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Abstract 

Historically, COVID-19 emerges as one of the most devastating diseases of humankind, which creates an unmanagea-
ble health crisis worldwide. Until now, this disease costs millions of lives and continues to paralyze human civilization’s 
economy and social growth, leaving an enduring damage that will take an exceptionally long time to repair. While a 
majority of infected patients survive after mild to moderate reactions after two to six weeks, a growing population of 
patients suffers for months with severe and prolonged symptoms of fatigue, depression, and anxiety. These patients 
are no less than 10% of total COVID-19 infected individuals with distinctive chronic clinical symptomatology, collec-
tively termed post-acute sequelae of COVID-19 (PASC) or more commonly long-haul COVID. Interestingly, Long-haul 
COVID and many debilitating viral diseases display a similar range of clinical symptoms of muscle fatigue, dizziness, 
depression, and chronic inflammation. In our current hypothesis-driven review article, we attempt to discuss the 
molecular mechanism of muscle fatigue in long-haul COVID, and other viral diseases as caused by HHV6, Powassan, 
Epstein–Barr virus (EBV), and HIV. We also discuss the pathological resemblance of virus-triggered muscle fatigue with 
myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).
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Graphical Abstract

Introduction
The role of viral infection in muscle fatigue has been 
debated for a long in the field of ME/CFS [1]. ME/CFS 
is a chronic inflammatory disease characterized by 
severe muscle weakness, fatigue, pain, lightheadedness, 
and brain fog [2]. One of the most debilitating symp-
toms of ME/CFS is post-exertional malaise (PEM), in 
which a patient suffers severe muscle fatigue and cogni-
tive-, and orthostatic- exertions after mild exercise. This 
severe worsening of symptoms can cause a patient to 
be bedridden for a long time ranging from 24 h to sev-
eral months [3, 4]. Although, the underlying molecular 
mechanism of severe muscle fatigue in ME/CFS is not 
known, a growing body of evidence suggests that intra-
cellular inflammation and exaggerated productions of 
inflammatory mediators might contribute to the patho-
genesis of muscle fatigue via promoting the degeneration 
of skeletal muscle cells and also inhibiting the differentia-
tion of muscle progenitor cells [5, 6]. However, it is not 
known how the inflammation is initiated. In this con-
text, a “ hit-and-run” mechanism of viral infection could 
be critical in which a transient viral infection is consid-
ered to potentiate a series of inflammatory events caus-
ing a sustained immunological disturbance [7]. A “virus 

reactivation theory” could be another mechanism [8], 
which suggests that the reactivation of viruses including 
EBV and HHV6 followed by a cascade of inflammatory 
events might contribute to the pathogenesis of ME/CFS 
[1]. Despite these competing hypotheses, the role of viral 
infection in the pathogenesis of muscle fatigue cannot be 
disregarded. Interestingly, a recent pandemic of COVID-
19 also exhibits persistent symptoms of fatigue and weak-
ness in approximately 10% of its survivors reiterating the 
potential role of virus infection in the pathogenesis of 
chronic fatigue syndrome [9]. Our current speculative 
review article discusses how HHV6, Powassan, EBV, HIV, 
and SARS-CoV2 viral infections adopt a common immu-
nological mechanism that possibly leads to the debilitat-
ing muscle fatigue.

HHV6 and chronic fatigue syndrome
The potential association between HHV6 and chronic 
inflammation was first introduced in 1992 by Buchwald 
et al. [10] when a cohort of 259 HHV6-infected patients 
was diagnosed with severe lymphocytic activation and 
cognitive impairment. Although, that study was contro-
versial [11] to prove the link between chronic fatigue syn-
drome (CFS) and HHV6, in the same year, Kato et al. [12] 
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reported a case study with a 31-year-old woman who was 
initially admitted with CFS, was turned out to be positive 
with a high titer of anti-HHV6 antigen. Later on, a PCR-
based study [13] identified strong upregulations of HHV6 
A and B mRNAs in 7 of 13 CFS patients with high titer 
of HHV6 early antigen demonstrating a strong correla-
tion between HHV6 infection and CFS. Furthermore, a 
strong upregulation of IgM antibody against HHV6 early 
antigen (EA) [14] in 93 of 154 CFS patients (60%) [15] 
established another possible link between HHV6 and 
CFS. Although the molecular mechanism of HHV6 infec-
tion and fatigue was still unclear, HHV6 was known to 
induce an acute immunosuppressive response. Although 
both HHV6-A and-B strains infect CD4 + T helper and 
 CD8+ cytotoxic T cells [16], upon infection, HHV6 

selectively suppresses the expression of IL12 and inhibits 
Th1 polarization of CD4 + T cells [16]. In infected CD4 + 
T cells, HHV6 also suppresses the proliferative response 
by downregulating the expression of IL2 [17] and aug-
menting cell cycle arrest [18]. All these events induce 
apoptotic signals to  CD4+ T cells (Fig. 1). In response to 
these apoptotic T cells, macrophages perform phagocy-
tosis and augment an anti-inflammatory “immunotol-
erant” microenvironment characterized by high levels 
of TGF-β and IL-10 [19]. In addition, a death response 
to CD4 + T cells causes acute suppression of anti-viral 
IFN-γ production [20, 21]. Interestingly, reduced IFN-γ 
and increased IL-10 are historically known to suppress 
inflammation [22, 23]. Therefore, the role of acute HHV6 
infection in inducing inflammation seems elusive. One 

