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Abstract
The internal combustion engine faces increasing societal and governmental pressure to improve both efficiency
and engine out emissions. Currently, research has moved from traditional combustion methods to new highly effi-
cient combustion strategies such as Homogeneous Charge Compression Ignition (HCCI). However, predicting the
exact value of engine out emissions using conventional physics-based or data-driven models is still a challenge for
engine researchers due to the complexity the of combustion and emission formation. Research has focused on
using Artificial Neural Networks (ANN) for this problem but ANN’s require large training datasets for acceptable
accuracy. This work addresses this problem by presenting the development of a simple model for predicting the
steady-state emissions of a single cylinder HCCI engine which is created using an metaheuristic optimization based
Support Vector Machine (SVM). The selection of input variables to the SVM model is explored using five different
feature sets, considering up to seven engine inputs. The best results are achieved with a model combining linear
and squared inputs as well as cross correlations and their squares totaling 26 features. In this case the model fit
represented by R2 values were between 0.72 and 0.95. The best model fits were achieved for CO and CO2, while
HC and NOx models have reduced model performance. Linear and non-linear SVM models were then compared
to an ANN model. This comparison showed that SVM based models were more robust to changes in feature
selection and better able to avoid local minimums compared to the ANN models leading to a more consistent
model prediction when limited training data is available. The proposed machine learning based HCCI emission
models and the feature selection approach provide insight into optimizing the model accuracy while minimizing
the computational costs.
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Introduction

Improving internal combustion engine efficiency and
reducing their emissions has the potential to improve
air quality in urban centers and reduce greenhouse gas
emissions. This has led to governments around the
world to introducing ever more stringent environmen-
tal legislation leading automobile manufactures to turn
to new combustion methods in an attempt to meet
these targets. Homogeneous Charge Compression
Ignition (HCCI) is a low temperature internal combus-
tion engine mode that has the potential to significantly

reduce engine-out emissions and fuel usage.1,2 HCCI is
characterized by compression induced autoignition of a
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lean homogeneous air-fuel mixture.3 Reduced wall heat
losses due to the reduced combustion temperature and
short combustion duration provide HCCI with
improved fuel efficiency benefits compared to conven-
tional combustion modes.4–7

HCCI has shown promising engine out emissions
reductions, however, the lack of a direct timing control
is a major control and modeling challenge.8–11

Furthermore, increased Hydrocarbon (HC) and
Carbon Monoxide (CO) emissions have also been
observed.12 The main combustion mechanism for
HCCI is compression induced autoignition of a pre-
mixed charge, leading to a high dependency on the
in-cylinder gas mixture properties. To meet current and
the upcoming emission regulations a deep understand-
ing of HCCI engine emission formation is essential. To
capture the behavior of HCCI combustion, various
simulation models including stochastic, multi-zone and
physical models have been developed to predict the gas
exchange and combustion processes.13–16 These models
are beneficial as they provide accurate results over a
wide operating range while requiring minimal valida-
tion data especially for engine performance para-
meters.17 However, predicting the exact value of engine
out emissions using conventional physics-based models
is still a challenge for engine researchers due to the
complexity of combustion and emission formation
modeling.18,19 Furthermore, detailed physical models
are typically too computationally intensive for use in
real-time engine applications and are often linearized
around a specific operating point for implementation
in processor based engine controllers.20,21 This has led
researchers to consider machine learning (ML) based
methods which help to provide an accurate model while
minimizing the computational requirements.

ML techniques have been widely used for addressing
engine performance, emission modeling and control.22–24

To this end, different ML methods have been tested and
used for HCCI performance, combustion phasing, and
emission modeling using an Artificial Neural Network
(ANN),25–29 Extreme Learning Machine (ELM),30–33

Bayesian Neural Network (BNN),34 Deep Neural
Networks (DNN),35 and Least Squared Support Vector
Machine (LS-SVM).36–38 Among these methods, most
researchers have focused on the prediction of engine
performance, consisting of Indicated Mean Effective
Pressure (IMEP) and CA50 (crank angle where 50% of
heat energy has been released)27,30–33,36–38 while a limited
number of researchers have studied emission predic-
tion.25,26,28,29 ANN has been the ML method of choice
and has been widely used for emission and performance
prediction for Spark Ignition (SI) and Compression
Ignition (CI) engines.28,39–41 This has led researchers to
consider ANN the baseline ML method for engine mod-
eling and control implementation. However, to create an
accurate model ANN requires a large data set which
requires significant engine testing time and results in
high testing costs.

One of the most powerful machine learning methods
that has shown remarkable accuracy in the prediction
of Internal Combustion Engine (ICE) emissions and
performance is Support Vector Machine
(SVM).22,23,39,42,43 SVM is a machine learning
approach which has been used for both classification
and regression problems.44,45 By providing the SVM
with a set of input and output pairs, it approximates a
hyperplane to retrieve a pattern that exists between
given inputs and the corresponding outputs. For
HCCI, SVM has been used to predict combustion
phasing, misfire, and high pressure rise rates.46 For
example, it has accurately predicted CA50 with an
error of 1.9% for transient load changes,46 and cyclic
combustion variability.47 Transit Linear Parameter
Varying (LPV) based models were developed to predict
CA50 and IMEP.36–38 The accurate prediction capabil-
ities and low computational requirements of SVM has
proven it is a powerful technique for predicting the
complex and highly nonlinear phenomena of other sys-
tems and this study looks to apply this strategy to emis-
sion formation in HCCI engines and compare the
results to ANN. SVM has been used to predict the per-
formance and emissions of SI48,49 and diesel22,23,42,43

engines but to date has not been comprehensively
investigated for HCCI emissions prediction.

