
Transparent Exploration of Machine Learning for Biomarker
Discovery from Proteomics and Omics Data
Furkan M. Torun, Sebastian Virreira Winter, Sophia Doll, Felix M. Riese, Artem Vorobyev,
Johannes B. Mueller-Reif, Philipp E. Geyer, and Maximilian T. Strauss*

Cite This: J. Proteome Res. 2023, 22, 359−367 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Biomarkers are of central importance for assessing
the health state and to guide medical interventions and their
efficacy; still, they are lacking for most diseases. Mass spectrometry
(MS)-based proteomics is a powerful technology for biomarker
discovery but requires sophisticated bioinformatics to identify
robust patterns. Machine learning (ML) has become a promising
tool for this purpose. However, it is sometimes applied in an
opaque manner and generally requires specialized knowledge. To
enable easy access to ML for biomarker discovery without any
programming or bioinformatics skills, we developed “OmicLearn”
(http://OmicLearn.org), an open-source browser-based ML tool
using the latest advances in the Python ML ecosystem. Data
matrices from omics experiments are easily uploaded to an online
or a locally installed web server. OmicLearn enables rapid exploration of the suitability of various ML algorithms for the experimental
data sets. It fosters open science via transparent assessment of state-of-the-art algorithms in a standardized format for proteomics and
other omics sciences.
KEYWORDS: machine learning, mass spectrometry, diagnostics, omics, proteome, metabolome, transcriptome

■ INTRODUCTION
Machine learning (ML) is one of the most exciting
opportunities for transforming scientific discovery today.
While ML and its first algorithms were conceptualized decades
ago, increasing computational power and larger data sets have
now clearly demonstrated the superiority of ML approaches
over classical statistical methods in many applications.
Concurrently, advances in omics technologies have enabled
the generation of large and complex biological data sets from
the analysis of hundreds to thousands of samples (in some
cases stemming from hundreds of individuals),1−4 which now
allows ML to extract meaningful biological information from
the data. This also applies to mass spectrometry (MS)-based
proteomics, which has become the method of choice for the
quantitative investigation of the entirety of proteins and their
modifications in a biological system.5−8 Continuous techno-
logical advances transform MS-based proteomics from a basic
research tool to a powerful clinical technology. As techno-
logical challenges in robustness, throughput, and reproduci-
bility are being solved, MS-based proteomics is becoming
increasingly popular for the analysis of clinical samples and an
ideal tool for biomarker discovery. The development of
automated sample preparation pipelines and increasingly
robust liquid chromatography (LC) and MS systems enable

the analysis of large studies. Such large data sets are challenging
to analyze in conventional ways but are well-suited to ML
algorithms, which can identify promising protein signatures
and predict physiological states based on proteome data and
additional clinical metadata. Recently, we applied ML in
studies comprising hundreds of cerebrospinal fluid (CSF) or
urine samples to predict the manifestation of neurodegener-
ative diseases.9,10 In these projects, established biomarkers
associated with the investigated diseases ranked among the top
candidates such as tau, SOD1, and PARK7 in Alzheimer’s
Disease (AD) and VGF and ENPEP in Parkinson’s Disease
(PD), and potential novel ones were uncovered.
For experimental researchers, applying ML to proteomics

and other omics data sets requires adapting existing tools to
the task at hand. Multiple commercial frameworks are targeted
toward general ML applications, such as RapidMiner and
KNIME,11 which typically have a free tier for academics.

Special Issue: Software Tools and Resources 2023

Received: August 2, 2022
Published: November 25, 2022

Articlepubs.acs.org/jpr

© 2022 The Authors. Published by
American Chemical Society

359
https://doi.org/10.1021/acs.jproteome.2c00473

J. Proteome Res. 2023, 22, 359−367

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Furkan+M.+Torun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sebastian+Virreira+Winter"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sophia+Doll"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Felix+M.+Riese"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Artem+Vorobyev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Johannes+B.+Mueller-Reif"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Johannes+B.+Mueller-Reif"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philipp+E.+Geyer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maximilian+T.+Strauss"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jproteome.2c00473&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?goto=recommendations&?ref=pdf
http://OmicLearn.org
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=agr1&ref=pdf
https://pubs.acs.org/toc/jprobs/22/2?ref=pdf
https://pubs.acs.org/toc/jprobs/22/2?ref=pdf
https://pubs.acs.org/toc/jprobs/22/2?ref=pdf
https://pubs.acs.org/toc/jprobs/22/2?ref=pdf
https://pubs.acs.org/toc/jprobs/22/2?ref=pdf
https://pubs.acs.org/toc/jprobs/22/2?ref=pdf
pubs.acs.org/jpr?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jpr?ref=pdf
https://pubs.acs.org/jpr?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


Commercial cloud providers such as AWS, Google, and
Microsoft Azure have customized ML products, often tailored
for big data applications. Latest research and competitive
machine learning on platforms like Kaggle use popular
packages such as scikit-learn or XGBoost that allow predictive
data analysis in principle, but researchers still require
programming knowledge to write their own ML pipelines.12,13

In particular, the currently available packages in Python or R
require writing a data pipeline with code since they typically
have no graphical interface. A noteworthy exception is the
Galaxy project, a server-based scientific workflow system that
aims to make computational biology more accessible.14

Another widely used tool is Weka, a collection of machine
learning algorithms for data mining tasks in Java with a one-
click installation and graphical user interface.15

