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BACKGROUND: The adhesion G-protein-coupled receptors (GPCRs) play crucial roles in tumour pathogenesis, however, their
clinical significance in pancreatic ductal adenocarcinoma (PDAC) remains unclear.
METHODS: We analysed 796 PDAC patients, including 331 from public data sets (TCGA, ICGC and GSE57495) and 465 from
independent cohorts (training: n= 321, validation: n= 144). Using in-vitro studies, we confirmed the biological function of the
candidate GPCRs.
RESULTS: Analysis of all 33 adhesion GPCRs, led to identify GPR115, as the only significant prognostic factor in all public data sets.
The patients with high GPR115 expression exhibited significantly poorer prognosis for OS and RFS, in training (P < 0.01, P < 0.01)
and validation cohort (P < 0.01, P= 0.04). Multivariate analysis indicated that GPR115 high expression was an independent
prognostic factor in both cohorts (HR= 1.43; P= 0.01, HR= 2.55; P < 0.01). A risk-prediction model using Cox regression by
incorporating GPR115 and clinicopathological factors accurately predicted 5-year survival following surgery. In addition,
GPR115 silencing inhibited cell proliferation and migration in PDAC cells.
CONCLUSION: We demonstrated that GPR115 has important prognostic significance and functional role in tumour progression;
providing a rationale that this may be a potential therapeutic target in patients with PDAC.
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BACKGROUND
Pancreatic ductal adenocarcinoma (PDAC) remains one of the
most lethal malignancies worldwide, which is estimated to be the
11th leading cause of new cancer cases, and is projected to
become the 2nd leading cause of deaths in the United States by
2030 [1]. In the United States and the 28 countries of the European
Union, it has been projected that pancreatic cancer will surpass
breast cancer as the third leading cause of cancer death in the
future [1, 2]. Despite progress in our understanding of the
molecular and genetic basis of this disease, the 5-year survival
rates have remained well under 10% [1, 3]. Several advances in
treatments including new regimens of chemotherapy and radio-
therapy have been introduced in recent years, but the prognosis
of patients still remains poor [4–13]. In addition, the use of one of
the newest drugs, the immune checkpoint inhibitors for treating
patients with mismatch repair-deficient PDAC, have failed to
demonstrate sufficient efficacy in patients with metastatic PDAC,
and the patient subgroup is quite limited [7, 14–16]. It was
thought that surgical resection could offer the only chance for
cure or long-term survival; however, most patients with PDAC

already have distant metastases [17–19], and less that 20% of
patients have a resectable disease at initial diagnosis [11, 20]. In
addition, even in this most favourable patient subgroup, up to
80% of patients experience recurrence after surgery with short
recurrence-free interval [21–23]. Therefore, identification of novel
targets and development of innovative therapeutic approaches is
much needed to further improve treatment outcomes in patients
with metastatic disease [12–14].
Multidisciplinary treatment strategies for localised PDAC are

being actively investigated [21, 24, 25]. Recently, it was reported
that 5-year survival rates of patients who received multidisciplin-
ary treatments including curative surgery and adjuvant therapy
were about 20–40% [6, 8, 21, 25, 26]. In particular, adjuvant
chemotherapy (ACT) has been an established treatment strategy
following curative resection for PDAC [6, 8, 27–29]. However, the
optimal indication and regimens are still being debated globally.
This highlights the need to develop robust prognostic biomarkers
for PDAC, and the expectations are that such biomarkers must
offer a superior prognostic clinical usefulness compared to the
classic clinicopathological factors.
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The G-protein-coupled receptors (GPCRs) consist of five main
families in mammals, the largest being the Rhodopsin family, or
class A, with about 284 members (plus about 380 olfactory
receptors) in humans, followed by the Adhesion GPCR family with
33 members, the Glutamate family (class C), the Secretin family
(class B), and the Frizzled family, with 22, 15, and 11 members,
respectively [30, 31]. GPCRs and their agonists have been reported
to be involved in the growth stimulation of many solid tumours,
including small cell lung cancer, colon cancer, prostate cancer,
breast cancer, and pancreatic cancer [32]. Interestingly, in
fundamental research utilising pancreatic cancer cell lines, GPCRs
have demonstrated cancer accelerative effect by interaction with
insulin receptors, and mediation of cancer-associated fibroblasts
and cancer cells [32–35]. However, their clinical significance and
translational potential have not been clarified. The Adhesion
GPCRs, one of the most well-known GPCR family, has received
increased attention and has been a topic of an inquisitive
biomedical research [31]. Many different research groups, includ-
ing the Adhesion GPCR Consortium, have studied the Adhesion
GPCRs with epidermal growth factor domains within their N
termini. The adhesion GPCRs have many important functions, such
as their role as receptors, interaction with extracellular molecules,
cell-signal transduction and various physiological processes;
however, the majority of the adhesion GPCRs are orphan receptors
[30, 31, 36]. It was recently reported that several GPCR members
are related to the progression of cancers and are frequently
overexpressed in several human cancers, including glioblastoma,
colorectal, and gall bladder cancer [36–43].
Although accumulating evidence indicates that cates GPCRs