Hyperparameter tuning, is typically the most tricky
part of every machine learning approach. In ANN, a
grid search for the number of neurons and number of
hidden layers is usually used to find optimal hyperpara-
meters. Depending on the depth of the network, a ran-
dom search could be added during optimization.26

Metaheuristic approaches were also used to tune ANN
hyperparameters such as Particle Swarm Optimization
(PSO)50,51 and Genetic Algorithm (GA).52 Compared
with GA, PSO is a relatively new heuristic search
method based on collaborative behavior and swarming
in biological populations. Both GA and PSO are
population-based search approaches that depend on
information sharing among their population members.
Although PSO and GA have a similar performance in
terms of the accuracy of the solution, it has been pro-
ven that PSO is computationally more efficient, and
requires fewer parameters that need to be defined for
optimization.53,54 In SVM, there are three main para-
meters to tune which are tolerated error, kernel func-
tion parameters, and regularization coefficient. In this
study, the PSO algorithm is used to tune these
hyperparameters.

In this paper, a SVM technique is used to find corre-
lations between key manipulated variables of an HCCI
engine and the engine out emissions. First the linear
SVM and nonlinear SVM will be compared to an ANN
model for four engine out emissions. Second, a detailed
investigation into the feature selection will be per-
formed to identify which engine inputs should be used
for SVM design. Then finally, the chosen model will be
tested for its prediction capabilities. Knowledge about
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the correlation between process inputs and emissions
can be then used in future control applications for
HCCI model based emissions control strategies.

With the overall goal of creating a control oriented
emissions prediction model for HCCI combustion. The
main contributions of this work can be summarized as
follows:

� Developing a novel homogeneous charge compres-
sion ignition emission model using metaheuristic
optimization based SVM,

� Implementing particle swarm optimization method
for optimizing SVM hyperparameters,

� Analyzing feature sets based on physical understand-
ing of the HCCI combustion process for each engine
out emission component (CO, CO2, HC, and NOx),

� Evaluating the linear and nonlinear kernels for
SVM and providing a detailed comparison to an
artificial neural network,

� Proposing an accurate steady state simple emissions
model design for future control applications.

Experimental setup

A Single Cylinder Research Engine (SCRE) outfitted
with a fully variable Electro-Magnetic Valve Train
(EMVT) is used to collect the experimental data. The
flexibility of the valve timing allows for engine opera-
tion with various valve strategies including symmetric
Negative Valve Overlap (NVO), which is used in this
paper. Symmetric NVO is chosen where Exhaust Valve
Closing (EVC) and Intake Valve Opening (IVO) are
varied evenly around gas exchange Top Dead Center
(TDC). This ensures that no intake or exhaust re-
breathing takes place. The NVO duration can be chan-
ged every cycle if desired using this valve train.

Fuel is directly injected into the SCRE through a
piezoelectric outward-opening hollow cone injector.
Conventional European Research Octane Number
(RON) 96 gasoline containing 10% ethanol is used and
the fuel pressure is maintained at 100bar. Cylinder
pressure is measured by a Kistler 6041 piezoelectric
pressure transducer which is used to calculate the
Indicated Mean Effective Pressure (IMEP) as in
Heywood et al.56 The air-fuel equivalence ratio l is
measured by a production Bosch wide-band oxygen
sensor.

The exhaust gas measurement is done using two
measurement devices. The first is an Eco Physics
CLD700REht for Nitrogen Oxide (NO) and Oxides of
Nitrogen (NOx) measurement and the second is a
Rosemount NGA 2000 which provides measurements
of unburnt Hydrocarbons (HC), Carbon Monoxide
(CO), Carbon Dioxide (CO2), and Oxygen (O2) concen-
tration. The emission analysis equipment provides an
averaged emission reading due to the transport delay
and mixing during transport. Therefore, the emissions
values presented are average emissions over a 30 s mea-
surement for a steady state operating point. The specifi-
cations of the emission measurement system are
provided in Table 1 with full details provided in
Gordon et al.10

It is well understood that HCCI has a narrow oper-
ating range and performs best within a specific operat-
ing conditions.57–59 At first this appears as a
disadvantage, however, with the transition to hybrid
and electric range extender applications a few efficient
load and speed operating points are acceptable as the
electric systems are used to handle transient loads. To
simulate a steady state operating point the engine is
operated in a conditioned environment that keeps rota-
tional speed, load, intake pressure and temperature, oil
and coolant temperature, and exhaust pressure con-
stant to minimize the effect of these confounding vari-
ables. As only one load and speed is selected this helps
to reduce the experimental space in order to show the
effectiveness of the proposed SVM based model. The
engine geometry and chosen operating condition are
listed in Table 2.

Table 1. Accuracy of emissions measurement system.55

Gas Maximum Detection level Resolution Accuracy

NOx 10,000 ppm 0.1 ppm 0.1 ppm 1% of reading
uHC 5% 0.04 ppm 0.1 ppm 1% of reading
CO (low) 2500 ppm 0.1ppm 0.1 ppm 1% of reading
CO (high) 10% 0.1% 0.1% 1% of reading
CO2 18% 0.1% 0.1% 1% of reading
O2 25% 0.1% 0.1% 1% of reading

Table 2. Single cylinder research engine parameters.10

Parameter Value

Displacement volume 0.499 l
Stroke 90 mm
Bore 84 mm
Compression ratio 12:1
Exhaust valve opening 160� aTDC
Intake valve closing 545� aTDC
Intake/exhaust pressure 1014 6 4 mbar
Oil and coolant temperature 100 6 1�C
Engine speed 1500 6 5 rpm
Fuel rail pressure 100 6 2 bar
Intake temperature 52 6 1�C
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Active input factors to the HCCI combustion pro-
cess include injected fuel mass, injection timing, and
valve timings. These variables were chosen to be varied
as they significantly affect the combustion process and
the resulting engine out emissions at a given load and
speed operating point. They also significantly affect the
combustion stability of the HCCI process which has a
significant effect on the engine out emissions.10,60 As
the HCCI process is extremely sensitive to operating
conditions a relatively small change in input parameters
results in a significant change in engine output para-
meters. These engine input parameters have also been
explored in previous works regarding HCCI emissions
modeling.40 The variation in engine inputs can be seen
in Table 3.