Fig. 1 Potential mechanism of muscle fatigue is related to acute immunosuppressive and chronic inflammatory mechanisms of HHV6 viral 
infection. Acute infection of HHV6 (Blue shade) causes immunosuppression. During that phase, virus-infected CD4 + Th1 and CD8 + Tc cells 
undergo apoptosis (#1) following phagocytosis (#2) by macrophages (Mφ). During phagocytosis, Mφ release TGFβ and IL10 as a part of the 
immune tolerance response (#3). IL10 and IL4 are also secreted from Th2 cells during activation of  FOXP3+ve regulatory T cells. Together, there is an 
immunosuppressive response marked with reduction of inflammatory cytokines (#4). However, during chronic inflammation and viral reactivation 
(Red shade), a subset of persistently infected Th1 cells escape apoptosis, undergo clonal proliferation (IL2 and IL12) (#1), engage in crosstalk with 
Mφ, build up inflammatory milieu (#2), generate oxidatively (ROS = reactive oxygen species) and nitrosative stress (NO = nitric oxide) (#3). These 
inflammatory T cells also infiltrate through the blood–brain barrier (BBB), interacts with microglia causing CNS inflammation, demyelination of 
oligos, demyelination of nerve fibers (#4), and finally leads to the impaired nerve conduction, muscle weakness, and fatigue. FOXP3 = forkhead box 
P3; A master transcription factor in the development and function of regulatory T cells
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potential mechanism could be the escape of persistently 
infected  CD4+ T cells from the above-mentioned acute 
apoptotic pathway that potentially stimulate an inflam-
matory response in macrophages and glial cells. A recent 
report also suggests that HHV6A directly stimulates the 
inflammation and migration of microglial cells via activa-
tion of TREM2 and ApoE [24].Therefore, active HHV6 
infection, but not an acute immunosuppressive event, 
may be directly responsible for responsible for the micro-
glial activation [25], and possible demyelination [26]. Fur-
thermore, a recent study [27] identified that patients with 
demyelination in CNS displayed HHV6-immunoreactive 
oligoclonal bands in their cerebrospinal fluid indicat-
ing a potential link between multiple sclerosis (MS)-like 
encephalopathy and HHV6-infection.

Nevertheless, the upregulation of 8-hydroxy-2′-
deoxyguanosine (8h2dg) [28], a DNA stress marker, in the 
CSF of HHV6 encephalopathy patients and a significant 
recovery after FDA-approved ALS-drug Edarvone fur-
ther confirmed the presence of encephalopathic response 
in HHV6 patients. That study demonstrated that 43.7% of 
HHV6 encephalopathy subjects had higher 8h2dg. Clini-
cal symptoms such as muscle fatigue, sleep disturbance, 
problems with balance, impaired mobility, and seizures 
are pathological hallmarks of an encephalopathy [29, 30]. 
Therefore, combined with the mechanism of persistent 
immune activation, HHV6 infection could also trigger 
a CNS-specific stress response resulting in microglial 
inflammation [24], demyelination [31], oxidative stress 
[32], and neuronal damage [33], which might lead to the 
clinical manifestations of cognitive deficit, emotional 
disabilities, and muscle fatigue. HHV6 infection directly 
or indirectly triggers neurodegeneration. In an indirect 
mechanism, HHV6A promotes microglial expression of 
amyloid beta (Aβ) [24], the secretion of phospho-tau [24], 
and the induction of IL-1β. Moreover, HHV6 directly 
causes apoptosis of cerebellar Purkinje cells [34] suggest-
ing its direct role in neurodegeneration. As a mechanism, 
the disruption of TLR4 signaling [35] and activation of 
TLR9 [36] followed by activation of nuclear factor κB 
(NF-κB) [37] might play key roles in inducing pro-inflam-
matory signaling events. HHV6 infection also profoundly 
contributes to central and peripheral demyelination. 
HHV6 virions directly infect oligodendroglial progenitor 
cells (OPCs) and cause cell cycle arrest at G1/S phase and 
inhibit its maturation to oligodendrocytes [38]. Other 
reports suggest that HHV-6A latency gene U94 directly 
inhibits migration and myelination of OPCs [39]. Similar 
to the situation in the CNS, HHV6 also induces periph-
eral demyelination by direct infection of the peripheral 
nervous system in dorsal sensory ganglia [40, 41].

Taken together, both the central and peripheral mecha-
nisms of HHV6-induced demyelination result in the pro-
gressive loss of nerve conduction to the synaptic terminal 
at the neuromuscular junction resulting in the muscle 
weakness and fatigue (Fig. 1).

