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Abstract

The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties are 

important in drug discovery as they define efficacy and safety. In this work, we applied an 

ensemble of features, including fingerprints and descriptors, and a tree-based machine learning 

model, extreme gradient boosting, for accurate ADMET prediction. Our model performs well in 

the Therapeutics Data Commons ADMET benchmark group. For 22 tasks, our model is ranked 

first in 18 tasks and top 3 in 21 tasks. The trained machine learning models are integrated in 

ADMETboost, a web server that is publicly available at https://ai-druglab.smu.edu/admet.
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1 Introduction

Properties such as absorption, distribution, metabolism, excretion, and toxicity (ADMET) 

are important in small molecule drug discovery and therapeutics. It was reported that many 

clinical trials fail due to the deficiencies in ADMET properties. Kola and Landis (2004); 

Kennedy (1997); M Honorio et al (2013); Waring et al (2015) While profiling ADMET in 

the early stage of drug discovery is desirable, experimental evaluation of ADMET properties 

is costly with limited available data. Moreover, computational studies of ADMET in the 

clinical trial stage can serve as an efficient design strategy that can allow researchers pay 

more attention to the most promising compounds. Göller et al (2020)

Recent developments in machine learning (ML) promote research in chemistry and biology 

Song et al (2020); Zhang et al (2020); Tian et al (2021b) and bring new opportunities for 
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ADMET prediction. ADMETLab Dong et al (2018) provides 31 ADMET endpoints with 

six machine learning models, and further advanced to 53 endpoints using a multi-task graph 

attention network Xiong et al (2021). vNN Schyman et al (2017) is a web server that 

applies variable nearest neighborhood to predict 15 ADMET properties. admetSAR Cheng 

et al (2012) and admetSAR 2.0 Yang et al (2019) are also ML based web servers for drug 

discovery or environmental risk assessment with random forest, support vector machine, 

and k-nearest neighbors models. As a fingerprint-based random forest model, FP-ADMET 

Venkatraman (2021) evaluated over 50 ADMET and ADMET-related tasks. In these ML 

models, small molecules are provided in SMILES representations and further featurized 

using fingerprints, such as extended connectivity fingerprints Rogers and Hahn (2010) and 

Molecular ACCess System (MACCS) fingerprints Durant et al (2002). Beside these, there 

are many other fingerprints and descriptors that can be used for ADMET prediction, such 

as PubChem fingerprints and Mordred descriptors. Taking advantage of all possible features 

enables sufficient learning process for machine learning models.

One common issue is that many machine learning models in previous work are trained on 

different datasets, which leads to unfair comparison and evaluation of ML models. As a 

curated dataset, Therapeutics Data Commons (TDC) Huang et al (2021) unifies resources 

in therapeutics for systematic access and evaluation. There are 22 tasks in TDC ADMET 

benchmark group, each with small molecules SMILES representations and corresponding 

ADMET property values or labels.

Extreme gradient boosting (XGBoost) Chen and Guestrin (2016) is a powerful machine 

learning model and has been shown to be effective in regression and classification tasks in 

biology and chemistry Chen et al (2020); Tian et al (2020, 2021a); Deng et al (2021). In this 

work, we applied XGBoost to learn a feature ensemble, including multiple fingerprints and 

descriptors, for accurate ADMET prediction. Our model performs well in the TDC ADMET 

benchmark group with 11 tasks ranked first and 19 tasks ranked top 3.

2 Methods

Therapeutics Data Commons

Therapeutics Data Commons (v0.3.6) is a Python library with an open-science initiative. 

It holds many therapeutics tasks and datasets including target discovery, activity modeling, 

efficacy, safety, and manufacturing. TDC provides a unified and meaningful benchmark for 

fair comparison between different machine learning models. For each ADMET prediction 

task, TDC splits the dataset into the predefined 80% training set and 20% test set with 

scaffold split, which simulates the real-world application scenario. In practice, a well-trained 

machine learning model would be used to predict ADMET properties on unseen and 

structurally different drugs.

Fingerprints and Descriptors

Six featurizers from DeepChem Ramsundar et al (2019) were used to compute fingerprints 

and descriptors:
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• MACCS fingerprints are common structural keys that compute a binary string 

based on a molecule’s structural features.

• Extended connectivity fingerprints compute a bit vector by breaking up a 

molecule into circular neighborhoods. They are widely used for structure-activity 

modeling.