may play a critical role in tumour biology, the precise role of
GPCRs in tumour progression in human cancers, especially PDAC
is not fully elucidated [31]. In this study, we performed a
comprehensive analysis of GPCR expression in PDAC, as well as
undertook a series of systematic studies to better understand the
molecular functions of GPCRs in this fatal malignancy.

METHODS
Clinical specimens and data sources
The three independent public gene-expression profiling data sets, the
Cancer Genome Atlas (TCGA), International Cancer Genome Consortium
(ICGC), and GSE57495, were used to interrogate the expression of GPCRs in
PDAC patients. The primary and processed data were downloaded from
these data sets in May 2018, along with the associated clinical information
[44]. On the cases where patients who had distant metastasis and
insufficient survival information were excluded.

Patient cohorts
In the clinical validation phase, two large, independent patient cohorts
were analysed to validate the GPCRs identified in the discovery phase. We
examined 465 patients in total, which included a training cohort of 321
patients from the Nara Medical University Hospital, and a validation cohort
of 144 patients from the Nagoya University Hospital, who underwent
curative surgeries for PDAC between January 2000 and December 2016. In
this study, 172 (53.6%) patients in the training cohort and 15 (10.4%) in the
validation cohort received neo-adjuvant therapy (NAT). Regarding
adjuvant chemotherapy (ACT) following surgery, 297 (92.5%) and 99
(68.8%) patients in the training and validation cohorts were mainly treated
with 5-Fluorouracil (5-Fu)-based chemotherapy (84.1%). Archived tumour
specimens were available for the entire study population. Tumours were
classified according to the TNM staging system of the Union for
International Cancer Control (UICC) version 7. The patients who had
positive peritoneal washing cytology or paraaortic lymph node metastasis
without other distant metastases were included in this study [45, 46].
Exclusion criteria included macroscopically incomplete resection or tumour
histology other than presence of PDAC. Patients who died of postoperative
complications within 30 days following surgery were also excluded. Each
tumour tissue specimen was fixed in 10% phosphate-buffered formalin
and embedded in paraffin. Patient follow-up was until death or January
2019. A Written informed consent was obtained from all patients, and the

study was approved by the Institutional Review Boards of all the
participating institutions.

RNA isolation and real-time quantitative reverse transcription
polymerase chain reaction
Total RNA was extracted from 10-mm-thick formalin-fixed paraffin-
embedded (FFPE) specimens. Cancer cell rich areas were identified and
tissues from these regions were microdissected [47]. Total RNA was
extracted from this tissue using the AllPrep DNA/RNA FFPE Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. Synthesis
of complementary DNA (cDNA) was conducted using 250 ng of total RNA
using the High-Capacity cDNA Reverse Transcription Kit (Invitrogen,
Carlsbad, CA, USA). Quantitative reverse transcription polymerase chain
reaction (qPCR) analysis was performed using the SensiFAST™ SYBR® Lo-
ROX Kit (Bioline, London, UK) on the QuantStudio 7 Flex Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA), and the expression
levels were evaluated with Applied Biosystems QuantStudio 7 Flex Real-
Time PCR System Software. The relative abundance of target transcripts
was evaluated and normalised to the expression levels of beta-actin as an
internal control using the 2–ΔDCt method; ΔDCt means the difference of Ct
values between GPR115 of interest and the normaliser. Normalised values
were further log2 transformed [48–50]. The PCR primers used in the
current study were as follows; GPR115: Forward primer 5’-CAGGCAACCAT-
GATTTGCTGC-3’, Reverse primer 5’-CCAGCTTTTAGGTGAATCTTGGA-3’,
Length of product 83 bp, Beta-actin: Forward primer 5’-CCTTTGCCG
ATCCGCCG-3’, Reverse primer 5’-GATATCATCATCCATGGTGAGCTGG-3’,
Length of product 59 bp.