Methodology

In this section, the main methodology of this study will
be discussed. First, the required data for emission mod-
eling of the HCCI engine was collected as discussed in
Section 2. Figure 1 schematically shows the data collec-
tion and emission modeling. During data collection,

fuel amount (mf), negative valve overlap duration
(NVO), and start of fuel injection (SOI) are system’s
main inputs while intake pressure (Pin) and intake tem-
perature (Tin) are conditioned to keep them constant
during data collection. The power output of the engine
is represented by IMEP and the operating points are
chosen to keep the output load approximately constant
for all tests. There is a slight variation in IMEP over the
operating range of 3.56 0.2 bar. However, as IMEP is
held relatively constant over the sweep of mf, SOI, and
NVO inputs this results in varying combustion effi-
ciency and a trade-off between different emissions.

Then, l, CO, CO2, NOx, and HC emission were col-
lected. All manipulated and conditioned input and
engine output variables in the emission modeling sec-
tion are given to a data-driven system as inputs. Then
different feature sets by interpolation of these inputs
are created, and these features are the main inputs of
the PSO-based SVM method. In this study, both
Nonlinear SVM (NLSVM) and Linear SVM (LSVM)
are considered for emission modeling using different
feature sets, and PSO is used to optimize the hyperpara-
meters of both the LSVM and NSVM. This method
has been compared with the benchmark ML emission
modeling, Artificial Neural Network (ANN) as pro-
posed in literature.26

Support vector machine

The main idea of the regression form of SVM, also
called Support Vector Regression (SVR) is to find an
optimal hyperplane, y(ui), such that y(ui) is as flat as

Table 3. Variation in HCCI engine input parameters.

Engine Input Min Max Mean

SOI (�aTDC) 455.9 495 473.4
mf (mg) 2.7 2.96 2.86
NVO (�) 173 201.6 187.7

Figure 1. Schematic of data collection and proposed emission modeling using PSO-based LSVM and NLSVM.
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possible and it has the maximum deviation of e for all
training data.45 In other words, the optimization prob-
lem is to find the flattest function with the maximum
error tolerance e. Therefore, the optimal hyperplane
which describes the training data, {ui, zi}, can be
defined as:

y(ui)=wTui + b ð1Þ

where ui and zi are input and target of the training data
and w and b are found by solving the SVM algorithm
for regression problems. The optimization problem to
find the optimum hyperplane y(ui) is defined as:

Minimize : 1
2 jjwjj

2
2

Subject to :
zi � wTui � b4e

wTui+ b� zi4 � e i=1, :::, n

�

ð2Þ

where the flatest function is achieved by minimizing
1
2
jjwjj22 and the tolerance is achieved by solving for the

defined constraints. A schematic of SVM regression is
shown in Figure 2 where the main objective of SVM is
shown as the orange line estimating a proper function
by the maximum deviation of e.

For those data points within a defined tolerance (e),
y(ui) has been found such that it predicts all pairs of
learning data within a defined error. If all the data
points lay within the defined tolerance, the optimiza-
tion problem is feasible. However, occasionally the
algorithm cannot converge within the defined con-
straints and the current optimization problem becomes
infeasible. To overcome the infeasibility of equation
(2), a penalty variable (zi) or so called slack variable
has been added to the original optimization problem
as:

� e� z�i 4zi � yi4e+ z+i ð3Þ

To consider these penalty variables, the Soft Margin
Loss Function (SMLF) has been added to optimization
problem which is defined as61:

Minimize : 1
2 jjwjj

2
2 +C

Pn
i=1

(z+i + z�i )

Subject to :

zi � wTui � b4e+ z+i

wTui + b� zi4e+ z�i i=1, :::, n

z�i , z
+
i ø 0

8><
>:

ð4Þ

where C is a regulatory parameter to set the trade off
between tolerated error and the smoothness of the
model.

To consider constraints in the optimization problem
the Lagrangian function is calculated as

L=
1

2
jjwjj22 +C

XN
i=1

(z�i + z+i )

�
XN
i=1

a+
i (� zi + yi + e+ z+i )�

XN
i=1

m+
i z+i

�
XN
i=1

a�i (zi � yi+ e+ z�i )�
XN
i=1

m�i z�i

ð5Þ

where a+
i , a�i , m+

i , and m�i are the non-negative
Lagrangian Multipliers. The Lagrangian is solved by
calculating the partial differential with respect to the
optimization variables as

∂L

∂w
=0! w=

XN
i=1

(a+
i � a�i )ui ð6aÞ

∂L

∂b
=0!

XN
i=1

(a+
i � a�i )=0 ð6bÞ

∂L

∂z+i
=0! a+

i +m+
i =C ð6cÞ

∂L

∂z�i
=0! a�i +m�i =C ð6dÞ

where equations (6a)–(6c) are SVM expansion, bias
constraints, and the box constraint, respectively.22 By
substituting equations (6a)–(6d) into equation (5) the
Quadratic Programming (QP) problem can be defined
by

Minimize : L=
1

2

XN
i=1

XN
j=1

(a+
i � a�i )(a

+
j � a�j )ui

Tuj

�
XN
i=1

(a+
i � a�i )zi + e

XN
i=1

(a+
i +a�i )

Subject to :

PN
i=1 (a

+
i � a�i )=0

04a+
i 4C

04a�i 4C

8><
>:

ð7Þ

which can be used in a compact version following62:

Figure 2. SVM regression and support vectors (based on
Norouzi et al.22).
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Minimize :
1