• Mol2Vec fingerprints Jaeger et al (2018) create vector representations of 

molecules based on an unsupervised machine learning approach.

• PubChem fingerprints consist of 881 structural keys that cover a wide range of 

substructures and features. It is used by PubChem for similarity searching.

• Mordred descriptors Moriwaki et al (2018) calculate a set of chemical 

descriptors such as the count of aromatic atoms or all halogen atoms.

• RDKit descriptors calculate a set of chemical descriptors such as molecular 

weight and the number of radical electrons.

Extreme Gradient Boosting

Extreme gradient boosting is a powerful machine learning model. It boosts model 

performance through ensemble that includes decision tree models trained in sequence.

Let D = {(xi, yi)(D = n, xi ∈ Rm, yi ∈ Rn)} represents a training set with m features and n 

labels. The j-th decision tree in XGBoost model makes a prediction for sample (xi, yi) by 

gj(xi) = wq(xi) where wq is the leaf weights. The final prediction of XGBoost model is the 

sum of all M decision tree predictions with yi = ∑j = 1
M gj(xi).

The objective function consists of a loss function l and a regularization term Ω to reduce 

overfitting:

obj(θ) = ∑
i = 1

N
l(yi, yi) + ∑

j = 1

M
Ω(fi) (1)

where Ω(f) = γT + λ
2 ∑l = 1

T ωl
2. T represents the number of leaves while γ, λ are parameters 

for regularization.

During training, XGBoost iteratively trains a new decision tree based on the output of 

the previous tree. The prediction of the t-th iteration yi
(t) = yi

(t − 1) + gt(xi). The objective 

function of the t-th iteration is:

obj(t) = ∑
i = 1

N
l(yi, yi

(t − 1) + gt(xi)) + Ω(fi) (2)

XGBoost introduces first and second derivatives of this objective function, which can be 

expressed as follows by applying Taylor expansion at second order:
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obj(t) ≃ ∑
i = 1

N
[l(yi, yi

(t − 1)) + ∂y(t − 1)l(yi, y(t − 1))ft(xi)

+ 1
2 ∂y(t − 1)

2 l(yi, y(t − 1))ft
2(xi)] + Ω(fi)

(3)

A total of seven parameters are being fine-tuned with selected value options and are listed in 

Table 1. Default values are used for other parameters.

Performance Criteria

For regression tasks, mean absolute error (MAE) and Spearman’s correlation coefficient are 

considered to evaluate model performance:

• MAE is used to measure the deviation between predictions yi and real values xi 

in n sample size.

MAE =
∑i = 1

n yi ‐ xi
n

(4)

• Spearman’s correlation coefficient ρ measures the correlation strength between 

two ranked variables. Where di represents the difference in paired ranks,

ρ = 1 − 6∑di
2

n(n2 − 1)
(5)

For binary classification tasks, area under curve (AUC) is calculated with receiver operating 

characteristic (ROC) and precision-recall curve (PRC). For both metrics, a higher value 

indicates a more powerful model.

• AUROC is the area under the curve where x-axis is false positive rate and y-axis 

is true positive rate.

• AUPRC is the area under the curve where x-axis is recall and y-axis is precision.

All metrics are calculated with evaluation functions provided by the TDC APIs.

3 Results and Discussion

Model Performance

We first used a random seed to split the overall dataset into a training set (80%) and a test set 

(20%). XGBoost model was trained with the training set using 5-fold cross validation (CV). 

A randomized grid search CV was applied to optimize hyperparameters. The parameter set 

with the highest CV score is used, and the model performance is evaluated on the test set. 

We repeat this process five times with varying random seeds from zero to four following the 

TDC guideline. The evaluation results are listed on Table 2. In each task, there are at least 

seven other models or featurization methods being compared with, including DeepPurpose 
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Huang et al (2020), AttentiveFP Xiong et al (2019), ContextPred Hu et al (2019), NeuralFP 

Lee et al (2021), AttrMasking Hu et al (2019) and graph convolutional network Kipf and 

Welling (2016). For all 22 tasks, XGBoost is ranked first for 18 and top 3 for 21 out of 22 

tasks, demonstrating the success of XGBoost model in predicting ADMET tasks.