When wanting to reproduce published results, the same
software environment needs to be set up and configured with
the matching package versions and random seeds. Especially in
ML, selecting the appropriate methods is far from obvious to
the nonspecialist. Moreover, many parameters can be altered
to tune the algorithms, which might change from version to
version, resulting in reproducibility issues. While several
packages exist that perform automatic optimization of
parameters and provide a “best” solution, manual verification
and benchmarking of algorithms are limited. This restricts

understanding of the role of the data and the algorithm in the
model.
Additionally, omics sciences and ML require special domain

knowledge as metrics can be deceiving, and algorithms might
need special preselection or preprocessing steps. For instance,
in some studies, the receiver operating characteristics (ROC)
curve might be useful to confirm the performance, while
precision-recall (PR) curves are mandatory in imbalanced data
sets.16 Imbalanced data sets refer to data sets where one group
is overrepresented, which can cause misleading performance
metrics. Thus, transparent and open-source software would be
favorable, particularly in the interest of open and reproducible
science.17

To address these issues and to make machine learning more
accessible to support the current initiatives on biomarker
discovery, we here introduce OmicLearn, a ready-to-use ML
web application specifically developed for omics data sets. We
describe OmicLearn’s architecture and show its benefits by
applying it to a recently published proteomics study
investigating alterations in the CSF of AD patients.9

OmicLearn incorporates community efforts by building on
scientific Python libraries and is available as open-source. It can
be accessed via the hosted web server or downloaded for local
deployment. We additionally provide a one-click installer for
Windows, Mac, and Linux.

Figure 1. OmicLearn architecture. Left side: tabular experimental data files can be uploaded to OmicLearn as *.tsv, *.csv, or *.xlsx (Excel format).
(1) Internally, OmicLearn uses the NumPy and pandas packages to import and handle data. OmicLearn is an interactive web-based tool built on
the Streamlit package (2), which can be used to explore the data interactively. The application can be installed via a one-click installer or accessed
online so that it is readily accessible for nonexperts. Right side: OmicLearn has access to the large machine learning libraries of scikit-learn and
additional algorithms such as XGBoost. (3) The pipeline is set up to perform classification tasks on omics data sets with multiple cross-validations
of results. Various performance metrics are displayed, leveraging the Plotly library. (4) The OmicLearn repository is hosted on GitHub and is open-
source. Logos courtesy of the respective library/company (streamlit.io, scikit-learn, xgboost, plotly, github.com, pandas, and NumPy).

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00473
J. Proteome Res. 2023, 22, 359−367

360

https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig1&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


To provide a perspective on the utility of OmicLearn, we
briefly discuss already published studies that used OmicLearn.
Geyer et al. measured the serum proteome of PCR-negative
controls and hospitalized COVID-19 patients. In addition to
statistical analysis with established methods such as signifi-
cance tests and representation as volcano plots, they utilized
OmicLearn to evaluate how well ML-based classification would
distinguish patients from controls. OmicLearn repeatedly split
the data into different subsets, trained a classifier, and provided
performance metrics. The resulting ROC curve had an average
area under the curve (AUC) of 0.90 ± 0.08, and the PR curve
had an average AUC of 0.92 ± 0.06.18

Karayel et al. performed proteome profiling of CSF to study
PD in two cohorts and could identify a small number of
commonly altered proteins.19 Next, they combined both
cohorts and used OmicLearn to apply ML for classification.
The resulting ROC curve had an average AUC of 0.72 ± 0.08.
Interestingly, the most important feature for the classifiers was
prolactin, which was not significantly regulated in either
cohort, highlighting the potential of the ML approach.

■ MATERIALS AND METHODS

Overview of the OmicLearn Architecture

OmicLearn consists of a central web interface, an analysis core,
and visualization (Figure 1). Within the analysis core, data
processing builds on open-source data manipulation tools such
as pandas20 and NumPy,21 specifically designed for multi-
dimensional matrices and arrays. To implement state-of-the-art
ML and preprocessing methods, we built OmicLearn on scikit-
learn and advanced machine learning algorithms such as
XGBoost (eXtreme Gradient Boosting). Scikit-learn is a widely
used library for classification, regression, and clustering
problems, which incorporates standard preprocessing, feature
selection, and cross-validation techniques needed in ML.12

XGBoost comes with additional algorithms, improved
performance, and an optimized memory usage.13

The interactive web interface and visualization components
are built on the recently developed but already extremely
popular open-source framework Streamlit (https://www.
streamlit.io). Dropdown menus allow the straightforward
definition of data set specific variables and the selection of
various parameters for different ML algorithms. A core feature
that facilitates usage, especially for novice users, is the

Figure 2. Functional flow of OmicLearn and example performance metrics. (A) The OmicLearn’s landing page is composed of two functional
elements. The left side allows setting the options for the ML pipeline such as selecting the ML classifier and setting algorithmic parameters. The
right side allows manipulating the data set and exploration of results. The process is interactive and follows a linear flow, e.g., whenever an option is
selected only choices that will match the previously selected parameters will be shown. (B) Cross-validation (CV) strategy: data is repeatedly split
into train and validation sets so that means and standard deviations can be estimated. (C) Feature importance: this plot shows the feature
importance from the ML classifier, averaged over all classification runs. The definition of the feature importance depends on the used classifier, e.g.,
for a LogisticRegression it is the weights of the linear model. The annotation on the y-axis is interactive and will directly link to a search request on
NCBI. Highlighted is tau, which was found as one of the most important features in the underlying Alzheimer’s study. Note that the feature
importance is sorted by magnitude; the lowest bar is the remainder of all features not shown. (D) Interactive receiver operating characteristics
(ROC) and precision-recall (PR) curve: The ROC curve shows individual CV splits as well as an average ROC curve with a confidence interval.
The PR curve shows individual CV splits as well as an average PR curve with a confidence interval.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00473
J. Proteome Res. 2023, 22, 359−367

361

https://www.streamlit.io
https://www.streamlit.io
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig2&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


automated interface update based on previously made
selections, preventing invalid choices. To illustrate this further,
when a user uploads a data set with missing values, a warning
will be displayed that imputation is required or that a classifier
that supports missing values needs to be selected. Here,
imputation of missing values refers to the practice of replacing
signals that were not detected by the experiment with
reasonable estimates (e.g., the mean intensity of a protein in
the study) so that samples can be compared. Theoretically, in
this case, a user could make an invalid selection by not
selecting missing value imputation and choosing an incompat-
ible classifier. However, OmicLearn prevents this on the
interface level: If the missing value imputation is set to none
and the data set has missing values, the number of selectable
classifiers is reduced to compatible ones.
Results are visualized with the graphic Python library Plotly