Powassan virus encephalitis and chronic fatigue
Powassan virus (POWV) encephalitis was first reported 
in 1958, when the titer of POWV, a neuroinvasive arbovi-
rus, was detected from the brain autopsy of a young boy 
who died in Powassan, Ontario [42]. It is a tickborne fla-
vivirus-induced [43, 44] disease that displays a wide spec-
trum of neuroinflammatory responses [45] in the brain 
and spinal cord including compromised blood–brain 
barrier integrity, enhanced infiltration of inflammatory T 
cells [46, 47], severe microglial activation [47], and demy-
elination [48] of oligodendrocytes resulting neuronal tox-
icity. While it is not known if POWV can induce a similar 
acute immunosuppressive mechanism as seen in HHV6, 
a recent study [49] demonstrated that there is a robust 
proliferation of reactive Th1 cells in the spleens of the 
POWV-infected mice. This finding suggests that, in con-
trast to HHV6, POWV acutely induces the inflammatory 
response in the early phase of infection. During the acute 
phase of infection, there is an activation of innate immu-
nity (Fig. 2) for the protection against POWV infection. 
One such mechanism includes the activation of B cells 
and the subsequent expression of IgM antibodies. Indeed, 
elevated IgM antibodies have been identified in both CSF 
and sera of acute POWV-infected patients [44]. IgM 
antibody directly induces cytotoxicity of virus-infected 
cells. Another protective mechanism could include the 
acute activation of natural killer (NK) cells and natural 
killer T (NKT) cells [50] followed by the release of anti-
viral cytokine IFNγ (Fig. 2). Although this mechanism is 
yet to be established in POWV infection, another tick-
borne bacterial disease, namely Lyme disease [51] has 
been shown to directly activate NK cells in tick-borne 
encephalitis. Although, direct association of POWV with 
NK cells has yet to be established, infections of other fla-
viviruses such as West Nile virus (WNV), dengue virus 
(DENV), yellow fever virus (YFV), Japanese encephalitis 
virus (JEV), and tick-borne encephalitis virus (TBEV), 
have been shown to cause direct activation of NK cells 
[52]. However, POWV directly infects macrophages 
(Fig. 2) at an early stage in the tick-feeding site [53, 54], 
which potentially triggers the activation of NK and NKT 
cells to produce IFNγ causing a cytotoxic response in 
POWV virions (Fig. 2). The activation of cytotoxic T cells 
followed by the secretion of perforin and granzyme B 
could be another mechanism [55] for the cytotoxicity of 
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virus-infected cells (Fig. 2). However, acute infection fol-
lowed by sustained activation of innate immune response 
and IFNγ production could activate antigen-presenting 
cells as well. The activations of macrophages, dendritic 
cells, and microglia due to severe IFNγ production, could 
switch on downstream cell-based adaptive inflammatory 
response causing severe neuroinflammation (Fig. 2).

Similar to other tick-borne diseases such as Lyme dis-
ease, acute POWV illness presents with a diverse spec-
trum of clinical symptoms [56] including fever, pain, 
headache, and muscle weakness. Treatment paradigms 
are largely symptomatic and supportive thus contributing 
to the unpredictable course of illness over time. Interest-
ingly, one of the most common clinical manifestations 
of POWV encephalitis is muscle fatigue. Encephalitis is 
often associated with increased demyelination [57] of 
peripheral nerves [58] that in turn causes impairment of 
ion conduction through sensory neurons [59] resulting in 
abnormalities in neuromuscular function [60].

Based on a recent statistical report of CDC [61], half 
of the people who survive severe POWV encephali-
tis continue to suffer from long-term muscle weak-
ness and fatigue following their acute infection phase. 
Sometimes, a severe and chronic infection of POWV 
can cause complete paralysis in one side of the body, 
described clinically as hemiplegia [61]. Complete oph-
thalmoplegia [61] with loss of eye muscle function 
in both eyes is also common in POWV patients. A 
detailed electroencephalogram (EEG) study indicated 
that severe demyelination of white matter in the tem-
poral lobe that may contribute to the loss of down-
stream neuronal function controlling peripheral muscle 
movement. Another literature reports significant infil-
tration of POWV in the ventral horn of the spinal 
cord [62] that may also contribute to the demyelinat-
ing response in the peripheral nervous system and be a 
potential cause of severe weakness of peripheral muscle 
tissue observed clinically. Taken together, these reports 

Fig. 2 POWV infection and innate immune response for the neuroinflammatory response. Powassan virus (POWV) directly infects Mφ at early onset 
causing indirect activation of natural killer (NK), NKT,  CD8+ T, and B cells. That infection triggers a protective innate immune response that results in 
the production of IFNγ, IgM antibodies, and cytolytic proteins including perforin and granzyme B. These factors together cause cytotoxicity of POWV 
particles (#1). Excessive production of IFNγ turns on the activation of microglial cells. Subsequent release of chemokines attracts inflammatory Th1 
cells through the blood–brain barrier (BBB) and causes a demyelinating response in CNS (#2)
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suggest that muscle fatigue in POWV-infected patients 
is possibly the result of a combination of factors includ-
ing a severe demyelinating response in both the brain 
and spinal cord, increased expression of IFNγ, the infil-
tration of inflammatory T cells through the BBB, and 
microglial activation.