Cell lines and culture
The human pancreatic cancer cell lines, PANC-1 and MIAPaCa-2 were
obtained from the ATCC (Manassas, VA, USA) and cultured in Iscove’s
Modified Dulbecco’s Medium (Gibco, Thermo Fisher Scientific, Waltham,
MA, USA) containing 10% fetal bovine serum (Gibco, Thermo Fisher
Scientific, Waltham, MA, USA). Both cell lines were maintained at 37 °C in a
humidified incubator (5% CO2). All cells were tested for mycoplasma and
routinely authenticated by a panel of genetic and epigenetic markers.

Small-interfering RNA (siRNA) transfection of GPR115
For the transfection experiments, 1.0 × 105 cells from the PANC-1 and
MIAPaCa-2 cell lines were seeded in 6-well plates, and thereafter
transfected either with the 10 nM of Negative control#1 siRNA (Thermo
Fisher Scientific, Waltham, MA, USA) or with 10 nM of siRNA specific for
GPR115. Transfections were carried out using the Lipofectamine system
(Lipofectamine™ RNAiMAX Transfection Reagent, Thermo Fisher Scientific,
Waltham, MA, USA) in accordance with the manufacturer’s protocol when
cells achieved about 30% confluency. The GPR115 siRNA duplexes,
generated with 30-dTdT overhangs and prepared by Life Technologies
(Carlsbad, CA, USA) were chosen against the following DNA target
sequences: (GPR115 target sequence, sense: 5’-GGAAUCCGUAAGAA-
CUGCCtt-3’).

Cell viability assay
Each cell line with different rates of confluence (PANC-1, 2 × 103; MIAPaCa-
2, 1 × 103) were seeded in 96-well plates. Once adherent, cells were
transfected with 10 nM of GPR115 siRNA or the Negative controls, and
cultured for 24 h. Cells were subsequently treated with 5-Fu (10 µM, Sigma-
Aldrich, Saint Louis, MO, USA) or an equivalent dilution of the Dimethyl
sulfoxide (DMSO) vehicle (Control) and incubated for 24, 48, 72, or 96 h.
After incubation, cell viability was measured with the 3-(4,5-dimethylthia-
zole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay according to
standard protocols [51, 52]. The absorbance at 565 nm was recorded with
a 96-well plate reader (TECAN, infinite 200Pro, i-control software). Each
experiment was performed in triplicate and the results were obtained from
six independent experiments.

Preparation of cell lysates for western immunoblotting
analysis
Following 72 h treatment with GPR115 or control siRNA, total cellular
protein was extracted and western immunoblotting was performed, as
described previously [18, 53]. We electrophoretically resolved the cell
lysates in SDS-polyacrylamide gels and transferred them onto polyvinyli-
dene difluoride membranes, which were then blocked in 5% skim milk at
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room temperature for 1 h. The membranes were incubated with the
indicated monoclonal mouse anti-human GPR115 antibody (MAB5437,
2 µg/mL; R&D Systems, Minneapolis, MN, USA) overnight at 4 °C, and
subsequently incubated with horseradish peroxidase-conjugated IgG
(Sigma-Aldrich, Saint Louis, USA). β-actin (Sigma-Aldrich, Saint Louis, MO,
USA) was used as a reference protein. All protein bands on the membranes
were visualised using the ChemiDoc™ MP Imaging System and Image Lab™
Software version 5.2.1 (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Cell migration and wound-healing assays
Two days following transfection with GPR115 or control siRNA, migration
assays were performed using the BD BioCoat Matrigel Invasion Chambers
(BD Biosciences, Franklin Lakes, NJ, USA) with 8 µm pore-size PET
membranes. For wound-healing assays, GPR115 siRNA or control siRNA
were transfected when cells were more than 90% confluent. The ‘wound’
was made by scratching cells with a sterile 200 µL pipette tip, and cell
migration was observed for up to 24 h. All experiments were conducted in
triplicate in four independent experiments.