(https://plotly.com/python) to generate high-quality inter-
active graphs, which can be exported as *.pdf, *.png, or *.svg.
For guidance, we implemented a ReadtheDocs documentation
(https://omiclearn.readthedocs.io/en/latest/) that provides
background knowledge about OmicLearn, its ML algorithms,
and the available methods. Additionally, the documentation
supplies information on clinical MS-based proteomics,
recommendations, an installation guide, and a user manual
for the tool. For in-depth information about the available
selections, we directly link their headers to the documentation
of scikit-learn.
The code of OmicLearn is released as open-source under the

Apache License (2.0). The tool is available on GitHub https://
github.com/MannLabs/OmicLearn, which includes the doc-
umentation, the complete source code, and the example data
set described below. The example data set can be used to
explore the platform without uploading a data set and
reproduce the results presented here. OmicLearn can be
installed and run locally to enable use in restricted or sensitive
environments. To facilitate installation, we include a one-click
installer for Windows, Linux, and Mac. Alternatively, a running
instance of the online app can be accessed via the website
http://OmicLearn.org. Here, we use the sharing option
provided by Streamlit.

■ RESULTS

Using OmicLearn

Data sets can be uploaded via drag and drop or browsing a
local drive. Internally, OmicLearn is built on the widely used
pandas and NumPy packages to import and store data. Data
sets should be supplied in a .tsv, .csv, or .xlsx format, typical
output formats of packages such as MaxQuant, DIA-NN, or
AlphaPept.22−24 The data sets need to meet distinct criteria
with regard to the structure of the data matrix. Each row
should correspond to a sample, each column to a feature to be
used for classification, and every column must have a header.
Features can be supplied as two types: main and additional.
Main features typically comprise the abundance information
on every analyte (e.g., protein or metabolite intensities), while
additional features are associated with clinical information such
as age, sex, or disease status of the samples or subjects. To
provide an intuitive way to use additional features and
distinguish them from main features, OmicLearn requires
their column names to start with an underscore “_” (e.g.,
“_age”). Ultimately, this allows researchers to quickly assemble
matching data matrices with text or spreadsheet manipulation

tools to be used with OmicLearn. As additional metadata is
often provided in various formats and is typically not
integrated into the search result output, we further provide
detailed documentation on how to use and format the output
files for the aforementioned search engines.
To quickly test out the features of OmicLearn without

uploading a custom file, we provide a tutorial sample file and a
real-world data set from a recently published study on
biomarker discovery in AD using CSF.9

Once a file is uploaded, OmicLearn’s ML interface appears,
consisting of two separate selection menus for ML options and
for data set specific feature definitions (Figure 2A). The core
steps of the pipeline can be found in the left sidebar, where the
user can specify individual parameters for random state,
preprocessing, feature selection, classification, and cross-
validation. As an example, OmicLearn offers the choice
between several algorithms for classification, including
AdaBoost, Logistic Regression, Random Forest, XGBoost,
Decision Tree, KNN Classification, and linear support vector
classification (briefly described with additional links in the
OmicLearn documentation). Within the interactive interface,
several hyperparameters can be defined according to the
chosen model or algorithm. In an ML context, a hyper-
parameter is a parameter that can be used to control the
learning process of an algorithm. Furthermore, a random state
slider allows the specification of a seed state to make random
operations such as train-test splits deterministic to ensure
reproducibility of the predictions.
The underlined headlines of the ML options such as

“Feature selection” are linked to the documentation. Here, we
supply a stepwise manual to apply OmicLearn and more
information for all sections and methods. Moreover, the user
will find references for supporting information for the ML
algorithms, metrics, and scores. Table 1 shows a summary of
the currently implemented options for each processing step.
We want to highlight that it is, in principle, very difficult to

Table 1. Currently Implemented Options for Each
Processing Step in OmicLearn

step options

EDA principal component analysis (PCA)
hierarchical clustering

preprocessing StandardScaler
MinMaxScaler
RobustScaler
PowerTransformer
QuantileTransformer

feature selection ExtraTrees
k-best (mutual_info_classif)
k-best (f_classif)
k-best (chi2)

classification AdaBoost
LogisticRegression
KneighborsClassifier
RandomForest
DecisionTree
LinearSVC
XGBoost

cross-validation RepeatedStratifiedKFold
StratifiedKFold
StratifiedShuffleSplit

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00473
J. Proteome Res. 2023, 22, 359−367

362

https://plotly.com/python
https://omiclearn.readthedocs.io/en/latest/
https://github.com/MannLabs/OmicLearn
https://github.com/MannLabs/OmicLearn
http://OmicLearn.org
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


recommend a general best-practice algorithm that will achieve
the best performance as this will strongly depend on the data
set and the task in mind. A more informed decision on when to
use which algorithm would require expert knowledge of the
underlying algorithmic details. Here, OmicLearn is intended to
rather provide insight into how the different algorithms will
affect performance or to reproduce existing results with defined
hyperparameters. As iterating through different algorithms
typically requires only a couple of seconds, we encourage the
user to try different algorithms and compare the results with
the “Session history” section.
Subsets of uploaded data sets can be created based on an

additional feature column, e.g., when having a multicenter
study and only wanting to train on the data of a specific study
center.
Within the “Classification target” section, the user can

specify the column that contains the classification target. Here,
they can define two classes that are based on unique values
within this column that the classifier will be trained to
distinguish. In this context, a class refers to the groups that the
classifier should learn to separate. In a typical setup, this could
be the disease state to distinguish patient and control samples.
If there are more than two unique values, each class can be
defined to consist of multiple values, or values can be excluded
when training the classification algorithm.
While thorough exploratory data analysis (EDA) should be