Epstein–Barr virus (EBV) infection and muscle weakness
EBV is a DNA herpes virus that primarily spreads 
through oral secretions and infects resident B lympho-
cytes (Fig. 3) in the oropharyngeal epithelium [63]. Upon 
infection, EBV transforms B cells to B cell lymphoblas-
toid cells that eventually enter into the follicle, expands 
to form a germinal center (GC) [64]. The host’s protec-
tive response becomes very active at that stage, which 
elicits a cytotoxic response from NK cells,  CD8+, and 
CD4 + T cells (Fig.  3). Infected memory B cells remain 
latent during this stage. However, following a secondary 
infection, these memory B cells rapidly convert to plasma 
B cells. Although B cells are the primary target of EBV 
infection, T cells can also be infected by EBV [65]. These 

lymphocytes can penetrate BBB [66] and engage with 
microglia (Fig.  3). In some cases, EBV directly infects 
microglia [67]. Upon infection, extrachromosomal epi-
somes of EBV [68], modulate the host immune response 
by triggering the expression of a wide range of inflam-
matory cytokines such as IFN-γ, TNF-α, and IL-2 [69], 
NF-κB [70], and proliferation of inflammatory T lympho-
cytes. Another possible mechanism of CNS inflammation 
is molecular mimicry, by which homology between EBV 
nuclear antigen-1 (EBNA-1) and host’s own myelin basic 
protein (MBP) elicits the activation of autoreactive T 
cells [71]. While most EBV infections are asymptomatic, 
infections during adolescence and adulthood frequently 
cause reactivation and mononucleosis [72]. Over 50% of 
patients with infectious mononucleosis manifest the triad 
of fever, lymphadenopathy, and pharyngitis [73]. Other 
symptoms include splenomegaly [74], hepatomegaly [75]. 
Leucocytosis, atypical lymphocytosis, and elevated liver 
enzymes are also reported during EBV infection [76].

Recent studies demonstrate that muscle pain and 
fatigue can follow EBV infection and remain following 

Fig. 3 EBV infection and inflammation. EBV engages in an interaction with B lymphocyte through its gp220/350 receptors to B cell surface 
glycoprotein CD21. This interaction facilitates acute infection of EBV in B cells (#1), which subsequently causes transformation to B cell 
lymphoblastoid cells. After that, these lymphoblastoid B cells undergo cytolysis (#2) by NK cells,  CD8+, and  CD4+ T cells. Some B cells escape 
that cytolytic process and go to the latency (#3). During the late stage of life, virus reactivation (# 4) might occur followed by virus shedding, and 
secondary infection to Th1 cells. These reactivated and infected B and T cells possibly enter to CNS through BBB, and potentially engage in a 
microglial activation to induce inflammatory reactions (#5)
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the resolution of other acute symptoms. According to 
White et al. [77], in a cohort of 108 subjects, a subset of 
patients with EBV-induced glandular fever having throat 
and neck gland swelling was reported to display a distinct 
physical and mental fatigue, excessive sleep, psychomo-
tor retardation, poor concentration, and anhedonia. The 
direct association of EBV infection and the pathogen-
esis of myalgic encephalomyelitis and chronic fatigue 
syndrome (ME/CFS) has been reported anecdotally for 
many years, and more clearly following the identifica-
tion of increased EBV induced gene 2 (EBI2) expression 
in PBMC samples from a subgroup of ME/CFS patients 
[78].Moreover, upregulations of EBI2-associated early 
growth response genes known as EGR1, EGR2, and EGR3 
in PBMCs of ME/CFS patients further reinforced the 
hypothesis that EBV infection could be directly linked 
to long-term muscle fatigue and pain experienced by the 
patient population [79]. In line with this idea, previous 
studies using animal models demonstrated that physi-
cal stress-induced immobility and restraint, may cause 
the upregulation of EGR1 and other immediate early 
genes in the CNS [80, 81]. Chronic EBV infection is often 
reported in patients with polymyalgia rheumatica with 
periodically disabling fatigue [82], and patients with pri-
mary fibromyalgia with progressive symptoms of fatigue 
[83]. According to a recent case study [84], EBV-infected 
 CD8+ cytotoxic T cells were found to have infiltrated in 
the skeletal muscle tissue of 19 years old male suffering 
from chronic and active EBV infection suggesting a direct 
role of EBV infection in cytotoxicity of skeletal muscle 
tissue. In some patients, acute EBV infection also caused 
severe myocardial necrosis with marked lymphocytic 
infiltration [85] suggesting a direct role of EBV-infected 
CD8 + T cells in acute cytotoxicity [86] of cardiac tissue 
[87]. Although, it is not yet completely understood how 
EBV infection may be responsible for the development 
of long-term muscle fatigue, there exists clinical evi-
dence for the development of other chronic illness [88] 
following acute of EBV infection including multiple scle-
rosis (MS) [89, 90] and, to some extent, systemic lupus 
erythematosus (SLE) [91, 92]. Taken together, it is now 
becoming evident that EBV infection and its subsequent 
reactivation in humans can result in the potentiation of a 
chronic inflammatory response in peripheral muscle tis-
sue, and furthermore the infiltration of infected periph-
eral lymphocytes into the CNS.

