Conclusion Fully automated detection of IVC filters on radiographs with high sensitivity and excellent specificity required 
for an automated screening system can be achieved using object detection neural networks. Further work will develop a 
system for identifying patients for IVC filter retrieval based on this algorithm.
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Introduction

Inferior vena cava (IVC) filters are used to prevent develop-
ment of potentially life-threatening pulmonary embolism in 
patients with deep venous thrombosis (DVT), most often 
when patients have an absolute or relative contraindication 
to treatment with anticoagulation. IVC filters are protective 
against pulmonary embolus in the acute setting, but in some 
cases have demonstrated an increased risk of recurrent DVT 
or caval thrombosis in the long term [1, 2].

Although the majority of filters now placed are retriev-
able by design, filter retrieval rates are quite variable and 
overall fairly low in the absence of a dedicated strategy 
for patient follow-up [3]. Several institutions have signifi-
cantly improved their retrieval rates by implementing pro-
tocols intended to reduce the number of patients being lost 
to follow-up [4, 5]. Further refinements of these strategies 
have resulted in partially automated, informatics-based 
approaches based on tracking patients from the time of 
filter placement using data from the health system’s Radi-
ology Information System (RIS) [6]. However, by design 
these approaches can not identify patients who have had 
IVC filters placed at other institutions. This is particularly 
problematic because many IVC filters are placed in the 
setting of trauma [7], and patients may not continue with 
their long-term care at the trauma center where they were 
initially treated. An image-based rather than RIS-based 
approach to identifying patients who have IVC filters could 
help to address the challenges of tracking IVC filters in a 
fragmented healthcare environment where patients seek 
care at multiple institutions. An image-based approach 
could identify patients who have IVC filters placed at the 
medical center (from intra-procedural imaging) as well as 
patients who have IVC filters placed elsewhere, when those 
patients have abdominal imaging. An approach that identi-
fies IVC filters directly from images rather than from radiol-
ogy reports may be expected to be more transferable across 
institutions, as the way in which IVC filters are described in 
reports may vary widely, but the appearance of the filters on 
imaging is consistent. A successful image-based approach 
would require an algorithm capable of detecting IVC filters 
on medical imaging with high sensitivity and specificity.

Machine learning is finding widespread application in 
medical image analysis [8–10] and is well-suited to the task 
of object detection and localization. Our objective was to 
create an algorithm trained to identify and localize IVC 
filters visualized on abdominal radiographs. Further, our 
aim was to evaluate the generalizability of the algorithm 
by evaluating it at a separate institution using an independ-
ent dataset created from images obtained at that site. This 

algorithm is the keystone for development of a more auto-
mated process for identifying patients with IVC filters who 
may benefit from consultation for retrieval.

Methods

This HIPAA-compliant retrospective study was approved by 
the institutional review boards of both participating institu-
tions, which are academic, tertiary care centers; there were 
no external funding sources. The key points of the methods 
are described here; complete methods sufficient for repro-
ducing the work are detailed in the online supplemental 
methods.

Candidate images from both inpatient and outpatient set-
tings for the primary dataset were identified in our report 
database using mPower search software (Nuance Inc., Burl-
ington, MA). Two searches were performed, one designed 
to identify abdominal radiographs where IVC filters were 
mentioned in the report (presumed positives) and a second 
designed to simply identify abdominal radiographs (pre-
sumed negative controls). Search terms and date ranges were 
chosen to create a dataset that would include nearly all of the 
images with IVC filters in our clinical archive. Correspond-
ing images were extracted from the PACS archive.

DICOM images were annotated using the MD.ai annota-
tion platform (MD.ai, New York, New York). Annotation of 
the complete dataset was performed by an attending inter-
ventional radiologist author with 13 years experience. The 
test partition was also annotated by two attending abdominal 
radiologist authors with 11 and 16 years experience, respec-
tively. For studies with more than one image, only one rep-
resentative image, selected by the interventional radiology 
author, was annotated. All images used were frontal images. 
For each annotated image, annotators either drew a bounding 
box around the IVC filter or marked the image as “no filter.” 
For the multiply annotated test set, final annotations were 
determined based on the majority annotation. Final bounding 
boxes were constructed using the mean center location and 
mean width and height of each annotator’s bounding boxes. 
The complete primary dataset was randomly divided at the 
patient level into training, validation and testing partitions 
consisting of approximately 70%, 15% and 15% of the data.

A secondary dataset, used for external validation, was 
constructed from images drawn from the clinical archive of a 
separate institution. A different instance of the same mPower 
search software, using the same search terms, was used to 
identify studies. Annotation of this dataset was performed 
in a custom web-based tool, but the annotation scheme was 
otherwise the same as for the primary dataset. All images in 
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the secondary dataset were annotated by three radiologists: 
an attending abdominal radiologist with 12 years experience, 
an attending neuroradiologist with 7 years experience and a 
fourth-year radiology resident.