done before applying the machine learning layer with
OmicLearn, we provide utility functions to perform basic
EDA on the uploaded data set. This includes principal
component analysis (PCA) and hierarchical clustering to
identify potential artifacts in the data set that could lead to
unreliable performance metrics. OmicLearn also allows one to
include additional feature columns in the classification. This
refers to features that are not main features (i.e., protein
intensities) but additional metadata, such as age or clinical
parameters. The usage of these features can be selected under
the “Additional features” section. If a column contains non-
numerical data such as “condition_a”, “condition_b”, and
“condition_c” for a category, OmicLearn will convert the
values to numerical data such as 0, 1, and 2. In this section,
users might upload their *.csv file (comma “,” separated),
where each row corresponds to a feature to be excluded.
Furthermore, it is possible to manually select the main

features via “Manually select features”. This feature is intended
to explore how a classifier performs when a defined set of
features is provided. While this can be useful to investigate
individual proteins it is to note that this could lead to biased
results, when applied incorrectly. An example case would be
when first testing and extracting for regulated proteins, and
then only selecting them as features. Effectively, this would leak
information from the test set and make the performance
metrics less reliable, as described in the literature.25 This effect
will not occur in the default settings for OmicLearn. Here, the
automatic feature selection step is not applied on the entirety
of the data set but only on the respective cross-validation split.
Lastly, the option “Cohort comparison” allows using one of

the additional feature columns to split the data set into
different cohorts to train on one cohort and test on the other.
Once all parameters are set, clicking on the “Run analysis”
button will initiate the selection of the best features and
calculation of the predictive model.

Interpretation of Results
OmicLearn reports various metrics, ranging from reports on
important features to the evaluation of the applied ML models.
These results are displayed in several tables and graphs. A bar
plot ranks the features with the highest contribution to the
prediction model (20 in our tutorial data set; Figure 2C) from
all of the cross-validation (CV) runs. For instance, in our
sample data set analysis, the known biomarker tau (P10636)
displayed the highest feature importance value, as described in
the original study. This information is also available as tables in
*.csv format. To comfortably retrieve more knowledge about
these features, we directly linked their IDs or names to a
National Center for Biotechnology Information (NCBI)
search.
In order to evaluate the performance of an ML model, a

study needs to be split into train, validation, and holdout (test)
sets. Optimization is performed using the training and
validation sets, and the model that is ultimately used is being
evaluated using the unseen holdout set. As already mentioned,
OmicLearn is intended to be an exploratory tool to assess the
performance of algorithms when applied to specific data sets at
hand, rather than a classification model for production.
Therefore, no holdout set is used, and the performance
metrics have to be interpreted accordingly. This also prevents
repeated analysis of the same data set and choosing the same
holdout set from leading to a selection bias and consequent
overinterpretation of the model.
The strategy of splitting data is crucial to overcome the

common ML problems of over- or underfitting. Overfitting
occurs when applying a model with high complexity that learns
on unrelated noise. Overfitted models will be capable of
describing the sample with high accuracy but will not
generalize well when validating another data set. In our
context, this is frequently observed when study-specific biases
are present that are not found in future observations.
Underfitting happens when the model is not sufficiently
complex and is, therefore, not capable of learning the subtleties
of the sample characteristics, resulting in suboptimal perform-
ance. Even though the throughput of omics sciences is rapidly
increasing, the number of analyzed samples is generally small
compared to the number of features that can be measured. To
illustrate, a sample cohort may be in the range of hundreds but
we are measuring thousands of proteins, making ML
particularly prone to overfitting. In order to use the existing
data most efficiently, we use CV, in which data is repeatedly
split into train and validation sets (RepeatedStratifiedKFold
method). For this purpose, we integrated a stratified splitting
technique, meaning that the original class ratio will be
preserved for the splits. OmicLearn offers additional split
methods such as StratifiedKFold and StratifiedShuffleSplit,
which can be selected in the ML options (Figure 2B). These
measures aim to prevent misleading models that learned on
biased distributions. To give an example, this could be the case
for a data set where 1% of the patients have a rare condition
and random splits do not contain data points with the
condition. The model could learn to always predict the
majority class and would reach 99% accuracy.
The number of features that are being used for the model

can be either selected by the user or automatically selected
with feature selection algorithms built into OmicLearn. The
feature importance scores obtained from the classifier after all
CV runs are displayed in a horizontal interactive bar chart and
an exportable table (Figure 2C). The feature importance is

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00473
J. Proteome Res. 2023, 22, 359−367

363

pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


additionally provided in tabular format and contains the
standard deviations. The meaning of the quantity feature
importance depends on the underlying classifier, e.g., for a
LogisticRegression it would be the weights of the linear model,
while for a DecisionTree model, it would be the Gini
importance. More information can be found when following
the links to each classifier in the Wiki.
The feature selection is applied for each split during the CV

process so that no information leakage occurs.
We further implemented ROC for a graphical representation

of model performance (Figure 2D). They display the true
positive rate (sensitivity) against the false positive rate (1 −
specificity) in an easily interpretable form. In the supplied plot,
the mean ROC curve (black) is displayed together with the
standard deviation (gray background) of the different curves
from the various train and validation set splits. The area under
the curve receiver operating characteristics (AUC-ROC) is a
numerical value to assess the prediction; it would be 1.0 in the
case of perfect discrimination. In addition, we use PR curves
displaying the sensitivity (recall) against the positive predictive
value (Figure 2D). PR curves are valuable for performance
assessments, especially when dealing with imbalanced data sets,
where one class is more frequent than the other.26 To further
evaluate the quality of the predictions, we supply a 2 × 2
“confusion matrix” to compare predicted and actual classes. A
confusion matrix is a table that compares the actual condition
to the predicted condition for the classes of the classifier. In the
sample data set, it displays the number of correctly predicted
positive and negative AD patients as well as the number of
false-positive and false-negative predictions.
The overview of all results is available in one comprehensive