These events eventually lead to the presentation of the 
cardinal clinical symptoms of ME/CFS which include 
fatigue, muscle weakness, dysautonomia and neurocog-
nitive impairment. The potential relationship between 
chronic EBV infection and MS-like encephalopathy was 
further corroborated with a study by Jilek et  al. [93], in 
which a patient with acute EBV infection was reported 

to display a severe myelin oligodendrocyte glycoprotein 
(MOG)-specific immune response accompanied with 
clinical signs of encephalopathy.

Collectively, muscle fatigue is a common clinical mani-
festation of EBV infection and reactivation and there 
exist multiple potential molecular pathways that may 
underlie clinical symptoms including the infiltration of 
peripheral EBV-infected  CD4+ T cells followed by reac-
tive microgliosis, oligodendroglial demyelination, the 
direct infiltration of CD8 + T cells and the subsequent 
cytotoxic response that might cause the weakness in in 
skeletal muscle tissues (Fig. 3).

Human immunodeficiency virus (HIV) infection and muscle 
weakness
Chronic HIV infection is often associated with severe 
progressive neuromuscular weakness resulting in a 
steady decline of muscle strength [94] and muscle mass 
[95], which can lead to the chronic movement impair-
ment [96–98] and debilitating long-term disability. As a 
molecular mechanism, mitochondrial abnormality [99] 
has been often cited in muscle tissue of HIV patients. 
Studies have identified HIV RNA in mitochondria of 
mitochondria of muscle tissue collected from acute HIV-
infected patients [100]. The HIV tat protein has been 
shown to bind and alter mitochondrial membrane poten-
tial inducing mitochondrial death [101] and is a notewor-
thy molecular mechanism that may underlie the clinical 
features of severe fatigue and a loss of muscle tissue in 
these patients. A specific interaction between the HIV 
viral protein R and the mitochondrial permeability tran-
sition pore complex (PTPC) has recently been demon-
strated by Jacotot and colleagues [102]. In their work they 
found that PTPC-dependent permeabilization of mito-
chondrial membrane activates apoptosis and cytotoxic-
ity [103] in muscle tissue. Apart from a mitochondrial 
impairment, a chronic inflammatory response such as 
activation of inflammatory T cells, gliosis, and demyeli-
nation are also critical factors [104–107] for the progres-
sion of neuromuscular weakness in HIV patients (Fig. 4). 
HIV virions directly infect macrophages [108] and 
microglia [105] and upregulate the expressions of inflam-
matory cytokines such as IL-1β, IL6, and TNF-α [109]; 
and chemokines such as CCL2, CCL5, and CXCL12 [110, 
111]. Expressions of other neurotoxic factors such as NO 
[112, 113] and ROS [114] are also stimulated through 
this pathway. These factors contribute to the apopto-
sis of oligodendrocytes, the primary myelinating cells in 
CNS. Study suggests that the severity of myelin damage 
and white matter abnormality is often positively corre-
lated with the microglial activation [115]. Oligodendro-
cytes provide critical trophic support to the neuronal 
cells by covering axons with myelin membranes, which 
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is crucially important for maintaining cellular functions 
and electrical conduction [116]. Therefore, microglial 
activation [117] followed by oligodendroglial injury [118] 
indirectly triggers neuronal damage in HIV patients [119, 
120].

In a direct mechanism, HIV surface protein gp120 has 
been shown to interact with neurons [121] via the CXCR4 
receptor. Upon interaction, gp120 stimulates the activa-
tion of NF-κB [122] in the neuron. GP120-mediated acti-
vation of NF-κB is reported to produce ROS [123] and 
stimulates the formation of rod-shaped actin-cofilin con-
jugated proteinopathic inclusions [121] causing neuro-
degeneration. In the peripheral nervous system, Schwan 
cells also undergo apoptosis via similar mechanism. The 
interaction between CXCR4 of Schwan cells and gp120 
of HIV causes exocytosis of lysosome and release of ATP 
[124]. Gp120 also triggers the release of TNFα upon 
binding to CXCR4 on Schwan cells [125]. TNFα poten-
tially stimulates TNFR1-mediated apoptosis in Schwan 
cells and peripheral neurons causing neuropathy.