The superior prediction results of XGBoost are explainable. As shown in Table 2, 

previously, there are 13 tasks which the top models are trained using descriptors (RDKit 

2D + MLP model) or fingerprints (Morgan + MLP model and AttentiveFP). Inspired 

by this, XGBoost was trained using a combination of fingerprints and descriptors. These 

featurization methods cover both structural features (MACCS, extended connectivity, 

Mol2Vec, and PubChem fingerprints) to chemical descriptors (Mordred and RDKit 

descriptors) for each given SMILES representation. For a specific property prediction task, 

XGBoost can take the consideration of all possible molecular features, select the best set 

of them for prediction, while avoiding over-fitting by controlling tree complexity. Together, 

these would boost the prediction performance of XGBoost to be superior to other models.

To further understand the importance of each fingerprint and descriptor, for each ADMET 

task, averaged feature importance is calculated for each feature set and is plotted in Figure 

1. It is shown that Mordred descriptors are consistently the most important feature in all 

tasks, followed by Mol2Vec and Circular fingerprints. MACCS Keys fingerprint set is the 

least important among the five groups of features. As Mordred descriptors are considered 

significantly more important than other features, we retrained the models in each task 

using only this feature set. The results are listed in Table 3. XGBoost with only Mordred 

outperformed the base model in three tasks (HIA, Aqsol and PPBR). However, metabolism 

and excretion predictions were not improved using XGBoost with Mordered alone but were 

comparable in other tasks.

Searching for the parameter set with best validation performance is necessary. However, 

there are over 100,000 parameter combinations in the current search space, and it could 

growth exponentially with additional features being considered. It is challenging to iterate 

over all possible parameter set to find the best parameter set. In the current study, a 

randomized grid search CV was used. It should be noted that the randomized grid search 

CV does not necessarily lead to the global optimum parameter set due to the randomness 

nature. In recent decades, Bayesian optimization has been developed to search in the 

hyperparameter space, such as hyperopt Bergstra et al (2013), which might be promising 

under such tasks.

It should be noted that, while TDCommons provides a benchmark dataset useful to evaluate 

and compare different machine learning models, there are some limitations when applying 

this dataset. First, in the ADMET prediction scenario, all classification and regression 

predictions are single-instance: we only predict one value for each task. Thus, multitask 

learning is not feasible under the current framework. Moreover, the dataset has not been 

constantly updated. The dataset version should be mentioned when reporting related results.
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Web Server

The trained machine learning models are hosted on the SMU high computing center 

at https://ai-druglab.smu.edu/admet. A SMILES representation is required for ADMET 

predictions. On the result page, molecule structures in both 2D and 3D are displayed 

using Open Babel O’Boyle et al (2011). A table is present to summary prediction results 

under 22 tasks. The optimal levels are referenced from Drug-Like Soft Rule and empirical 

ranges from ADMETLab 2.0 Xiong et al (2021). For each prediction, green, yellow, and red 

colors are used to indicate whether the prediction lies in optimal, medium, or poor ranges, 

suggested in ADMETLab 2.0. The web server has been tested rigorously to respond within 

seconds.

4 Conclusion

In this study, we applied XGBoost for ADMET prediction. XGBoost can effectively learn 

molecule features ranging from fingerprints to descriptors. For the 22 tasks on TDC 

benchmark, our model is ranked first in 11 tasks with all tasks ranked in top 5. The web 

server, ADMETboost, can be freely accessed at https://ai-druglab.smu.edu/admet.
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Fig. 1. 
Average feature importance of fingerprints and descriptors in (A) absorption, (B) 

distribution, (C) metabolism, (D) elimination, and (E) toxicity tasks.
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Table 1

Fine-tuned XGBoost Parameters

Name and Description Values

n_estimators: Number of gradient boosted trees. [50, 100, 200, 500, 1000]

max_depth: Maximum tree depth. [3, 4, 5, 6, 7]

learning_rate: Boosting learning rate. [0.01, 0.05, 0.1, 0.2, 0.3]

subsample: Subsample ratio of instances. [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

colsample_bytree: Subsample ratio of columns. [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

reg_alpha: L1 regularization weights. [0, 0.1, 1, 5, 10]

reg_lambda: L2 regularization weights. [0, 0.1, 1, 5, 10]
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Table 2