Annotated DICOM images were converted to JPEG 
format using dcmtk v3.6.2 (Offis, Oldenburg, Germany). 
The Cascade R-CNN [11] object detection neural net-
work architecture using a ResNet-50 [12] backbone was 
employed, as implemented in MMDetection toolbox 2.4.0 
[13] based on PyTorch 1.6.0 [14]. Training and inference 
were performed using four NVIDIA (Santa Clara, CA) 
RTX 2080 Ti GPUs.

Augmentation of the training partition of the dataset was 
performed by randomly applying transformations to the 
images. Applied transformations included: horizontal flip, 
changes in brightness and contrast, rotation in 90-degree 
increments, and fine rotation (1-degree increments).

Hyperparameter optimization was performed using 
Optuna 2.1.0 [15] to determine the best values for base 
learning rate, augmentation probabilities and augmentation 
extents. 100 iterations of optimization were performed using 
maximization of the area under the curve (AUC) for the 
receiver operator characteristic (ROC) of the model on the 
validation partition of the dataset as the objective function.

Using the hyperparameter values that produced the best 
results during hyperparameter optimization, a final model 
was trained on the combined training and validation parti-
tions of the dataset. Nine additional models were trained 
using the same hyperparameter values but different random 
seeds to facilitate uncertainty estimates in the results. Final 
model performance was calculated based on performance 
on the primary internal and secondary external test sets. 
Confidence intervals on proportions were calculated using 
Chi-squared statistics using R v4.0.0 [16].

Results

The final primary dataset consisted of 5225 annotated 
images, each from a separate study; 1580 of these images 
contained IVC filters. The dataset had a small majority of 
male patients and covered a broad distribution of patient 
ages, as shown in Table 1.

Models trained during hyperparameter optimization had 
ROC AUC ranging from 0.972 to 0.995 when evaluated on 

the validation partition of the data. Hyperparameter values 
for the top performing model, identified on iteration 58 are 
detailed in Table 2.

The primary model produced by this investigation, trained 
on the combined training and validation partitions using the 
optimal hyperparameter values from Table 2, had ROC AUC 
of 0.995 when evaluated on the internal test set (see Fig. 1). 
An additional nine models were trained using the same pro-
cedure as the primary model, but different random seeds; 
the median ROC AUC was 0.991 with an interquartile range 
of 0.002.

The primary model correctly recognized presence or 
absence of IVC filters on 746 of the 761 images in the 
internal test partition (see Table 3), achieving a sensitivity 
of 96.2% (95% CI 92.7–98.1%) and a specificity of 98.9% 
(95% CI 97.4–99.5%). To evaluate the generalizability of 
the model, the model was tested against a separately con-
structed and annotated dataset of 1424 images drawn from 
a different institution. Results running against this external 
test set yielded sensitivity and specificity slightly though not 

Table 1  Dataset characteristics

Primary site Secondary site

Sex (percent male) 55.2% 61.8%
Age (mean ± st dev) 57.9 ± 16.8 59.3 ± 17.9
IVC filter (percent) 30.2% 40.2%

Table 2  Optimal hyperparameter values

Hyperparameter Value

Learning rate 0.008
90-degree rotation probability 0.125
Brightness/contrast change probability 0.278
Brightness range − 0.154 to − 0.062
Contrast range 0.031 to 0.047
Horizontal flip probability 0.032
Fine rotation range − 17 to 17 degrees
Fine rotation probability 0.312

Fig. 1  Receiver operator characteristic curve illustrating performance 
of the primary algorithm on the internal test set. Black cross repre-
sents the reported sensitivity and specificity
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significantly superior to results on the primary test set: sen-
sitivity 97.9% (95% CI 96.2–98.9%), specificity 99.6 (95% 
CI 98.9–99.9%), ROC AUC 0.993.

The primary model evaluated an average of 15 images 
per second running on a single NVIDIA RTX 2080 Ti 
GPU.

Figure 2 demonstrates a random sampling of correctly 
detected IVC filters. The model failed to detect an IVC 
filter in 9 images; some examples of these failures are illus-
trated in Fig. 3. Commonalities among the failures were 
heavily obscured filters, less common types of filters and 
low image contrast between the filter and background. In 6 
images, the model incorrectly recognized non-filter objects 
as filters. These false positives, some of which are shown 
in Fig. 4, include specific examples of spinal facet joints 
with degenerative changes, EKG leads, and sternal wires. 
Note that the test partition included many additional exam-
ples of these types of findings which did not produce false 
positives.

Table 3  Confusion matrix 
for primary test set. Columns 
represent ground truth presence 
or absence of IVC filter; rows 
represent detection or non-
detection of an IVC filter by the 
algorithm

Present Absent

Detected 228 6
Not detected 9 518

Fig. 2  Sample of four true positive images (A–D) from the test parti-
tion of the primary dataset. Ground truth IVC filter bounding boxes 
annotated by radiologists are drawn in red; algorithm detections are 
drawn in green. Images in this figure are cropped to emphasize the 
region containing the IVC filter; the algorithm performed detection 
on full, uncropped images

Fig. 3  Sample of four false negative images from the test partition 
of the primary dataset, where the IVC filter present on the image 
was not detected by the algorithm. Possible factors leading to false 
negatives include: obscured filter (A), low contrast between filter and 
background due to technique and body habitus (B) and less common 
filter types (C and D)