Statistical analysis
Patients divided into the high or low expression group of GPR115 were
classified by median expression values. The overall survival (OS) and
relapse-free survival (RFS) were calculated from the date of surgery to the
date of death or recurrence, or the last follow-up date. Kaplan–Meier
survival calculations and the corresponding log-rank tests were carried out
to determine differences in survival rates. Multivariate analysis was
performed using the Cox-regression model. We used the tumour status
as T factor, nodal status as N factor, and metastatic status as M factor in
tumour-node-metastasis classification, respectively. Multivariate analyses
were performed including all variables that achieved a P-value of <0.05 in
univariate analysis. The chi-square test or Fisher’s exact test was used to
analyse the significance of the association between the expression of
GPR115 and clinicopathological factors in Table 1. Other data were
analysed using the Student’s t-test or the Mann–Whitney U-test, as
appropriate to determine significant differences. A P-value <0.05 was
considered statistically significant. 5-year OS prediction models were
established by a Cox-proportional hazard model using expression levels of
GPR115 and clinicopathological factors [54]. Patients followed less than
five years after surgery were excluded. Receiver-operating-characteristic
(ROC) curves were established for 5-year OS; Training cohort: N= 241
patients (50 survivors with follow-up ≥5 years and 191 death within 5
years), Validation cohort N= 117 patients (19 survivors with follow-up ≥5
years and 98 death within 5 years). Area under the curves (AUC) were
compared between the models and clinicopathological factors. Statistical
analyses were performed using Medcalc statistical software V.16.2.0
(Medcalc Software bvba, Ostend, Belgium), and GraphPad Prism V7.0
(GraphPad Software, San Diego, CA, USA).

RESULTS
Genome-wide expression profiling of adhesion GPCRs led to
identify GPR115 as a significant prognostic predictor in PDAC
The entire workflow for this study is depicted in Supplementary
Fig. S1A. In order to evaluate the clinical significance of GPCR for
pancreatic cancer, we first used public data sets to analyse GPCR
expression. In total, data from 331 patients, which included 177
patients from TCGA, 91 patients from ICGC, and 63 patients from
the GSE57495, were analysed. First, we analysed TCGA RNA-seq
data. Among the total of 33 GPCRs, the expression of 9 genes
correlated significantly with patients’ prognoses. We next exam-
ined the clinical relevance of GPCR expression in the ICGC and GSE
data sets, wherein, high expression level of GPR115 was the only
significant prognostic factor in all three data sets (TCGA: P= 0.02,
ICGC: P= 0.04, GSE57495: P= 0.05, Fig. S1B–D). Based on these
results, we selected GPR115 expression for further evaluation.

Clinical training clarifies the prognostic significance of
GPR115 in an independent clinical cohort of PDAC patients
Next, during the testing phase, we assessed the clinical
significance of GPR115 gene-expression by qRT-PCR in a clinical
training cohort of 321 PDAC patients. Each sample was

categorised into two groups according to their median expression
levels of GPR115 expression. The expression levels of GPR115 were
analysed based on patient demographics and various clinico-
pathological characteristics (Table 1). While interrogating GPR115
levels and survival data, RFS data were not available for 8 patients;
and hence were excluded from further analysis. Interestingly, the
patients that expressed high levels of GPR115 in their tumours
exhibited significantly worse OS and RFS compared to those with
low tumoural GPR115 levels (P < 0.01, P < 0.01, Log-rank test;
Fig. 1a, b). The median overall survival was 25.4 months in the
patients with high GPR115 expression and 35.6 months with low
GPR115 expression. Postoperative recurrence was 76.2% in the
high GPR115 expression group vs. 70.6% in the low expression
patient group at the time of analysis.
Next, we carried out univariate and multivariate analyses using

the Cox-proportional hazard model in the clinical training cohort.
Univariate analysis of OS revealed that high tumoural expression
of GPR115 was a significant prognostic factor (HR= 1.55, P < 0.01,
Table 2). The other factors that correlated significantly with
patients’ OS were the tumour nodal status, CA19-9 expression
levels, and the tumour size. Furthermore, multivariate analysis
indicated that tumour GPR115 status was a significant and an
independent prognostic factor for OS (HR= 1.43, P= 0.01, Table 2).
In addition, tumour and nodal status, CA19-9 levels, and the
tumour size, all emerged as significant independent prognostic
factors for OS (Table 2). Furthermore, GPR115 expression was
associated significantly with poor RFS in both univariate and
multivariate analyses (Univariate: HR= 1.46, P < 0.01, Multivariate:
HR= 1.35, P= 0.02, Table 3). These results demonstrated that we
successfully proved the prognostic impact of GPR115 in patients
with PDAC in large, independent in-house clinical cohort.