table in the “Results” section. We further provide a publication-
ready summary text for describing packages, libraries, methods,
and parameters. Finally, since researchers might perform
multiple runs in OmicLearn to explore different learning
conditions, previous results are listed in the “Session History”
section. In this way, users can easily compare current with
previous results. Additionally, a download option for the

session history as *.csv exists. The graphics generated by
OmicLearn can be saved in a publication-ready format such as
*.pdf, *.svg, and *.png, and all tables are available as .csv files.
For further validation of the achieved results, the OmicLearn

documentation contains a recommendations page with
potential pitfalls (e.g., artifacts, misuse of settings, or guidelines
on sample size).
Application Examples

The underlying type of an ML classifier can have a drastic
effect on the model performance depending on the given data
set it is applied to. Therefore, models should be selected to fit
the nature of the problem. In the analysis of our sample AD
data set with OmicLearn, we quickly evaluated seven ML
algorithms. For this, we selected the Alzheimer data set and set
the classification target to the clinical AD diagnosis and
“_gender” as an additional feature. Next, we did run the
analysis using the default settings. Subsequently, we changed
only the classifier and reran the analysis. Within the user
interface, this involves only changing the selected classifier in
the dropdown menu and again pressing the Run analysis
button.
Each model showed a different performance on predicting

Alzheimer’s disease status. To illustrate such effects, we use
several OmicLearn’s metrics in a “Run results for classifier”
table and graphs to show the influence of classifiers (Figure
3A). The AUC-ROCs ranged from 0.63 to 0.93. This result
cannot be due to differences other than the model as we had
defined the same data subsets and other selections such as
additional features and chose the same options for
preprocessing, missing value imputation, feature selection,
and cross-validation (Figure 2A). Further investigating the
individual model performance highlights interesting character-
istics. While the majority of the models achieve an AUC-ROC
of larger than 0.8, there are some outliers with much lower
performance such as KNeighbors with 0.63 ± 0.12 and the
decision tree model with 0.73 ± 0.09. Interestingly, a rather
simple model (LogisticRegression) that can serve as a baseline
performance obtained an average AUC-ROC of 0.84 ± 0.09,

Figure 3. Application examples of OmicLearn. (A) ROC curves generated from the AD data set for multiple ML models. The achieved AUC-ROC
ranged from 0.63 to 0.93. The different ML algorithms are indicated with their AUC-ROC value. (B) Examples of two different splits of the AD
data set for one ML model. Split 1 resulted in perfect accuracy and exhibited no false classification. Split 7 of the same cross-validation run had
several false classifications and hence lower performance, highlighting the importance of cross-validation.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00473
J. Proteome Res. 2023, 22, 359−367

364

https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?fig=fig3&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


which is higher than the more sophisticated support vector
model (LinearSVC) with a mean score of 0.81 ± 0.09.
One of the best models for this application is the XGBoost

classifier, which achieves an AUC-ROC of 0.93 ± 0.06. Note
that the minimum AUC-ROC for a single CV split was 0.77,
while the maximum was 1. This emphasizes that repeated
validation is necessary to avoid misinterpreting performance on
favorable or unfavorable splits.
A confusion matrix facilitates understanding performance

metrics by showing actual numbers for each class (Figure 3B).
To display the individual cross-validation splits, OmicLearn
provides an interactive confusion matrix with a slider for
picking a split. We even found perfect splits (e.g., split 1) that
classified all Alzheimer’s patients (10/10) and non-Alzheimer’s
patients (18/18) correctly. In contrast to that there are splits
that are much worse (e.g., split 7), which only classify 6/10 and
16/18 correctly, highlighting the variance in prediction
accuracy.
The described approach of having a baseline classifier,

testing multiple classifiers, and characterizing results with
multiple metrics aids in following community standards for
machine learning in proteomics recommendations.27

■ DISCUSSION
Recent technological advances are dramatically improving
robustness, throughput, and reproducibility of omics tech-
nologies such as genomics, proteomics, and metabolomics.
This has sparked an increasing interest in using these
technologies for biomarker discovery with large cohorts of
clinical samples. More generally, the analysis and interpretation
of large biological data sets obtained from omics technologies
are complex and require automated computational workflows.
In addition to the statistical tests that are typically applied, ML
is an increasingly powerful tool to extract meaningful
information and to obtain a deeper understanding of the
underlying biology. The application of ML algorithms to large
omics data sets, however, remains a challenge in many ways.
Individual ML pipelines need to be established, specialized
knowledge of data scientists or bioinformaticians is required,
and the applied workflows often lack transparency and
reproducibility. While the number of studies applying ML to
omics data sets is rapidly increasing, issues associated with
transparency of analyses, validation of existing results, and
reproducibility are increasingly recognized and a matter of
concern in the field.
To make ML algorithms easily accessible and their effects

more understandable for experimental researchers, we
developed OmicLearn, a browser-based app that allows
applying modern ML algorithms to any omics data set
uploaded in a tabular format. Although developed with clinical
proteomics in mind, it is in no way limited to this application.
OmicLearn offers several ways to explore the effect of a variety
of parameter settings on ML performance and comes with a
detailed documentation containing background information
and a user manual. Within OmicLearn, multiple methods are
available for preprocessing, feature selection algorithms,
classification, and cross-validation steps together with hyper-
parameter tuning options so that existing results can be easily
validated. Furthermore, OmicLearn enables researchers to
export all settings and results as publication-ready figures with
an accompanying methods summary. This enables researchers
to apply the identical pipeline to multiple omics data sets or
reproduce existing results and simplifies the application and