Model Evaluation on the TDC ADMET Leaderboard
a

TDC Current Top 1 XGBoost

Task Metric Method Score Score Rank

Absorption

Caco2 MAE RDKit2D + MLP 0.393 ± 0.024 0.288 ± 0.011 1st

HIA AUROC AttrMasking 0.978 ± 0.006 0.987 ± 0.002 1st

Pgp AUROC AttrMasking 0.929 ± 0.006 0.911 ± 0.002 4th

Bioav AUROC RDKit2D + MLP 0.672 ± 0.021 0.700 ± 0.010 1st

Lipo MAE ContextPred 0.535 ± 0.012 0.533 ± 0.005 1st

AqSol MAE AttentiveFP 0.776 ± 0.008 0.727 ± 0.004 1st

Distribution

BBB AUROC ContextPred 0.897 ± 0.004 0.905 ± 0.001 1st

PPBR MAE NeuralFP 9.292 ± 0.384 8.251 ± 0.115 1st

VDss Spearman RDKit2D + MLP 0.561 ± 0.025 0.612 ± 0.018 1st

Metabolism

CYP2C9 Inhibition AUPRC AttentiveFP 0.749 ± 0.004 0.794 ± 0.004 1st

CYP2D6 Inhibition AUPRC AttentiveFP 0.646 ± 0.014 0.721 ± 0.003 1st

CYP3A4 Inhibition AUPRC AttentiveFP 0.851 ± 0.006 0.877 ± 0.002 1st

CYP2C9 Substrate AUPRC Morgan + MLP 0.380 ± 0.015 0.387 ± 0.018 1st

CYP2D6 Substrate AUPRC RDKit2D + MLP 0.677 ± 0.047 0.648 ± 0.023 3rd

CYP3A4 Substrate AUPRC CNN 0.662 ± 0.031 0.680 ± 0.005 1st

Excretion

Half Life Spearman Morgan + MLP 0.329 ± 0.083 0.396 ± 0.027 1st

CL-Hepa Spearman ContextPred 0.439 ± 0.026 0.420 ± 0.011 2nd

CL-Micro Spearman RDKit2D + MLP 0.586 ± 0.014 0.587 ± 0.006 1st

Toxicity

LD50 MAE Morgan + MLP 0.649 ± 0.019 0.602 ± 0.006 1st

hERG AUROC RDKit2D + MLP 0.841 ± 0.020 0.806 ± 0.005 3rd

Ames AUROC AttrMasking 0.842 ± 0.008 0.859 ± 0.002 1st

DILI AUROC AttrMasking 0.919 ± 0.008 0.933 ± 0.011 1st

a
Only models that have been evaluated by most of the tasks are considered.
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Table 3

Performance comparison of XGBoost models trained with all features and with only Mordred.

TDC XGBoost with all features XGBoost with Mordred

Task Metric Score Score

Absorption

Caco2 MAE 0.288 ± 0.011 0.301 ± 0.008

HIA AUROC 0.987 ± 0.002 0.990 ± 0.002

Pgp AUROC 0.911 ± 0.002 0.909 ± 0.005

Bioav AUROC 0.700 ± 0.010 0.692 ± 0.016

Lipo MAE 0.533 ± 0.005 0.538 ± 0.003

AqSol MAE 0.727 ± 0.004 0.720 ± 0.003

Distribution

BBB AUROC 0.905 ± 0.001 0.900 ± 0.001

PPBR MAE 8.251 ± 0.115 7.897 ± 0.061

VDss Spearman 0.612 ± 0.018 0.610 ± 0.005

Metabolism

CYP2C9 Inhibition AUPRC 0.794 ± 0.004 0.781 ± 0.002

CYP2D6 Inhibition AUPRC 0.721 ± 0.003 0.694 ± 0.005

CYP3A4 Inhibition AUPRC 0.877 ± 0.002 0.862 ± 0.002

CYP2C9 Substrate AUPRC 0.387 ± 0.018 0.334 ± 0.004

CYP2D6 Substrate AUPRC 0.648 ± 0.023 0.594 ± 0.034

CYP3A4 Substrate AUPRC 0.680 ± 0.005 0.649 ± 0.013

Excretion

Half Life Spearman 0.396 ± 0.027 0.373 ± 0.008

CL-Hepa Spearman 0.420 ± 0.011 0.378 ± 0.020

CL-Micro Spearman 0.587 ± 0.006 0.576 ± 0.010

Toxicity

LD50 MAE 0.602 ± 0.006 0.602 ± 0.006

hERG AUROC 0.806 ± 0.005 0.763 ± 0.007

Ames AUROC 0.859 ± 0.002 0.856 ± 0.002

DILI AUROC 0.933 ± 0.011 0.928 ± 0.003
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