Successful validation of GPR115 expression in clinical
validation cohort highlights its prognostic importance
To confirm the prognostic significance of GPR115, we analysed
another, large, independent cohort of 144 PDAC patients as a
validation cohort. The high and low expression groups in the
validation cohorts were determined using the same statistical
model and cutoff thresholds, as obtained in the training cohort.
The associations between GPR115 expression and clinicopatholo-
gical factors are shown in Table 1. Next, we evaluated the clinical
significance of GPR115 expression with regards to OS and RFS.
Consistent with the results in the training cohort, patients with
high tumoural GPR115 expression exhibited poorer OS and RFS,
compared to those with low GPR115 expression (P < 0.01 and 0.04,
respectively) as shown in Fig. 1c, d.
Next, we performed univariate and multivariate analyses using

the clinical validation cohort data. Univariate analysis revealed
that high GPR115 expression and positive nodal status were
significantly associated with poor OS, and high GPR115 expres-
sion, nodal status, and larger tumour size (≥30mm) were
significantly associated with worse RFS, respectively (Tables 2
and 3). Based on the results of univariate analysis using the
training cohort, the statistically significant five factors, which
included the GPR115 expression levels, the tumour status, nodal
status, CA19-9 levels, and the tumour size, were also incorporated
in the multivariate analysis. Interestingly, high GPR115 expression
emerged as an independent and singular prognostic factor for
predicting poor OS and RFS (HR= 2.55, P < 0.01, HR= 1.89,
P < 0.01, Tables 2 and 3); which yet again highlights the clinical
significance of high tumour GPR115 expression as an important
prognostic biomarker in patients with PDAC.

Establishment of a prognostic model that combines GPR115
expression and key clinicopathological factors for predicting
survival in PDAC patients
In an attempt to further improve the prognostic significance of
GPR115 in PDAC, we next constructed a 5-year OS prediction
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model using a combination of GPR115 expression data in
conjunction with key clinicopathological factors by performing
Cox-proportional hazard analyses in the data from the training
cohort of PDAC patients. Similar to our previous analysis, all five
factors were included in this analysis as well. The censored cases
within five years following surgery were excluded, since they did
not meet the 5-year OS cutoff threshold. The multivariate analysis
revealed that GPR115 was still a significant prognostic factor
(Fig. 2a, b). Interestingly however, when we included the data
from CA19-9 levels, T and N status and the tumour size along with
GPR115 expression data, it resulted in an even superior predictive
accuracy for long-term survivors with a corresponding AUC of 0.75
(95%CI: 0.69–0.80, Fig. 2c, d) in the training cohort and 0.84 (95%

CI: 0.76–0.90, Fig. 2e, f) in the validation cohort. Furthermore,
when we evaluated the distribution of combination risk scores
and survival status, the 5-year survivors demonstrated a sig-
nificantly lower risk score than patients with death within 5 years
in both cohorts (P < 0.01, Fig. S2A, B). It was quite encouraging
that in both of these independent large patient cohorts, we
observed consistent results, and our prognostic model accurately
predicted 5-year OS in the PDAC patients. In addition, in order for
an easier translation of GPR115 expression in the clinic, we next
evaluated its predictive performance for long-term survivors along
with the clinicopathological factors and established a nomogram.
When we included various pathological features and GPR115
expression in the risk- nomogram, we again confirmed that our

Table 1. Comparison of clinicopathological characteristics according to tumour GPR115 expression.

Training cohort Validation cohort

Characteristics Total GPR115 expression Total GPR115 expression

n= 321 Low
(n= 160)

High
(n= 161)

P-valuea n= 144 Low (n= 79) High
(n= 65)

P-valuea

Age, years

<70, n (%) 157 87 (54.4) 70 (43.4) 0.06 94 52 (65.8) 42 (64.6) 0.88

≥70, n (%) 164 73 (45.6) 91 (56.6) 50 27 (34.2) 23 (35.4)

Gender

Male, n (%) 189 92 (55.6) 97 (60.9) 0.65 86 42 (53.2) 44 (67.7) 0.08

Female, n (%) 132 68 (44.4) 64 (39.1) 58 37 (46.8) 21 (32.3)

Tumour status

T1-2 40 28 (17.5) 12 (7.5) <0.01b 4 1 (1.3) 3 (4.6) 0.33b

T3-4 281 132 (82.5) 149 (92.5) 140 78 (98.7) 62 (95.4)

Nodal status

N0 197 102 (63.8) 95 (59.0) 0.38 37 20 (25.3) 21 (32.3) 0.36b

N1 124 58 (36.2) 66 (41.0) 107 59 (74.7) 44 (67.7)

UICC stage (ver. 7)

IA, IB 34 24 (15.0) 10 (6.2) 0.06 3 0 (0.0) 3 (4.6) 0.02

IIA 156 76 (47.5) 80 (49.7) 37 20 (25.3) 17 (26.2)

IIB 106 47 (29.4) 59 (36.6) 89 55 (69.6) 34 (52.3)

IV 25 13 (8.1) 12 (7.5) 15 4 (5.1) 11 (16.9)

CA19-9 (U/mL)