2
aTHa+ fTa

Subject to : Aeqa=Beq

ð8Þ

where

a=
a+

a�

� �
, H=

H �H

�H H

� �
, f=

�zi + e

zi + e

� �
,

H= ui
T uj

� �
, Aeq= 1:::1 � 1:::� 1½ �, Beq = 0½ �

ð9Þ

In order to calculate b, the Karush–Kuhn–Tucker
(KKT) conditions are used where63,64:

a+
i (� zi + yi + e+ z+i )=0 ð10aÞ

a�i (zi � yi + e+ z�i )=0 ð10bÞ
m+
i z+i =(C� a+

i )z+i ð10cÞ
m�i z�i =(C� a�i )z

�
i ð10dÞ

must be fulfilled at the optimum point. Based on these
equations, only five following cases are possible as

a+
i =a�i =0 ð11aÞ

0\ a+
i \C, a�i =0 ð11bÞ

0\ a�i \C, a+
i =0 ð11cÞ

a+
i =C, a�i =0 ð11dÞ

a�i =C, a+
i =0 ð11eÞ

To find the support vector, where jzi � yij is exactly
equal to e, only 0\ a+

i \C, a�i =0 and
0\ a�i \C, a+

i =0 must be fulfilled. Therefore, b

can be calculated as

b=
1

jSj
XS
i2S

(zi � wTui � sign(a+
i � a�i )e) ð12Þ

where S represents the support vector set based on
equations (18) and (19) as:

S= f i j 0\ a�i + a+
i \Cg ð13Þ

Therefore, by solving equations (12) and (8) and
substituting w and b into equation (1), y(ui) is obtained
as22:

y(u)=
XN
i=1

(a+
i � a�i )ui

Tu

+
1

jSj
XS
i2S

(zi � wTui � sign(a+
i � a�i )e)

ð14Þ

Kernel tricks

Although the structure of the dot product in equation
(14), is a simple linear kernel, however, it fails to cap-
ture any nonlinear behavior of the process. Therefore,
by replacing the linear kernel with a nonlinear kernel,
using so called kernel tricks, brings nonlinear pattern
recognition at a reasonable computational cost.65 Thus,
the inner product of equation (14), ui

Tuj, is replaced by

nonlinear kernel as K(ui, uj). In this study the RBF
(Radial basis function) kernel function is used as

K(ui, uj) = exp(
jjui�ujjj22

2s2 ) ð15Þ

where s is the Gaussian variance and jj:jj2 is the two
norm. Therefore, the prediction function, y is calculated
as65:

y=
Pn
i=1

(a+
i � a�i )K(ui, u)+ b ð16Þ

This study examines different interpolations of different
features that also play the precise role of the polyno-
mial kernel. Therefore, three main kernel types, includ-
ing linear, RBF, and polynomial are considered in this
study.

Hyperparameters optimization: Particle swarm
optimization (PSO)

To calculate the hyperparameters for both the LSVM
and the NLSVM, Particle Swarm Optimization (PSO)
has been used. The LSVM and NLSVM hyperpara-
meters are (CLSVM, eLSVM) and (CNLSVM, eNLSVM,s),
respectively. PSO is an optimization method that opti-
mizes a candidate solution iteratively with regard to the
given cost or merit function.66,67 To train the SVM
models, a total of 70 engine operating points were avail-
able. Then 80% of the data was used for training, 10%
for cross-validation, and 10% as test data. Cross-vali-
dation data is used to tune the hyperparameters of the
optimization methods. The cost function to find the
LSVM and NLSVM is defined based on the Mean
Square Error (MSE) of training and cross validation
datasets. Hence, the hyperparameter calculation is
defined as the following optimization problem:

½CLSVM, eLSVM� =argmin(
1

ntr

Xntr
i=1

(ztr, i � ytr, i)
2

+
1

ncv

Xncv
i=1

(zcv, i � ycv, i)
2)

½CLSVM, eLSVM,s� =argmin(
1

ntr

Xntr
i=1

(ztr, i � ytr, i)
2

+
1

ncv

Xncv
i=1

(zcv, i � ycv, i)
2)

ð17Þ

Where CLSVM and CNLSVM are the regulatory para-
meters for linear SVM and nonlinear kernel SVM,
respectively. The index tr and cv represent training and
cross-validation data set and n denotes number of data
points in the data-set (i.e. ntr is number of training data
points). The tolerated error for linear SVM is eLSVM
and for nonlinear kernel SVM is eNLSVM. The target
data and prediction data are illustrated by z and y,
respectively and s is the Gaussian variance of RBF
kernel. The PSO algorithm was used to solve for the
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hyperparameters. The PSO-based SVM algorithm is
shown in Algorithm 1 and Algorithm 2 for linear and
RBF kernel of SVM, respectively. The number of parti-
cles in the swarm set for both the LSVM and NLSVM
model is set to 200 while the maximum iteration num-
ber is limited to 400 and 600 for LSVM and NLSVM,
respectively.

Artificial neural network (ANN)

In this study, the proposed methods will be compared
to the conventional ANN methods presented in litera-
ture. A feed-forward backpropagation network with
single hidden layer and 15 neurons in each hidden layer
using Levenberg–Marquardt backpropagation training
method has been used in this study. This model with
the same structure and number of neurons was previ-
ously developed for a single cylinder HCCI Ricardo
engine.26 This is a relatively shallow network which was
chosen as there is a limited amount of data available.
The model training has been completed using the same
parameters as used in Rezaei et al.26

Feature selection: Physical insights

A steady state emissions model is developed to predict
the steady-state HCCI engine emissions values of car-
bon dioxide (CO2), carbon monoxide (CO), unburnt
hydrocarbons (HC), and nitrogen oxides (NOx). The
structure of the model is defined by equation (1) where
w and b are obtained by solving the SVM algorithm for
a given training data set, {�u, z}. Here, �u is the normal-
ized Feature Set (FS). In total five different FS are
tested. The training target set, z, is defined based on
measured steady-state CO2, CO, HC, and NOx values.
To develop the model, 70 experimental data points are
available where 56 points (80%) are used to train the
model and 14 (20%) points to test the model.