usage of ML algorithms to any tabular data without requiring
any prior ML knowledge. With its user-friendly interface,
OmicLearn enables researchers to upload a data set with
features, such as protein levels and any associated clinical
information such as disease status, to train and test a model
and provide new valuable insights into the data set. OmicLearn
aggregates the methods and algorithms from the Python ML
library scikit-learn together with XGBoost. Furthermore, it
combines several best practices for CV to apply them to the
files uploaded by users, such as MS-based proteomics data sets.
To demonstrate its usability, we have applied various ML

algorithms to a recently published study that investigated
changes in the CSF proteome of AD patients. While we
showcased our app on proteomics data, it can be applied to
tabular data obtained using other omics technologies such as
genomics or metabolomics. A principal challenge that remains
for all ML approaches is explainability. In a biomarker
discovery context, features that give highly accurate models
could originate from inherent study biases so that scrutinizing
results with respect to the underlying biology is imperative.
Therefore, before applying an ML layer with OmicLearn, users
should have done previous EDA and have a good under-
standing of their data set. Even with sophisticated algorithms, a
model can only be as good as the underlying data set.
A key finding is that ML requires repeated cross-validation

of results as biased splitting of data can result in drastic
performance variation, which can be larger than the perform-
ance difference of different classifiers. The interactive nature of
OmicLearn aids in highlighting these differences. While some
models will have better performance, the baseline classification
accuracy of all classifiers should be in the same range and the
user should be able to achieve competitive results with
OmicLearn. This also suggests that it is beneficial to stringently
benchmark a study with a relatively standard model (e.g.,
LogisticRegression) and have a good understanding of the
baseline performance instead of purposely building a model for
a particular study. In this way, OmicLearn also helps to
democratize ML in the field as results will be more comparable
and differences in model performance easier to understand.
In summary, OmicLearn is an easy-to-use, powerful tool to

explore the application of ML algorithms. It gives a rapid
overview of how well the supplied data perform in a
classification task and can be applied to fine-tune and optimize
or replicate ML models and highlight important features
indicative of biomarkers. However, on its own, it does not
provide biomarker panels or models ready to be used in
diagnostics. The predictive power of the models should be
critically questioned and ideally tested with independent
cohorts. Furthermore, it does not include classical statistical
methods such as analysis of covariance (ANCOVA). Potential
improvements of OmicLearn include the diversification of ML
classification algorithms and the inclusion of other sophisti-
cated optimization and preprocessing methods such as
standardization, imputation of missing values, and data
encoding. We have found OmicLearn to be an effective tool
to quickly analyze clinical proteomics data sets and hope that it
will provide similar benefits for a large community of
researchers in the field of biomarker discovery.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00473
J. Proteome Res. 2023, 22, 359−367

365

pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ ASSOCIATED CONTENT
Data Availability Statement

The source code and data used can be found at https://github.
com/MannLabs/OmicLearn, which also contains compiled
one-click installers. Additionally, there are links to an online
version of OmicLearn and a documentation hosted on
ReadtheDocs.

■ AUTHOR INFORMATION
Corresponding Author

Maximilian T. Strauss − Novo Nordisk Foundation Center for
Protein Research, University of Copenhagen, 2200
Copenhagen, Denmark; orcid.org/0000-0003-3320-
6833; Email: maximilian.strauss@cpr.ku.dk

Authors

Furkan M. Torun − OmicEra Diagnostics GmbH, 82152
Planegg, Germany; orcid.org/0000-0003-0859-4598

Sebastian Virreira Winter − OmicEra Diagnostics GmbH,
82152 Planegg, Germany

Sophia Doll − OmicEra Diagnostics GmbH, 82152 Planegg,
Germany

Felix M. Riese − OmicEra Diagnostics GmbH, 82152 Planegg,
Germany

Artem Vorobyev − OmicEra Diagnostics GmbH, 82152
Planegg, Germany

Johannes B. Mueller-Reif − OmicEra Diagnostics GmbH,
82152 Planegg, Germany

Philipp E. Geyer − OmicEra Diagnostics GmbH, 82152
Planegg, Germany; orcid.org/0000-0001-7980-4826

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jproteome.2c00473

Author Contributions

F.M.T. and M.T.S. wrote the code of OmicLearn, drafted its
GitHub repository, and designed the figures. F.M.R. and A.V.
tested the application and revised the code. P.E.G., F.M.T., and
M.T.S. wrote the manuscript, and M.T.S. conceived the
original idea of OmicLearn. All authors performed research,
analysis, and manuscript writing and provided critical feedback.
Notes

The authors declare the following competing financial
interest(s): F.M.T., S.V.W., S.D., F.M.R., J.B.M.-R., and
P.E.G. are employees and M.T.S. and A.V. were employees
of OmicEra Diagnostics GmbH. OmicEra is a start-up
company specializing in the generation and sophisticated
analysis of large-scale proteomics data sets and may therefore
benefit from cutting-edge AI-driven algorithms in the public
domain.

■ ACKNOWLEDGMENTS
The work carried out in this project was funded by OmicEra
Diagnostics GmbH and partially supported by the German
Federal Ministry of Education and Research (BMBF) project
ProDiag (Grant No. 01KI20377B) and the Michael J. Fox
Foundation MJFF-019273. M.T.S. is supported financially by
the Novo Nordisk Foundation (Grant Agreement
NNF14CC0001). We thank Halil I. Bilgin for helpful
discussions on OmicLearn. We thank our former colleagues
at the Max Planck Institute of Biochemistry, Jakob M. Bader

and Ozge Karayel, for initial discussions related to machine
learning.