Long‑haul COVID and chronic fatigue
Based on our present research experience [126], deal-
ing with the SARS-CoV2 virus in the laboratory is an 
exceptionally challenging and unique experience when 
compared to other similar RNA viruses. Potential mecha-
nisms such as increased transmissibility [127], immune 
escape [128], diagnostic failure [129], and reduced effec-
tiveness of vaccines have resulted in the development 
of novel variants [130] that contain rather significant 
mutations all of its four protein domains spike (S), enve-
lope (E), membrane (M) and nucleocapsid (N). Muta-
tions in these protein domains have been shown to alter 
an individual strain’s infectivity and transmissibility 
in the community. Perhaps most concerning are vari-
ants containing mutations in the S protein and the vari-
ants subsequent ability to evade approved vaccines and 
other treatment modalities [131]. SARS-CoV2 employs 
a multilayered mechanism to corrupt host cells (Fig.  5). 
These potential mechanisms include but are not limited 
to the binding with ACE-2 receptor followed by inter-
nalization in the alveolar epithelium [132–134]; infection 

Fig. 4 Chronic HIV infection in neuroinflammation and demyelination. HIV directly infects CD4 + T lymphocytes (#1). Infected T cells interact with 
macrophages causing the production of inflammatory cytokines (IL-1β, TNFα, IL6, and IL12), chemokines (CCL2. Rantes, CXCL12), reactive oxygen 
species (ROS), and nitric oxide. These factors together contribute to the death of Schwan cells and therefore cause peripheral demyelination 
(#2). HIV virions and surface protein gp120 also contribute to CNS pathology by direct interaction with microglia (#3). Subsequent production 
of inflammatory molecules directly causes the death of oligodendrocytes (#4) (abbreviated as “oligos”) followed by demyelination and 
neurodegeneration
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after active engagement with transmembrane protease 
TMPRSS2 [135, 136]; inflammation in endothelial gly-
cocalyx followed by disruption of hyaluronic acid [137]; 
“shedding” of spike protein [138] followed by insertion 
to the host membrane via exosomal vesicles spread-
ing infection through spike (S), envelope (E) and mem-
brane (M) protein enclosed pseudovirions [139]; a direct 
and rapid transcription of viral proteins from its posi-
tive-strand RNA; integration of gene material with host 
genome [140, 141] upon entry to the cells followed by 
exploiting host’s gene synthesis machinery [142]; taking 
over cellular metabolic processes of protein translation 
[143] and transport, and finally augmenting a “cytokine 
storm” [144] via synthesis of inflammatory cytokines and 
chemokines (Fig.  5). COVID-19 displays complex and 
multifaceted pathological outcomes corrupting almost 
every organ of the human body. As a result, COVID-19 
is not only a viral disease, but its pathological significance 
might stretch to chronic inflammation [145–148], auto-
immunity [149, 150], cancer [151], and neurodegenera-
tion [152–154].

Although COVID-19 is significantly associated with 
death, 10% of total survivors display a chronic pathology 
that includes fever, weakness, and muscle fatigue. These 
symptoms are combinedly known as post-acute seque-
lae of COVID-19 (PASC); commonly referred to in the 
literature and here as long-haul COVID patients (Long 
haulers). “Long haulers” [155] are mostly PCR nega-
tive for COVID-19 [156], despite lingering symptoms. 
Although the underlying mechanism is still unknown, 
based on the history of viral inflammatory diseases, it 
is expected that dysregulation of the adaptive immune 
response [157, 158] could be one critical component of 
disease progression. Activation of  CD4+ Th1 cells upon 
SARS-CoV2 infection and subsequent production of 
anti-viral cytokine IFN-γ might be beneficial (25) for ini-
tial virus killing; however, prolonged activation of these 
T cells might result in the development of a pathologi-
cal inflammatory response (Fig. 5) including an elevated 
production of chemokines and cytokines released acti-
vated macrophages and microglia. These soluble factors 
recruit and engage Th1 cells on microglia followed by 
microglial activation causing demyelination of neuronal 