Due to the lack of direct ignition control in HCCI,
unlike conventional spark ignition in gasoline engines,
the start of combustion depends on the in-cylinder con-
ditions including pressure, temperature and gas mix-
ture. However, these factors can only be influenced
indirectly. The inputs used in this publication to set
cylinder conditions and therefore affect the combustion

Algorithm 1: PSO based linear kernel SVM algorithm

Result: HCCI emission model: y(u)
training data set: fu, zg ;
splitting data set: training futr , ztrg, cross-validation
fucv , zcvg, and test futs, ztsg ;

Random hyperparameters: CLSVM, eLSVM ;
Run Quadratic Programming of equation (11) to calculate a�

and a+ ;
Calculate support vector sets based on equation (13)
Calculate model based on random hyperparameters using

Equation (14)
Set PSO options: MaxIterations1,

MaxStallIterations2, FunctionTolerance3,
and SwarmSize4;

while i 2 MaxIterations or d5 over
MaxStallIterations ø FunctionTolerance
do

Calculate cost function:

J(CLSVM, eLSVM) = (
1

ntr

Xntr

i = 1
(ztr, i � ytr, i)

2 +

1

ncv

Xncv

i = 1
(zcv, i � ycv, i)

2)

Run PSO algorithm to minimize J(CLSVM, eLSVM) and
find hyperparameters

Update hyperparameters: CLSVM, eLSVM

Run Quadratic Programming of equation (11) to calculate a�

and a+

Calculate support vector sets based on equation (13)
Calculate model based on Updated hyperparameters

using equation (14)
i=i+1

end
1. Maximum number of iterations for optimization ( = 400),
2. Positive integer ( = 20), 3. Non-negative scalar: Iterations end
when the relative change in cost function value over the last
MaxStallIterations iterations is less than FunctionTolerance
= 1e� 6, 4. Number of particles in the swarm = 200, 5.
Relative change

Algorithm 2: PSO based RBF kernel SVM algorithm

Result: HCCI emission model: y(u)
training data set: fu, zg
splitting data set: training futr , ztrg, cross-validation
fucv , zcvg, and test futs, ztsg

Random hyperparameters: CLSVM, eLSVM, s
Run Quadratic Programming of equation (11) to calculate a�

and a+

Calculate support vector sets based on equation (13)
Calculate model based on random hyperparameters using

Equations (15) and (16)
Set PSO options: MaxIterations1,

MaxStallIterations2, FunctionTolerance3,
and SwarmSize4;

while i 2 MaxIterations or d5 over
MaxStallIterations ø FunctionTolerance
do

Calculate cost function:

J(CLSVM, eLSVM, s) = (
1

ntr

Xntr

i = 1
(ztr, i � ytr, i)

2 +

1

ncv

Xncv

i = 1
(zcv, i � ycv, i)

2)

Run PSO algorithm to minimize J(CLSVM, eLSVM, s)
and find hyperparameters

Update hyperparameters: CLSVM, eLSVM, s
Run Quadratic Programming of equation (11) to calculate a�

and a+

Calculate support vector sets based on equation (23)
Calculate model based on Updated hyperparameters

using equations (25) and (26)
i=i+1

end
1. Maximum number of iterations for optimization ( = 600),
2. Positive integer ( = 20), 3. Non- negative scalar: Iterations end
when the relative change in cost function value over the last
MaxStallIterations iterations is less than FunctionTolerance
= 1e� 6, 4. Number of particles in the swarm = 200,
5. Relative change
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are: Negative Valve Overlap (NVO); Injected Fuel
Mass per cycle (mf); and Start of Injection (SOI).

Symmetric NVO is used to change the percentage of
fresh air and exhaust gas within the cylinder, called
Exhaust Gas Recirculation (EGR). This changes both
the amount of oxygen in the cylinder as well the tem-
perature of the cylinder charge. Generally, a lean mix-
ture is desired for reduced NOx emissions, however, at
very lean mixtures the fuel flammability limit of the fuel
may be exceeded leading to combustion instability
which results in high cyclic variability and increased
HC emissions. NVO also impacts the cylinder tempera-
ture after compression, where a higher cylinder tem-
perature results in an earlier auto-ignition process. The
injected fuel mass directly changes the amount of fuel
that is added to the cylinder. However, it is important
to note that some unburnt fuel is transferred between
cycles due to the trapped EGR within the cylinder. As
shown in17 the amount of transferred fuel changes
depending on the combustion efficiency of the last
cycle. The start of injection impacts the mixture homo-
geneity and can lead to stratified mixtures. This has an
impact on the start of combustion as well as the emis-
sions levels. These three parameters were chosen to be
varied as they provide a wide range of cylinder condi-
tions before combustion.

Additional factors that are held as constant as possi-
ble are: intake temperature (Tin); intake pressure (Pin);
and indicated mean effective pressure (IMEP) which is
representative of applied engine load. IMEP, Tin, and
Pin are active input factors to the HCCI process but
they were controlled for this measurement set to reduce
the number of input variables. These three factors are
included to account for unwanted fluctuations, and to
provide a meaningful comparison between different
operating conditions. For modeling in this work the
measured lambda value is used, however, it can also be
accurately estimated using measured intake air flow
and injected fuel demand or calculated using an online
gas exchange model making it a causal variable which
is useful for future control applications.17

The first sets use seven inputs to create a linear
model, L7. A first extension of the FS is considering
cross correlations between the variables (mf 3NVO,
mf 3SOI3SOI, l 3NVO, l 3SOI, l 3mf) resulting
in the L13 FS. The cross correlations with Tin, Pin, and
IMEP are not taken into account as to not over inter-
pret the effect of possible fluctuations. Then higher
order correlations are also considered by adding the
squares of the input variables, FS S14. Additionally,
two more FS are added (S20 and S26) that consider the
square of the cross correlations. Details of the five FS’s
can be found in Table 4. From a machine learning point
of view, these FS’s plays the exact role of a polynomial
feature set. The only difference is that the redundant
higher dimensional feature has been removed based on
physical insight expertise.