■ REFERENCES
(1) Cominetti, O.; Nuñ́ez Galindo, A.; Corthésy, J.; Oller Moreno,
S.; Irincheeva, I.; Valsesia, A.; Astrup, A.; Saris, W. H. M.; Hager, J.;
Kussmann, M.; Dayon, L. Proteomic Biomarker Discovery in 1000
Human Plasma Samples with Mass Spectrometry. J. Proteome Res.
2016, 15 (2), 389−399.
(2) Geyer, P. E.; Wewer Albrechtsen, N. J.; Tyanova, S.; Grassl, N.;
Iepsen, E. W.; Lundgren, J.; Madsbad, S.; Holst, J. J.; Torekov, S. S.;
Mann, M. Proteomics Reveals the Effects of Sustained Weight Loss
on the Human Plasma Proteome. Mol. Syst. Biol. 2016, 12 (12), 901.
(3) Demichev, V.; Tober-Lau, P.; Lemke, O.; Nazarenko, T.;
Thibeault, C.; Whitwell, H.; Röhl, A.; Freiwald, A.; Szyrwiel, L.;
Ludwig, D.; et al. A Time-Resolved Proteomic and Prognostic Map of
COVID-19. Cell Syst. 2021, 12, 780−794.
(4) Niu, L.; Thiele, M.; Geyer, P. E.; Rasmussen, D. N.; Webel, H.
E.; Santos, A.; Gupta, R.; Meier, F.; Strauss, M.; Kjaergaard, M.;
Lindvig, K.; Jacobsen, S.; Rasmussen, S.; Hansen, T.; Krag, A.; Mann,
M. Noninvasive Proteomic Biomarkers for Alcohol-Related Liver
Disease. Nat. Med. 2022, 28 (6), 1277−1287.
(5) Bache, N.; Geyer, P. E.; Bekker-Jensen, D. B.; Hoerning, O.;
Falkenby, L.; Treit, P. V.; Doll, S.; Paron, I.; Müller, J. B.; Meier, F.;
Olsen, J. V.; Vorm, O.; Mann, M. A Novel LC System Embeds
Analytes in Pre-Formed Gradients for Rapid, Ultra-Robust
Proteomics. Molecular & Cellular Proteomics 2018, 17 (11), 2284−
2296.
(6) Geyer, P. E.; Kulak, N. A.; Pichler, G.; Holdt, L. M.; Teupser, D.;
Mann, M. Plasma Proteome Profiling to Assess Human Health and
Disease. Cell Systems 2016, 2 (3), 185−195.
(7) Geyer, P. E.; Holdt, L. M.; Teupser, D.; Mann, M. Revisiting
Biomarker Discovery by Plasma Proteomics. Mol. Syst. Biol. 2017, 13
(9), 942.
(8) Meier, F.; Brunner, A.-D.; Koch, S.; Koch, H.; Lubeck, M.;
Krause, M.; Goedecke, N.; Decker, J.; Kosinski, T.; Park, M. A.; et al.
Online Parallel Accumulation−Serial Fragmentation (PASEF) with a
Novel Trapped Ion Mobility Mass Spectrometer. Mol. Cell. Proteomics
2018, 17 (12), 2534−2545.
(9) Bader, J. M.; Geyer, P. E.; Müller, J. B.; Strauss, M. T.; Koch, M.;
Leypoldt, F.; Koertvelyessy, P.; Bittner, D.; Schipke, C. G.; Incesoy, E.
I.; Peters, O.; Deigendesch, N.; Simons, M.; Jensen, M. K.; Zetterberg,
H.; Mann, M. Proteome Profiling in Cerebrospinal Fluid Reveals
Novel Biomarkers of Alzheimer’s Disease. Mol. Syst. Biol. 2020, 16
(6), e9356.
(10) Virreira Winter, S.; Karayel, O.; Strauss, M. T.; Padmanabhan,
S.; Surface, M.; Merchant, K.; Alcalay, R. N.; Mann, M. Urinary
Proteome Profiling for Stratifying Patients with Familial Parkinson’s
Disease. EMBO Mol. Med. 2021.
(11) Berthold, M. R.; Cebron, N.; Dill, F.; Gabriel, T. R.; Kötter, T.;
Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. KNIME: The
Konstanz Information Miner. In Data Analysis, Machine Learning and
Applications; Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker,
R., Eds.; Studies in Classification, Data Analysis, and Knowledge
Organization; Springer: Berlin, Heidelberg, 2008; pp 319−326.
(12) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.;
Perrot, M.; Duchesnay, E. Scikit-Learn: Machine Learning in Python.
J. Mach. Learn. Res. 2011, 12, 2825−2830.
(13) Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining; ACM: San
Francisco, CA, 2016; pp 785−794.
(14) Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.;
Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B. A.;
Guerler, A.; Hillman-Jackson, J.; Hiltemann, S.; Jalili, V.; Rasche, H.;
Soranzo, N.; Goecks, J.; Taylor, J.; Nekrutenko, A.; Blankenberg, D.
The Galaxy Platform for Accessible, Reproducible and Collaborative

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00473
J. Proteome Res. 2023, 22, 359−367