Fig. 5 Potential inflammatory pathways in muscle fatigue of long-haul COVID patients. Upon entry of SARS-CoV2, a possible cascade of acute 
inflammatory pathways in the alveolar lumen was displayed. SARS-CoV2 employs its Spike protein or S-glycoprotein to bind with ACE2 receptor 
and membrane-bound serine protease TMPRSS2. SARS-CoV2 also interacts with hyaluronan or hyaluronic acid of the glycocalyx layer. SEM (Spike, 
Envelope, Membrane) pseudovirus particles or potential possible shedding of spike proteins also cause direct infection in alveolar dendritic cells 
followed by MHC-II presentation and activation of CD4 + Th1 cells. Subsequent production of IFNγ and virus-induced activation of NF-κB might 
evoke productions of inflammatory cytokines and chemokines commonly known as cytokine storm (#1). Th1 cell-mediated severe activation of 
Mφ and microglia might also cause non-specific phagocytosis of myelin (#2). Possible activation of B cells produces autoantibodies (#3). Eventually, 
active virus particles, T cells, and inflammatory mediators spread through distant organs across BBB, and cause a cell-based inflammatory response 
resulting demyelinating effects in the central and peripheral nervous system (#4). Impaired nerve signal causes muscular fatigue. B = B cells; T = T 
cells; Abs = antibodies; APCs = antigen-presenting cells
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fibers, sensory weakness, and potentially muscle fatigue. 
In support of that possibility, SARS-CoV2 patients may 
experience a “cytokine storm” characterized by upscaled 
productions of inflammatory cytokines [159] such as IL2, 
IL12, IFN-γ, IL6, and TNFα. Several case reports also 
highlighted the potential demyelinating response [160–
163] in SARS-CoV2 infected patients. A case study [160] 
revealed that a 54 year old SARS-CoV2 infected woman 
was admitted to the hospital after seizure. An MRI scan 
revealed multiple active demyelinating lesions in the 
brain with numerous periventricular white matter abnor-
malities. Hyperintense white matter abnormalities were 
also observed in the upper spinal cord. In another case 
[162], a 21-year-old post-COVID-19 patient, who met the 
clinical criteria for PASC and Long-haul COVID-19, was 
admitted following intermittent vomiting and malaise for 
4 days. A subsequent brain MRI revealed the presence of 
bilateral posterior internal capsule lesions and longitudi-
nally extensive transverse myelitis (LETM) in the upper 
spinal cord. Combining the evidence showing an exagger-
ated production of inflammatory cytokines, the demyeli-
nating response in the CNS, and the role of the impaired 
adaptive immune response (Fig.  5) might explain the 
observed symptoms of chronic muscle weakness, sensory 
abnormalities, cognitive and autonomic dysfunction that 
is observed in long haulers.

Although evidences to date suggest that SARS-CoV2 
can mostly affect vascular and immune cells [164], few 
in vitro cell culture studies also reported a direct neuroin-
vasive property of SARS-CoV2 in iPSC-derived neurons 
[165] and neural progenitor cells [166], which was further 
substantiated by reports suggesting a direct SARS-CoV-2 
infection in cortical neurons [167].

Another hypothesis underlying the pathogenesis of 
Long haul COVID is a biochemical alteration of critical 
mitochondrial metabolic pathways (Fig.  6). Similar to 
HIV, viral RNA transcripts of SARS-CoV2 were found 
[168] in host mitochondria and therefore, suggests 

a direct role of SARS-CoV2 in in the modulation of 
mitochondrial function. During the acute stage of 
viral infection, SARS-CoV2 appears to hijack the host’s 
mitochondrial machinery to favor mitochondrial ATP 
synthesis and mitochondrial dynamics for its survival. 
However, chronic, or long-term viral infection is known 
to impair mitochondrial energy metabolism of ATP 
synthesis; upregulate the synthesis and release of proa-
poptotic molecules such as Bax, Bad, and cytochrome 

Fig. 6 Mitochondrial impairment and its potential involvement 
in long-haul COVID. SARS-CoV2 directly infects mitochondria 
via injecting its RNA, manipulates mitochondrial gene synthesis 
machinery, and alters mitochondrial metabolomes. The impairment 
can be the release of pro-apoptotic molecules such as Bax, Bad, and 
cytochrome C; reversal of membrane potential; downregulation of 
β-oxidation and electron transport mechanism causing impaired 
ATP synthesis; induction of mitochondria-independent cytosolic 
glycolysis resulting in increased lactate synthesis. All these events 
trigger mitochondrial loss and eventually fatigue

Table 1 Viral infections and potential mechanisms of chronic fatigue

Viral infection Immune cells infected and activated Potential mechanisms for fatigue

HHV6 CD4+ve (infection and apoptosis) and  CD8+ve T cells, NK Cells, 
microglia (activation)

Immunosuppression [18], autoimmune reaction (IgM abs), micro-
glial activation and production of cytokines, Amyloid-beta [24], 
OPC immuration, demyelination [169]

POWV CD4+ve Th1 cells (proliferation), B Cell (activation), macrophage 
(infection and activation)

Proliferation of Th1 cells, IgM production, microglia-induced 
inflammation, demyelination in peripheral nerves

EBV B cells (infection),  CD8+ve T cell activation, microglia (activation) EBV-specific CD8 + ve T cell-induced Muscle cell apoptosis [85, 87] 
Reactive gliosis [170], and demyelination [89]

HIV CD4+ve T cells (infection) [171], macrophages and microglia 
(infection)

Mitochondrial permeabilization and depolarization in muscle cells, 
activation of inflammatory T cells, microgliosis, and demyelination

SARS-CoV2 Lung endothelial cells (infection), kidney cells (infection),  CD4+ve 
T (infection) [172],  CD8+ve T cells (activation and exhaustion)

Cytokine storm (IL-1b, TNF-1, IL6 etc.)[173], Glial activation [174], 
and T cells exhaustion. Mitochondrial impairment, Direct Infection 
and toxicity to neurons
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C; and augment ROS productions. Similarly, chronic 
HCV  infection impairs mitochondrial energy metabo-
lism via inhibition of Complex I and V activity [175] 
and decreased fatty acid β-oxidation [176]. Prolonged 
infection with HIV also induces mitochondrial depo-
larization, ROS production, and the activation of cas-
pase 3 thus promoting accelerated mitochondrial death 
[177]. Chronic SARS-CoV2 infection also appears to 
induce the alternative energy production pathways of 
anaerobic glycolysis and the production of lactate [178], 
and thereby, potentiating muscle fatigue (Fig. 6).