As the dimensions and the range of the features are
quite different, all of the features should be normalized

to improve the training performance.68 Here the min-
max normalization method is used to normalize the
features

�u=
u�min(u)

max(u)�min(u)
ð18Þ

All of features from Table 4 are normalized for ANN
and SVM methods to eliminate relative orders of mag-
nitude difference between the features. By solving the
SVM algorithm for the training data set, {�u, z}, the
approximate function, yss is obtained to predict the
steady-state values of CO2, CO, HC, and NOx.

Results and discussion

To illustrate the method, the model for the CO emis-
sions will be discussed in detail with the other emissions
being similar. The recorded data points are randomly
split into three sections where 80% of the collected data
is used as training data to develop the models. Then
10% of the data is used for model cross-validation.
Training and cross-validation data sets are used to
train the model and calculate hyperparamters. In
LSVM and NLVM, as discussed in 3.4, the PSO

Table 4. Features u1 � u26 for the five different feature sets
L7–S26. u1 � u7 are linear features, u8 � u14 are squared
features, u15 � u20 are cross correlations, and u21 � u26 are the
squared cross correlations.

name!
feature #

L7 L13 S14 S20 S26

u1 = mf x x x x x
u2 = NVO x x x x x
u3 = SOI x x x x x
u4 = Tin x x x x x
u5 = Pin x x x x x
u6 = IMEP x x x x x
u7 = l x x x x x
u8 = m2

f
x x x

u9 = NVO2 x x x

u10 = SOI2 x x x

u11 = T2
in

x x x

u12 = P2
in

x x x

u13 = IMEP2 x x x

u14 = l2 x x x
u15 = mf 3 NVO x x x
u16 = mf 3 SOI x x x
u17 = NVO 3 SOI x x x
u18 = l 3 NVO x x x
u19 = l 3 SOI x x x
u20 = l 3 mf x x x

u21 = (mf 3 NVO)2 x

u22 = (mf 3 SOI)2 x

u23 = (NVO 3 SOI)2 x

u24 = (l 3 NVO)2 x

u25 = (l 3 SOI)2 x

u26 = (l 3 mf )
2 x

L stands for linear and S stands for squared.
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algorithm is employed to calculate the hyperparameters
by solving the optimization problem of equation (17).
The same training and cross-validation data are used to
train an ANN model using Levenberg–Marquardt
algorithm. The remaining 10% of the data is allocated
for assessment of the models where the same data is
used for assessing all models including LSVM,
NLSVM, and ANN. To do this, the randomly chosen
data points for each of the three data sets is then kept
constant between all models and feature sets to allow
for a fair comparison.

To rate the model quality the coefficient of determi-
nation (R2) is used. It is defined by

R2 =1�
P

(zi � yi)
2P

(zi � �z)2
ð19Þ

with zi being a measured value in the data set, yi being
the models response to the accompanying zi and �z

being the mean of the measured data. The closer the R2

value is to 1 the better the model fits the data. The R2

estimate of the relationship between the dependent
variables based on an independent variable may fail to
tell the goodness of fit. Therefore, the Normalized
Root Mean Square Error (NRMSE) is used to capture
the error between the model and actual values. The
Normalized version of RMSE is used to remove the
dependency of RMSE to scale output and generalize

the model easily. NRMSE is defined by RMSE
s

where s

is the standard deviation and RMSE is defined as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
n
i=1(yi�ŷ)

n

q
where yi is experimental value

and ŷ is predicted value. This criteria provides a good
representation of how far the model prediction is away
from the real data. Therefore, the lower the NRMSE
the closer the model is to the real value. Both of these
methods help to quantify the model fit.

Figure 3 shows both the R2 and NRMSE values
for the training and test data for the CO model. As
expected the R2 and NRMSE values are the best for
the training data as the models were trained on
this data set. As the model has never been trained on
the testing data this reduced prediction accuracy is

expected and provides the best representation of the
model fit.

Model comparison

When comparing the coefficients of determination (R2)
of the LSVM, NLSVM, and ANN models in Figure 3
a few key differences can be seen. First, when only con-
sidering the training data the NLSVM and ANN mod-
els result in an improved R2 value over the simplified
LSVM model. Although this does not result in a signif-
icantly improved model prediction performance when
given the test data. Actually, the LSVM outperforms
the ANN model in most feature sets. Showing that the
ANN model can suffer from over fitting which is not
seen with the simple LSVM model when presented with
unknown training data. This problem with a small net-
work, such as conventional ANN, can be reduced when
using large datasets; however, when limited data is
available the traditional machine learning algorithms
such as SVM show a better prediction capability.22

When comparing the different feature sets, all the
three models result in fairly consistent prediction accu-
racy even as the number of features is increased. This is
especially true for both linear and non-linear SVM
models which only vary by 12.0% and 14.1% R2 as the
number of features is increased from 7 to 26. This is
likely the result of the SVM algorithm always conver-
ging to the global minimum while the ANN model can
converge to a local minimum as seen by the decrease in
ANN model performance going from L7 to L13. The
convergence of the ANN model is highly dependent of
the initial choice of weights and bias values. This guar-
antee of global convergence is one the major advan-
tages of the SVM method.7,22,42,69 The main reason for
global optimization is that SVM uses Quadratic pro-
gramming, which includes optimizing a function
according to linear constraints. As ANN uses Gradient
descent, it makes ANN sensitive to randomization of
weights parameters. This means that if initial weights
put cost function close to a local minimum, the accu-
racy of the model will never increase past a certain
threshold.39 To avoid this, each ANN model is trained

Figure 3. Comparison between R2 and Normalized RMSE values for CO for NLSVM and LSVM with benchmark ANN method
designed based on Rezaei et al.26 in dependence of the different feature sets.
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in a loop with multiple randomization values, where
the randomization is reset until it reaches acceptable
accuracy.

