Skip to main content
. 2023 Feb 6;10:75. doi: 10.1038/s41597-023-01981-y

Table 7.

Centre-wise performance evaluation of best approach while training using four centres, validating on individual centre, and testing on out-of-sample generalisation task (centre C6).

Method Val. JI ↑ DSC ↑ F2 ↑ PPV ↑ Recall ↑ Acc. ↑ dAHD
DeepLabV3+23 (ResNet50) C1 0.70 ± 0.32 0.76 ± 0.33 0.75 ± 0.33 0.85 ± 0.28 0.79 ± 0.30 0.98 4.77
DeepLabV3+23 (ResNet50) C2 0.72 ± 0.28 0.79 ± 0.27 0.78 ± 0.27 0.88 ± 0.23 0.80 ± 0.25 0.97 4.70
DeepLabV3+23 (ResNet50) C3 0.74 ± 0.28 0.80 ± 0.27 0.80 ± 0.26 0.86 ± 0.24 0.83 ± 0.25 0.97 4.77
DeepLabV3+23 (ResNet50) C4 0.76 ± 0.28 0.82 ± 0.27 0.81 ± 0.28 0.91 ± 0.17 0.81 ± 0.28 0.98 4.77
DeepLabV3+23 (ResNet50) C5 0.73 ± 0.31 0.78 ± 0.31 0.77 ± 0.32 0.93 ± 0.16 0.78 ± 0.31 0.98 4.88

Val.: Validation centre JI: Jaccard index DSC: Dice coefficient F2: Fbeta-measure, with β = 2 PPV: Positive

predictive valueAcc.: overall accuracy dAHD: Average Hausdorff distance ↑: best increasing ↓: best decreasing.