Fig. 4  Sample of four false positive images from the test partition of 
the primary dataset, where the algorithm incorrectly detected non-
filter structures as filters. Incorrectly detected objects include facet 
joints with degenerative changes (A), EKG leads (B), and sternal 
wires (C and D)



762 Abdominal Radiology (2023) 48:758–764

1 3

Discussion

In this investigation, we sought to create an algorithm that 
could detect IVC filters on radiographs, to form the foun-
dation of an image-based system for identifying patients 
with filters who might be in need of retrieval. The algo-
rithm developed here, using a deep learning object detec-
tion framework, achieves high sensitivity and specificity for 
detection of IVC filters on an internal test set. Perhaps more 
importantly, the algorithm demonstrates the same level of 
performance on an external test set from a separate medi-
cal center, suggesting that a system built on this algorithm 
would be transferable to other medical centers without loss 
of performance.

Other investigators have applied deep neural networks 
to analysis of IVC filter imaging, notably Ni et al., who 
described an algorithm that achieves excellent results in cat-
egorizing images of filters by filter type [9]. An important 
distinction between the work presented here and that of Ni 
et al. is that the earlier work uses a classification network, 
which performs best with a tightly cropped image of an 
IVC filter as input, while our work uses an object detection 
network, which determines presence or absence of a filter 
using a full radiograph as input. This would enable our algo-
rithm to be used for automated screening of radiographs to 
detect IVC filters, which the Ni et al. algorithm could not do, 
because it would require manual cropping around the IVC 
filter to match the training images and maintain adequate 
performance. Our algorithm does not currently classify 
the IVC filters it detects by type, but could be extended to 
include this function either by adding information on filter 
type to our dataset and retraining the network as a multi-
class object detector, or chaining the output of our current 
algorithm to a classification algorithm like that in Ni et al. to 
categorize the filters detected by our algorithm. We consider 
this a relatively inconsequential limitation for the intended 
use of the algorithm in screening imaging for potentially 
retrievable IVC filters, as the vast majority of currently 
placed filters are retrievable models, and images identified 
as containing filters would be reviewed by an interventional 
radiologist prior to scheduling a retrieval attempt.

The Cascade R-CNN network architecture employed by 
this algorithm for object detection is a refinement of the 
R-CNN [17] architecture. R-CNN employs a conventional 
classification network (in this investigation, ResNet-50) as a 
backbone that classifies the contents of rectangular regions 
within an image; the regions are identified by a separate 
region proposal function. Fast R-CNN [18] improves speed 
by using the backbone classification network to identify 
features in the input image as a whole only once, rather 
than evaluating each of the overlapping regions separately. 
Faster R-CNN [19] further improves speed and accuracy by 

replacing the region proposal function with a neural net-
work that operates on the features generated by the backbone 
classification network. The Cascade R-CNN network used 
here is a further extension of Faster R-CNN that introduces 
a multistage detector, where each successive stage refines 
detection using increasingly stringent thresholds to reduce 
false positives without negatively impacting other aspects 
of performance.

The algorithm created here would be of greatest use as 
the foundation of a system to identify and track patients 
with IVC filters, to ensure the filter can be retrieved when 
no longer required. Achieving this would require coupling 
our algorithm with a patient status tracking system such 
as that described by Juluru et al. [6], where our algorithm 
would replace the RIS query. Using an image-based algo-
rithm would have two advantages over a RIS query. First, it 
would not be limited to identifying patients who had their 
IVC filters placed at the center where the system was being 
used; any patient who had abdominal radiography at the 
center could be identified. Second, it would enable a Digi-
tal Imaging and Communications in Medicine (DICOM) 
standard interface between the IVC filter tracking system 
and the center’s existing imaging IT infrastructure. This 
would likely be more portable and easier to configure than 
the direct query of the RIS underlying database employed 
by Juluru et al., for which no standards exist.

Our work has several limitations and areas for improve-
ment. It is an important building block, but it is not a clini-
cally usable system in itself; its clinical impact cannot be 
directly assessed until it is incorporated into an IVC fil-
ter tracking system. Such a system would ideally identify 
patients based on CT as well as radiographs. This particular 
improvement should be achievable as a trivial extension of 
the algorithm described here, using scout images from CT, 
but this has not yet been tested. Finally, though the prospects 
for generalizability of this algorithm are encouraging based 
on the external validation results, we tested against data from 
only one medical center outside the center where the training 
data originated. There are some similarities between these 
two centers; in particular, both are academic medical cent-
ers. It’s possible that heterogeneity in the world of medical 
imaging not captured by the variation in the two centers 
where we tested could lead to degraded performance at other 
sites.

In summary, the work described here uses a general-
purpose object detection network and software frameworks 
to achieve excellent performance in detecting IVC filters 
on radiographs with no manual steps. The transferability of 
these results on external data obtained at a separate institu-
tion is encouraging for the prospects of our future efforts to 
create an image-based patient tracking system to identify 
IVC filters in need of retrieval.
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