<100, n (%) 206 110 (68.8) 96 (59.6) 0.09 57 37 (46.8) 20 (30.8) 0.06b

≥100, n (%) 115 50 (31.2) 65 (40.4) 87 42 (53.2) 45 (69.2)

Tumour size (mm)

<30, n (%) 200 100 (62.5) 100 (62.1) 0.94 70 40 (50.6) 30 (46.2) 0.66

≥30, n (%) 121 60 (37.5) 61 (37.9) 74 39 (49.4) 34 (53.8)

Resectability status

Resectable 243 122 (76.3) 121 (75.2) 0.47 0 0 0 NA

BR 70 33 (20.6) 37 (23.0) 0 0 0

Locally advanced 7 5 (3.1) 2 (1.2) 0 0 0

Not available 1 0 (0.0) 1 (0.6) 144 79 (100.0) 65 (100.0)

Neo-adjuvant therapy

Yes 172 94 (58.8) 78 (48.4) 0.06 15 12 (15.2) 3 (4.6) 0.05b

No 149 66 (41.2) 83 (51.6) 129 67 (84.7) 62 (95.4)

Adjuvant therapy

Yes 297 149 (93.1) 148 (91.9) 0.83b 99 51 (70.8) 48 (66.7) 0.71b

No 24 11 (6.9) 13 (8.1) 45 21 (29.2) 24 (33.3)

Statistically significant P-values are bold.
UICC International Union Against Cancer, BR borderline resectable, NA not available.
aChi-square test.
bFisher’s exact test.
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GPR115 demonstrated the highest weight in this nomogram and
emerged as the most significant predictor for 5-year OS in patients
with PDAC (Fig. S2C).

The performance of CPR115 for predicting cancer prognosis is
applicable to the patient’s subgroup according to
perioperative adjuvant therapy status
For patients with PDAC, multidisciplinary treatment strategies,
including NAT and ACT, are becoming increasingly standard
treatment options worldwide. However, NAT can modify genetic
profiles in tumour cell and microenvironment. In order to
investigate whether there were any associations between the
GPR115 expression levels and the NAT status in terms of patient
prognosis, we categorised all patients according to the presence
or absence of NAT. Interestingly, GPR115 expression once again
was a significant prognostic factor regardless of NAT status in the
training and validation cohorts (Fig. S3A–D); hence highlighting
that the its transrational applicability as prognostic marker to
patients with PDAC who received NAT. On the other hand, GPR115
was significantly associated with poor prognosis of RFS in patients
who received ACT following surgery, but there was no significant

difference in patients who did not receive such treatments
(Fig. S4A–D). These data suggest that the clinical significance of
tumour GPR115 expression was independent of NAT status and
might be related to the effects of ACT in PDAC patients who
underwent curative surgery.

Silencing of GPR115 inhibits cell proliferation, migration and
would-healing potential in human pancreatic cancer cells
In order to elucidate the underlying function of GPR115 in PDAC
cells, we directly examined GPR115 expression dynamics in
pancreatic cancer cells by silencing GPR115 function using siRNAs.
When transfected with GPR115 or negative control siRNA in human
pancreatic cancer cell lines, PANC-1 and MIAPaCa-2, the expression
levels of GPR115 mRNA (48 h) and protein (72 h) were substantially
reduced (Fig. 3a, P < 0.01; Fig. 3b, P < 0.01). Next, we were curious to
determine the effect of GPR115 on PDAC cell proliferation. We
observed that cellular proliferation was significantly suppressed by
GPR115 siRNA silencing in these cells as well (Fig. 3c; P < 0.01).
Chemotherapy for PDAC, especially for ACT regimens using 5-Fu

are the mainstream approach worldwide, and the patients in our
clinical cohorts received primarily 5-Fu-based perioperative
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adjuvant therapy. Therefore, we next transfected GPR115 siRNA or
control siRNA into these cells and subsequently treated them with
5-FU or control (DMSO) and compared the effects on cell
proliferation. Notably, we observed that the combination of
GPR115 silencing and 5-FU treatment further elevated the
significant reduction in cell proliferation compared to each factor
individually (Fig. 3c). Furthermore, we ascertained whether
GPR115 inhibition affected the migratory activity of PDAC cells.
Transfection with GPR115 siRNA significantly decreased the
migration in both PDAC cell lines when measured by the

migration and wound-healing assays (Fig. 3d, P < 0.01; Fig. 3e,
P < 0.01). These results suggest that GPR115 plays an important
role as a tumour enhancer in PDAC cells, and that by blocking
transcription of GPR115 it enhances the anti-tumour effect of 5-FU
in this malignancy.