The findings from CO emissions can then be
extended to HC, NOx, and CO2 as shown in Figures 4
to 6. The trends seen between modeling methods vary
slightly between specific emissions as expected due to
the physical differences in their production mechanism.
To do this, a Criterion for Methods Selection (CMS),
JCMS(R

2), is defined as

JCMS(R
2)= �R2

(FS) � s(R2
(FS)) ð20Þ

where s(R2
(FS)) is standard deviation of R2 and �R2

(FS) is
average value of R2 for selected feature set, L7, L13,
S14, S20, and S26. Table 5 shows criterion for method
selection, JCMS(R

2). This represents the lower bound of
one standard deviation of uncertainty of the model fit.
This helps to select a model with the best fit while
ensuring the robustness of the model to changing fea-
ture sets. The goal is to have the value closest to 1.
Here the best model fit score is highlighted in green
and the worst is shown in red.

Here three of the four emissions are best represented
using the NLSVM model and the other is best fit using
LSVM. This shows that the SVM based models provide
a stable prediction over the range of feature sets consid-
ered. A detailed analysis of the feature set will be per-
formed next.

Feature selection

One important aspect to training the ML methods is
the proper feature selection. It is important to include
any features that have a correlation to the outputs of
interest. However, the addition of extra features
increase the model complexity and training time which
is undesirable for real-time model implementation.
Figure 3 shows the effect of feature selection on the
model performance for CO emissions. Each feature set
increases in the number of features from left to right.

The best R2
training value in all cases occurs for FS L7

(R2
ANN=0:999), while R2

test is maximized at S20
(R2

ANN=0:959) for the ANN model. The R2 values are

all very close for the training data at approximately
R2’0:98, however, a significant difference can be seen
between the R2 values of the test dataset. Generally as
more features are added model performance improves
as seen in Figure 3 in the test data for the ANN model.
As the feature set is increased from L7 to S26 a contin-
ued increase can be seen, with the exception of L13
which has a decreased model performance with the
training data using the ANN model. Improved model
performance does not necessarily result from increased
features.

For CO emissions the best model performance on
the test data occurs when using the ANN model with
S20 feature set. However, for simplified control pur-
poses the L7 feature set using the NLSVM model pro-
vides good a prediction capability with a 15.6%
reduction in model fit, R2

test. As the main goal is to pro-
vide a real-time model for control applications this sim-
plified and robust NLSVM prediction model is the
desired choice for CO emissions prediction.

This feature analysis can then be extended extended
to HC, NOx, and CO2 as seen in Figures 4 to 6. To
compare the increased feature sets to the base feature
set (FS=L7) a percent accuracy increase in R2 value is
defined, as Criterion for Feature Selection (CFS),
JCFS(R

2), as:

JCFS(R
2)=

R2
FS
�R2

L7

R2
L7

3 100% ð21Þ

This provides the relative increase in performance
compared to the simplest model with lambda for the
model type selected previously. Table 6 shows the
improvement based on different feature sets. Here the
simplest model is chosen that provides a significant
increase in prediction performance (DR2 . 2%).

Overall, proper feature selection is required to gain
the maximum model performance. This does not mean
including any and all features but rather a proper fea-
ture exploration and selection is required. In this study,
the emission model for control purposes for CO, HC,
NOx, and CO2 are NLSVM-L13, NLSVM-L7, LSVM-
L13, and NLSVM-L7, respectively. This shows that the
inclusion of more features does not necessarily result in
better model prediction performance. Additionally, this

Figure 4. Comparison between R2 and Normalized RMSE values for HC for NLSVM and LSVM with benchmark ANN method
designed based on Rezaei et al.26 in dependence of the different feature sets.
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shows that based on the data collected there is not a
single modeling method that should be used for all
emissions.

Optimization and model training time

As the propose of the proposed emissions models is
hardware implementation, it is necessary to evaluate
their time requirements. To evaluate this possible prob-
lem the time it takes for optimization of the hyperpara-
meters and evaluation of the model based on optimized

hyperparameters are evaluated for the CO model as
shown in Figure 7(a) and (b). As shown in Figure 7(a),
PSO-based NSVM requires more optimization time
than LSVM. Part of this increase is because more opti-
mization variables need to be determined using PSO
compared with LSVM. As shown, ANN has a optimi-
zation time that is between NSVM and LSVM. For the
ANN model, the optimization time includes multiple
ANN training runs to reduce the effect of the rando-
mized starting weights as described in the ‘‘Model
Comparison’’ section. However, in addition to this
optimization time the ANN model also requires a grid
search between the number of neurons and the hidden
layer size that can add up to a significant computation
time. However, as in this study, the structure of the
ANN is chosen based on a benchmark model for com-
parison purposes based on Rezaei et al.26 we did not
require the grid search. The optimization part of mod-
eling, even for the ANN grid search, does not affect the

Figure 5. Comparison between R2 and Normalized RMSE values for NOx for NLSVM and LSVM with benchmark ANN method
designed based on Rezaei et al.26 in dependence of the different feature sets.

Figure 6. Comparison between R2 and Normalized RMSE values for CO2 for NLSVM and LSVM with benchmark ANN method
designed based on Rezaei et al.26 in dependence of the different feature sets.