366

https://github.com/MannLabs/OmicLearn
https://github.com/MannLabs/OmicLearn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maximilian+T.+Strauss"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3320-6833
https://orcid.org/0000-0003-3320-6833
mailto:maximilian.strauss@cpr.ku.dk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Furkan+M.+Torun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0859-4598
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sebastian+Virreira+Winter"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sophia+Doll"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Felix+M.+Riese"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Artem+Vorobyev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Johannes+B.+Mueller-Reif"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philipp+E.+Geyer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7980-4826
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00473?ref=pdf
https://doi.org/10.1021/acs.jproteome.5b00901?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.5b00901?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.15252/msb.20167357
https://doi.org/10.15252/msb.20167357
https://doi.org/10.1016/j.cels.2021.05.005
https://doi.org/10.1016/j.cels.2021.05.005
https://doi.org/10.1038/s41591-022-01850-y
https://doi.org/10.1038/s41591-022-01850-y
https://doi.org/10.1074/mcp.TIR118.000853
https://doi.org/10.1074/mcp.TIR118.000853
https://doi.org/10.1074/mcp.TIR118.000853
https://doi.org/10.1016/j.cels.2016.02.015
https://doi.org/10.1016/j.cels.2016.02.015
https://doi.org/10.15252/msb.20156297
https://doi.org/10.15252/msb.20156297
https://doi.org/10.1074/mcp.TIR118.000900
https://doi.org/10.1074/mcp.TIR118.000900
https://doi.org/10.15252/msb.20199356
https://doi.org/10.15252/msb.20199356
https://doi.org/10.15252/emmm.202013257
https://doi.org/10.15252/emmm.202013257
https://doi.org/10.15252/emmm.202013257
https://doi.org/10.1007/978-3-540-78246-9_38
https://doi.org/10.1007/978-3-540-78246-9_38
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1093/nar/gky379
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Biomedical Analyses: 2018 Update. Nucleic Acids Res. 2018, 46 (W1),
W537−W544.
(15) Frank, E.; Hall, M.; Holmes, G.; Kirkby, R.; Pfahringer, B.;
Witten, I. H.; Trigg, L. Weka-A Machine Learning Workbench for
Data Mining. In Data Mining and Knowledge Discovery Handbook;
Maimon, O., Rokach, L., Eds.; Springer US: Boston, MA, 2009; pp
1269−1277.
(16) Davis, J.; Goadrich, M. The Relationship between Precision-
Recall and ROC Curves. In Proceedings of the 23rd International
Conference on Machine Learning - ICML ’06; ACM Press: Pittsburgh,
PA, 2006; pp 233−240.
(17) McDermott, M. B. A.; Wang, S.; Marinsek, N.; Ranganath, R.;
Foschini, L.; Ghassemi, M. Reproducibility in Machine Learning for
Health Research: Still a Ways to Go. Sci. Transl. Med. 2021, 13 (586),
eabb1655.
(18) Geyer, P. E.; Arend, F. M.; Doll, S.; Louiset, M.; Virreira
Winter, S.; Müller-Reif, J. B.; Torun, F. M.; Weigand, M.; Eichhorn,
P.; Bruegel, M.; Strauss, M. T.; Holdt, L. M.; Mann, M.; Teupser, D.
High-resolution Serum Proteome Trajectories in COVID-19 Reveal
Patient-specific Seroconversion. EMBO Mol. Med. 2021, 13 (8),
e14167 DOI: 10.15252/emmm.202114167.
(19) Karayel, O.; Virreira Winter, S.; Padmanabhan, S.; Kuras, Y. I.;
Vu, D. T.; Tuncali, I.; Merchant, K.; Wills, A.-M.; Scherzer, C. R.;
Mann, M. Proteome Profiling of Cerebrospinal Fluid Reveals
Biomarker Candidates for Parkinson’s Disease. Cell Reports Medicine
2022, 3 (6), 100661.
(20) McKinney, W. Data Structures for Statistical Computing in
Python. Presented at SciPy 2010, 9th Python in Science Conference,
Austin, TX, June 28−30, 2010; pp 56−61.
(21) Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.;
Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M. H.; Brett, M.;
Haldane, A.; del Río, J. F.; Wiebe, M.; Peterson, P.; Gérard-Marchant,
P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.;
Oliphant, T. E. Array Programming with NumPy. Nature 2020, 585
(7825), 357−362.
(22) Cox, J.; Mann, M. MaxQuant Enables High Peptide
Identification Rates, Individualized p.p.b.-Range Mass Accuracies
and Proteome-Wide Protein Quantification. Nat. Biotechnol. 2008, 26
(12), 1367−1372.
(23) Demichev, V.; Messner, C. B.; Vernardis, S. I.; Lilley, K. S.;
Ralser, M. DIA-NN: Neural Networks and Interference Correction
Enable Deep Proteome Coverage in High Throughput. Nat. Methods
2020, 17 (1), 41−44.
(24) Strauss, M. T.; Bludau, I.; Zeng, W.-F.; Voytik, E.; Ammar, C.;
Schessner, J.; Ilango, R.; Gill, M.; Meier, F.; Willems, S.; Mann, M.
AlphaPept, a Modern and Open Framework for MS-Based
Proteomics. bioRxiv, July 26, 2021 (accessed 2021-07-26)
DOI: 10.1101/2021.07.23.453379.
(25) Desaire, H. How (Not) to Generate a Highly Predictive
Biomarker Panel Using Machine Learning. J. Proteome Res. 2022, 21
(9), 2071−2074.
(26) Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More
Informative than the ROC Plot When Evaluating Binary Classifiers on
Imbalanced Datasets. PLoS One 2015, 10 (3), e0118432.
(27) Palmblad, M.; Böcker, S.; Degroeve, S.; Kohlbacher, O.; Käll,
L.; Noble, W. S.; Wilhelm, M. Interpretation of the DOME
Recommendations for Machine Learning in Proteomics and
Metabolomics. J. Proteome Res. 2022, 21 (4), 1204−1207.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00473
J. Proteome Res. 2023, 22, 359−367

367

https://doi.org/10.1093/nar/gky379
https://doi.org/10.1007/978-0-387-09823-4_66
https://doi.org/10.1007/978-0-387-09823-4_66
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1126/scitranslmed.abb1655
https://doi.org/10.1126/scitranslmed.abb1655
https://doi.org/10.15252/emmm.202114167
https://doi.org/10.15252/emmm.202114167
https://doi.org/10.15252/emmm.202114167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.xcrm.2022.100661
https://doi.org/10.1016/j.xcrm.2022.100661
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1038/s41592-019-0638-x
https://doi.org/10.1038/s41592-019-0638-x
https://doi.org/10.1101/2021.07.23.453379
https://doi.org/10.1101/2021.07.23.453379
https://doi.org/10.1101/2021.07.23.453379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.2c00117?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.2c00117?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1021/acs.jproteome.1c00900?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.1c00900?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.1c00900?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