Neuroinflammation in ME/CFS
Although neuroinflammation is believed to play a criti-
cal role in the pathogenesis of ME/CFS, the molecular 
mechanism is still elusive. Human studies aimed to 
assess the contribution of inflammatory species in ME/
CFS are limited, mostly due to the difficulty in obtain-
ing cerebrospinal fluid samples and a lack of appro-
priately powered non-invasive imagining studies in 
validated cohorts [179]. Case–control studies assess-
ing the cerebrospinal fluid collected from ME/CFS 
patients compared to MS comparator samples indicate 
a markedly disturbed pattern of CNS immune activa-
tion in ME/CFS patients with noted elevations of CCL1 
(eotaxin) and an inverse relationship between interleu-
kin 1 receptor antagonist and colony-stimulating fac-
tor 1, colony-stimulating factor 2 and interleukin 17F, 
without effects on interleukin 1α or interleukin 1β. Fur-
thermore, a study [180] assessed the CSF of ME/CFS 
patients suggesting that CNS-specific immune dysregu-
lation in ME/CFS patients could directly contribute to 
the pathogenesis. This suggests a disturbance in inter-
leukin 1 signaling [181–183]. Interestingly, multiple 
studies assessing the cytokine expression patterns in 
peripheral blood of ME/CFS patients indicate a rather 
consistent signature of proinflammatory cytokine acti-
vation and an overall T helper cell type 1 pattern asso-
ciated with immune activation [184–189].

Based on our published literature [190], ME/CFS 
serum evoked ROS and nitrite productions in cultured 
microglial cells. Further molecular analyses revealed 
that ME/CFS serum-induced production of ROS may be 
due to the engagement of Receptor for advanced glyca-
tion end products or RAGE. Our study also highlighted 
that ME/CFS patients might also demonstrate autophagy 
impairment that causes serum upregulations of different 
autophagy markers including ATG13 and alpha-synu-
clein. Alpha-synuclein is also known to induce micro-
glial activation [191–193]. Both oligomeric [194] and 
S129P [195] alpha-synucleins induce neuroinflammatory 

events. Autophagy impairment directly causes mitochon-
drial metabolism and energy productions. Recent studies 
also highlight the roles of CD4 + ve and CD8 + ve T cell 
activation in the pathogenesis of ME/CFS [187]. Man-
darano et al. have demonstrated that in ME/CFS patients, 
both CD4 and CD8 + T cells have reduced glycolysis and 
defective mitochondrial metabolism of energy.

Conclusion
In summary, viral infection is frequently associated 
with muscle weakness, fatigue, and degeneration. As 
a molecular mechanism, alteration of adaptive immu-
nity is widely accepted. Viruses such as EBV [196], 
HHV6 [197], and HIV [198] directly infect CD4 + T 
cells. These infected T cells proliferate and engage in 
a cross-talk with antigen-presenting cells (APCs) such 
as dendritic cells, macrophage, NK cells, and micro-
glia  (Table  1). POWV directly infects macrophages. 
That crosstalk stimulates the production of inflam-
matory cytokines, chemokine-driven recruitment of 
inflammatory T cells in CNS, death of oligodendroglial 
progenitor cells, oligodendroglial demyelination, neu-
ronal dysfunction in the cerebellum and spinal cord 
resulting in diminished synaptic transmission at the 
neuromuscular junction. Similar to CNS, demyelinat-
ing peripheral neuropathy is frequently observed in 
all viral diseases. Infected  CD4+T cells display similar 
inflammatory mechanisms of upregulated expressions 
of cytokines, macrophage activation, death of Schwann 
cells [199], demyelination of peripheral nerves, and 
muscle fatigue.

In another hypothesis, virus-infected  CD8+ cyto-
toxic T cells directly infiltrate muscle tissue causing 
muscular degeneration, which is frequently observed 
in EBV and POWV infection. However, it is not known 
if SARS-CoV2 directly infects  CD4+ or  CD8+ T cells. 
However, SARS-CoV2 directly infects APCs such as 
macrophage, dendritic cells, and microglia causing a 
cell-based activation of  CD4+ and  Cd8+ T cells. Upon 
activation, these inflammatory T cells potentially infil-
trate into the CNS and augment a series of demyelinat-
ing responses including microglial activation, death 
of OPCs, oligodendroglial demyelination, alteration 
of synaptic transmission that eventually led to muscle 
weakness and fatigue. In addition to that, we also dis-
cussed a biochemical mechanism of mitochondrial 
impairment and a chronic deficit of energy metabolism 
in the pathogenesis of post-acute sequelae of COVID-
19. Taken together, our review article hypothesizes a 
mechanistic insight of chronic muscle fatigue due to 
long-term viral infection.
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