DISCUSSION
In this study, we carried out a comprehensive and systematic
investigation on the role GPCRs in PDAC, and firstly report that

Table 3. Univariate and multivariate analysis of RFS using Cox-regression model.

Univariate analysis Multivariate analysis

Characteristics HR 95% CI P-value HR 95% CI P-value

Training cohort (n= 313)

Age (≥70 vs. <70) 1.15 0.89–1.49 0.28

Gender (Female vs. Male) 0.91 0.70–1.19 0.50

Tumour status (T3-4 vs. T1-2) 3.03 1.87–4.91 <0.01 2.34 1.43–3.84 <0.01

Nodal status (N1 vs. N0) 1.67 1.29–2.17 <0.01 1.40 1.07–1.83 0.01

CA19-9 (≥100 U/mL vs. <100 U/mL) 1.79 1.37–2.32 <0.01 1.54 1.17–2.02 <0.01

Tumour size (≥30mm vs. <30mm) 1.45 1.12–1.88 <0.01 1.38 1.06–1.80 0.02

GPR115 status (high vs. low) 1.46 1.13–1.89 <0.01 1.35 1.04–1.76 0.02

Validation cohort (n= 144)

Age (≥70 vs. <70) 0.95 0.65–1.39 0.78

Gender (Female vs. Male) 0.89 0.61–1.28 0.51

Tumour status (T3-4 vs. T1-2) 2.80 0.69–11.35 0.15 2.18 0.51–9.35 0.29

Nodal status (N1 vs. N0) 2.19 1.42–3.38 <0.01 2.28 1.43–3.64 <0.01

CA19-9 (≥100 U/mL vs. <100 U/mL) 1.33 0.92–1.93 0.13 1.06 0.72–1.55 0.78

Tumour size (≥30mm vs. <30mm) 1.55 1.08–2.23 0.02 1.33 0.92–1.93 0.13

GPR115 status (high vs. low) 1.47 1.02–2.11 0.04 1.89 1.29–2.77 <0.01

Statistically significant P-values are bold.
HR hazard ratio, CI confidence interval.

Table 2. Univariate and multivariate analysis of OS using Cox-regression model.

Univariate analysis Multivariate analysis

Characteristics HR 95% CI P-value HR 95% CI P-value

Training cohort (n= 321)

Age (≥70 vs. <70) 1.22 0.93–1.60 0.16

Gender (Female vs. Male) 0.89 0.67–1.18 0.42

Tumour status (T3-4 vs. T1-2) 3.55 2.02–6.24 <0.01 2.47 1.38–4.40 <0.01

Nodal status (N1 vs. N0) 1.75 1.33–2.30 <0.01 1.37 1.03–1.82 0.03

CA19-9 (≥100 U/mL vs. <100 U/mL) 2.26 1.71–2.99 <0.01 1.94 1.46–2.58 <0.01

Tumour size (≥30mm vs. <30mm) 1.49 1.13–1.96 <0.01 1.36 1.03–1.80 0.03

GPR115 status (high vs. low) 1.55 1.17–2.05 <0.01 1.43 1.08–1.89 0.01

Validation cohort (n= 144)

Age (≥70 vs. <70) 1.00 0.65–1.52 0.98

Gender (Female vs. Male) 0.98 0.66–1.45 0.91

Tumour status (T3-4 vs. T1-2) 2.05 0.51–8.32 0.32 1.64 0.38–7.16 0.51

Nodal status (N1 vs. N0) 2.19 1.38–3.47 <0.01 2.61 1.59–4.28 <0.01

CA19-9 (≥100 U/mL vs. <100 U/mL) 1.31 0.87–1.96 0.19 1.09 0.72–1.65 0.69

Tumour size (≥30mm vs. <30mm) 1.46 0.99–2.16 0.06 1.31 0.88–1.95 0.18

GPR115 status (high vs. low) 1.95 1.32–2.88 <0.01 2.55 1.69–3.85 <0.01

Statistically significant P-values are bold.
HR hazard ratio, CI confidence interval.