Table 5. Criteria for method selection.

CMS(R2) LSVM NLSVM ANN

CO 0.809 0.818 0.641
HC 0.612 0.864 0.838
NOx 0.877 0.710 0.799
CO2 0.884 0.944 0.725

Table 6. Criteria for feature selection.

Feature set NLSVM-CO (%) NLSVM-HC (%) LSVM-NOx (%) NLSVM-CO2 (%)

JCFS(R
2) FS = L13 4.53 0.41 7.56 21.75

FS = S14 5.12 2.60 22.57 21.38
FS = S20 4.78 0.59 5.09 0.34
FS = S26 4.66 0.28 4.02 20.17
Selected FS L13 L7 L13 L7
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real-time implementation for two main reasons: (1) in
real-time, only the already trained model is evaluated
and (2) even with online learning, that is, updating
model in real-time, the model will be updated based on
optimized hyperparameters.

The model evaluation time is based on already opti-
mized hyperparameters and this evaluation time plays
a crucial role in real-time implementation. As shown in
Figure 7(b), LSVM needs 67% and 32% lower evalua-
tion time compared to ANN and NLSVM, respec-
tively. NLSVM also takes 52% lower computation
time than ANN. These results can be extended to the
other NOx, CO2, and HC models which result in an
average reduction in evaluation time for the LSVM
model of 64% and 28% compared to the ANN and
NLSVM models, respectively. On average for the four
emissions the NLSVM requires 45% lower evaluation
time than the ANN model.

Chosen model performance

The model type and feature set selected in the previous
sections for each of the four emissions are evaluated
compared against the experimental data. Figure 8(a) to
(d) show the prediction performance of the selected
models along with a 65% band shown in red.

The CO2 model has all predicted values within the
65% error bands. For the CO, HC and NOx models
there is 56%, 97%, and 56% of the data points within
the error bands, respectively. For the CO model there
is a relatively large spread in the cross-validation and
test data. However, as there is a large spread in the CO
levels over the testing data points the model is still able
to provide the modeling trends.

The NOx model has a larger spread in all of the data
points. This could be a result of the low level of NOx

emissions from 35 to 70ppm and the stochastic varia-
tion in the HCCI combustion that is not captured in
the steady state modeling. A single or only a few cycles
within a measurement can greatly increase the average
emissions levels.

Conclusions

This paper shows the effect of different machine learn-
ing approaches and feature sets on the model quality

for HCCI emissions prediction. The goal of this work
was to select an accurate model while also selecting the
simplest model that still has an acceptable prediction
capability for future realtime control implementation.
First, linear and non-linear SVM models were com-
pared to a traditional ANN model. This comparison
showed for a small data set that SVM based models
were more robust to changes in feature selection and
better able to avoid local minimums compared to ANN
leading to a more consistent model prediction. For each
of the four emissions examined the best model type was
determined by taking the highest average R2 value less
the variance in R2 over the various feature sets. This led
to the NLSVM being selected for three of the emissions
and LSVM for NOx prediction.

Then the individual feature sets were examined. The
base feature sets were extended by multiplying individ-
ual features together to explore in-feature interactions.
By comparing the individual features with the base fea-
ture set (L7) the feature set with an improved accuracy
that is acceptable given the increase in model complex-
ity was chosen. In this study, the emission models cho-
sen for control purposes for CO, HC, NOx, and CO2

are NLSVM-L13, NLSVM-L7, LSVM-L13, and
NLSVM-L7, respectively. The NOx and CO models
have the largest prediction error while the HC and CO2

models are quite accurate. The NOx model produced
the least accurate results however it was still able to
capture the trends in NOx production.

The presented SVM approach allows for emissions
predictions that could be used as the basis for future
real-time control applications. The inclusion of offline
and online trained SVM models in engine controllers
allows for real-time adaption to system aging and
changes in operating conditions. Using the modeling
methods identified in this work additional operating
points can be tested and modeled. Additionally, the pre-
sented SVM model could be enhanced with the addition
of a transient emissions model to better calculate engine
out emissions during rapid load and speed changes.
Implementing hybrid emission modeling by combining
data-driven models with a physical-based model that
provides more features from the physics of system
through a chemical kinetics mechanism will be next step
of this study to improve the emission model further.

(a) (b)

Figure 7. Optimization and evaluation time comparison between LSVM, NSVM, and ANN: (a) CO – optimization time and (b) CO
– evaluation time.
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Appendix

Notation

Pin Intake Pressure
Tin Intake Temperature
L Air-fuel Equivalence Ratio
ANN Artificial Neural Network
BNN Bayesian Neural Network
CA50 Crank angle where fifty percent of heat

energy has been released
CFS Criterion for Feature Selection
CI Compression Ignition
CMS Criterion for Methods Selection
CO Carbon Monoxide
CO2 Carbon Dioxide
DNN Deep Neural Networks

EGR Exhaust Gas Recirculation
ELM Extreme Learning Machine
EMVT Fully Variable Electro-magnetic Valve

Train
EVC Exhaust Valve Closing
FS Feature Set
GA Genetic Algorithm
HC HydrocarbonHCCI Homogeneous

Charge Compression Ignition
ICE Internal Combustion Engine
IMEP Indicated Mean Effective Pressure
IVO Intake Valve Opening
LSVM Linear Support Vector Machine
ML Machine Learning
MSE Mean Square Error
NLSVM Nonlinear Support Vector Machine
NOx Nitrogen Oxide
NRMSE Normalized Root Means Square Error
NVO Symmetric Negative Valve Overlap
PSO Particle Swarm Optimization
RBF Radial Basis Function
RON Research Octane Number
SCRE Single Cylinder Research Engine
SOI Start of Fuel Injection
SVM Support Vector Machine
SVR Support Vector Regression
TDC Top Dead Center
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