S. Nishiwada et al.

326

British Journal of Cancer (2023) 128:321 – 330



GPR115, has an important clinical significance in PDAC. We
evaluated and noted that high expression of GPR115 was
associated with poor OS and RFS in patients with PDAC patients,
in three public data sets, as well as two large independent clinical
cohorts. Evidence from previous reports indicates that GPCRs have
diverse physiological and pathological functions in humans [31].
Adhesion GPCRs originally were discovered to play important
roles in various physiological conditions including immune
responses mediated by large cell surface ligands [55, 56]. More-
over, GPCRs play numerous roles in tumour biology
[30–32, 35–39, 43]. However, there are only limited studies on
the role of GPCRS in tumour biology [41, 56]. Furthermore, none of
the studies have demonstrated its clinical significance or
translational potential using independent multiple clinical cohorts
of PDAC patients.
We first examined associations between the expression of all

GPCRs and cancer prognoses using public data sets, and observed
that expression of GPR115 was the only GPCR that served as a
significant prognostic factor in all three independent data sets.
Based on these results, we selected the GPR115 for further
evaluation, and focused on deciphering its clinical significance in
PDAC. Interestingly, patients with high GPR115 expression
exhibited significantly poorer prognoses vs. those with low
GPR115 expression. More importantly, the multivariate analysis
demonstrated that tumoural GPR115 expression was a significant
ahnd independent prognostic factor for PDAC patients in two,
large, independent clinical patient cohorts. Ozer et al. reported
that GPR115 was altered significantly with methylation changes in
four cancers (breast cancer, thyroid cancer, colon adenocarcinoma
and prostate adenocarcinoma) from public data sets [41].

Recently, GPR115 has been implicated in cancer invasion,
metastasis and poor prognosis in lung cancer [57, 58]. However,
the function and clinical significance of GPR115 has yet to be well
verified in these and other cancers, especially in PDAC.
PDAC is a lethal malignant cancer, but with the development of

multidisciplinary therapy, nowadays, in some instances 20% of
patients can survive 5 years or longer after curative surgery
[6, 8, 25, 26]. These results demonstrate a need for more accurate
prognostic biomarkers to determine which patients might benefit
from multi-modality therapy. The results of our study indicate that
GPR115-low patients had about a 30% 5-year OS in both groups,
and when we combined GPR115 expression levels with key
clinicopathological factors, we were able to illustrate that this
combined model was a superior prognostic predictor with an AUC
of >0.75 in both groups. This value for determining patient
prognosis was not affected by the neo-adjuvant therapy (NAT)
status and GPR115-low patients always possessed a significantly
better OS than those with GPR115-high tumours. Additionally,
there was no difference in GPR115 expression between patients
who did or did not receive NAT. On the other hand, adjuvant
chemotherapy (ACT) was a standard of care following curative
resection for PDAC [6, 8, 28, 29]. In our study, GPR115 was
significantly associated with poor prognosis of RFS in patients who
received ACT, but there was no significant difference in RFS in
patients high or low GPR115 levels in the absence of ACT.
Although further studies are required, this could be due to the
numbers of patients that were in the ACT-positive vs. ACT-
negative groups, or GPR115 expression might be related to the
effect of ACT in PDAC patients with or without the tumour
present.
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We then investigated the potential function of GPR115 in PDAC
and noted that GPR115 may be involved in the proliferation and
migration of PDAC cells. This was demonstrated by data showing
that the siRNA knockdown of GPR115 significantly inhibited the
proliferation and migration of human PDAC cell lines. In addition,
GPR115 inhibition enhanced the anti-tumour effect of 5-FU. We
interpret these results to suggest that there may be an interaction
between the effects of chemotherapy and GPR115 expression.
Moreover, this finding was consistent with our data that observed
an association between GPR115 expression and prognosis of
patients who receive ACT after surgery. Further studies are needed
to reveal the molecular mechanisms of GPR115 in association with
chemo-sensitivity of pancreatic cancer cells, in order to develop
new therapeutic strategies.
Although our results provide clinical significance of GPR115

expression in PDAC, we acknowledge that there were some
inherent limitations to this study. First, this was a retrospective
study with the associated risks of bias. Second, our database
lacked information with regard to additional treatments for
recurrence after surgery. Third, in this present study, we did not
adequately investigate the potential therapeutic target of GPR115
utilising treatment model. Effective therapeutic agents and/or
antibodies are essential to establish a therapeutic model, but
unfortunately, there are currently no established therapeutic
agents for GPR115. Finally, in order to further increase the clinical
significance, it is necessary to predict prognosis before patients
undergo surgery. Thus, it may be ideal perform a prospective

study to verify GPR115 expression of endoscopic fine needle
aspiration biopsy samples.

CONCLUSIONS
We identified that GPR115 might serve as a prognostic indicator in
patients with PDAC, especially those who undergo curative
resection. In addition, GPR115 may contributes to tumour
progression, thus, our study provides a rationale for developing
novel therapies targeting GPR115 for PDAC.
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