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Abstract 

Objectives  Currently, endometrial adenocarcinoma lacks an effective prognostic indicator. This study was to develop 
and validate a gene biomarker and a nomogram to predict the survival of endometrial adenocarcinoma, explore 
potential mechanisms and select sensitive drugs.

Methods  425 endometrial adenocarcinoma cases with RNA sequencing data from TCGA were used to identify the 
most immune-related module by WGCNA. As an external test set, 103 cases from GSE17025 were used. Immune-
related genes were downloaded from Innate DB. The three sets of data were used to identify the prognostic genes. 
Based on 397 cases with complete clinical data from TCGA, randomly divided into the training set (n = 199) and test 
set (n = 198), we identified CXCR3 as the prognostic gene biomarker. Age, grade, FIGO stage, and risk were used to 
develop and validate a predictive nomogram. AUC, C-index, calibration curve and K–M estimate evaluated the mod-
el’s predictive performance. KEGG enrichment analysis, immune functions, TMB, the effectiveness of immunotherapy, 
and drug sensitivity between the high-risk and low-risk groups.

Results  CXCR3 was identified as a prognostic biomarker. We calculated the risk score and divided the cases into the 
high-risk and low-risk groups by the median value of the risk score. The OS of the high-risk group was better than the 
low-risk group. The risk was the prognostic indicator independent of age, grade, and FIGO stage. We constructed the 
nomogram including age, grade, FIGO stage, and risk to predict the prognosis of endometrial adenocarcinoma. The 
top five KEGG pathways enriched by the DEGs between the high- and low-risk groups were viral protein interaction 
with cytokine and cytokine receptors, cytokine-cytokine receptor interaction, chemokine signaling pathway, natural 
killer cell-mediated cytotoxicity, and cell adhesion molecules. We analyzed the difference in immune cells and found 
that CD8+ T cells, activated CD4+ T cells, T helper cells, monocytes, and M1 macrophages were infiltrated more in 
the low-risk group. However, M0 macrophages and activated dendritic cells were more in the high-risk group. The 
immune function including APC coinhibition, APC costimulation, CCR, checkpoint, cytolytic activity, HLA, inflam-
mation-promoting, MHC-I, parainflammation, T cell coinhibition, T cell costimulation, type I-IFN-response, and type 
II-IFN-response were better in the low-risk group. TMB and TIDE scores were both better in the low-risk group. By ‘the 
pRRophetic’ package, we found 56 sensitive drugs for different risk groups.

Conclusion  We identified CXCR3 as the prognostic biomarker. We also developed and validated a predictive nomo-
gram model combining CXCR3, age, histological grade, and FIGO stage for endometrial adenocarcinoma, which could 
help explore the precise treatment.
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Introduction
Endometrial adenocarcinoma is the most common path-
ological type of endometrial cancer, which is the most 
common gynecological cancer in the United States. Since 
the mid-1990s, the mortality and related mortality of 
uterine corpus cancer has increased [1]. The disease was 
frequently symptomatic at an early stage, and endome-
trial cancer is often diagnosed at stage I [2]. Surgery is the 
preferred treatment for endometrial cancer, and the stag-
ing is based on the pathological evaluation after surgery 
[3]. Immunotherapy has a considerable clinical response 
in some relapsed or refractory cases [4–6]. With the 
continuous elucidation of the pathogenesis of endome-
trial cancer, more and more evidence indicate that many 
immune cells and cytokines can be seen in endometrial 
cancer tissue and stimulate an endogenous anti-tumor 
immune response. Compared with other gynecological 
malignancies, endometrial cancer is most likely to benefit 
from immunotherapy [7–9].

An integrated genomic analysis by The Cancer Genome 
Atlas (TCGA) resulted in the molecular classification of 
endometrioid and serous carcinomas into four distinct 
subgroups, POLE (ultramutated), microsatellite instabil-
ity (hypermutated), copy number low (endometrioid), 
and copy number high (serous-like) [10]. In March 2020, 
the National Comprehensive Cancer Network (NCCN) 
recommended the molecular typing of the Cancer 
Genome Map Research Network for endometrial cancer 
for the first time. The main cancer immunotherapy meth-
ods include Immune checkpoint inhibitors, cancer vac-
cines, adoptive cell transfer, and lymphocyte-promoting 
cytokines [11]. Compared with TCGA molecular classi-
fication, gene testing is required to determine POLE sta-
tus first, which is expensive. ProMisE, another commonly 
used molecular typing, is a simplified version. The typing 
first determines DNA MMR status and then determines 
POLE and P53 status, divided into POLE mutant, MMRd 
type, P53wt normal/wild type, and P53aba abnormal/
mutant type [12, 13]. The relatively low cost is the advan-
tage of using this typing to guide treatment. Combined 
with PD-L1 and TMB-H, molecular typing was used to 
help evaluate choosing immunotherapy, but it cannot 
be decided. Several immune-related biomarkers exist 
[14–18], consisting of multiple genes in endometrial can-
cer. Therefore, it will be more appliable and convenient 
to develop a simple prognostic biomarker consisting of 
fewer genes in endometrial adenocarcinoma for helping 
clinical practice. TCGA [19, 20] and Gene Expression 
Omnibus (GEO) [21, 22] have become popular sources 
of gene databases. Bioinformatics tools, such as weighted 
gene co-expression network analysis (WGCNA) [23], 
least absolute shrinkage and selection operator (LASSO) 
[24], and TIDE (Tumor Immune Dysfunction and 

Exclusion) algorithm (http://​tide.​dfci.​harva​rd.​edu) have 
been used to process data. Combining bioinformatics 
tools and these databases in the scientific study is relia-
bly supported [25–29]. RNA sequencing (RNA-seq) data 
has the advantage of direct sequencing, a large amount 
of data, species restriction, and high data flexibility over 
expression array and NanoString. As RNA-seq data was 
more suitable for biomarker identification, we analyzed 
RNA-seq data and clinical data from databases with bio-
informatics tools to identify an immune-related prog-
nostic biomarker including only one gene, CXCR3, and 
develop a predictive nomogram for only endometrial 
adenocarcinoma to predict the prognosis and help select 
the sensitive drugs.

Materials and methods
Data collection and differentially expressed genes (DEGs)
Four hundred twenty-five endometrial adenocarcinoma 
cases with RNA-seq data from TCGA were used to 
identify the most immune-related module by WGCNA. 
(Additional file 1: Table S1). The immune score, stromal 
score, and estimated score for each patient were cal-
culated by ESTIMATE [30], and 5559 immune-related 
genes (IRGs) were downloaded from InnateDB [31] 
(Additional file  1: Table  S1). One hundred three cases 
with RNA-seq data from GSE17025 [21, 22] were used 
as an external test, and their DEGs were processed by 
GEO2R (Additional file 1: Table S1). The above three sets 
were used to identify and validate the prognostic genes 
to predict the prognosis of endometrial adenocarcinoma.

Three hundred ninety-seven endometrial adenocar-
cinoma cases from TCGA had complete clinical data, 
including age, histological grade, FIGO stage, vital status, 
time to death, and time to the last follow-up. These cases 
were randomly divided into a training set (n = 199) and a 
test set (n = 198) to develop and validate the risk model 
and predictive nomogram.

WGCNA
WGCNA is a proper bioinformatics method for explor-
ing immune-related modules. We first removed outlier 
genes and genes with extremely low expression from the 
data. A weighted gene network was constructed to raise 
co-expression similarity to calculate adjacency by choos-
ing the soft thresholding power β. 22 was chosen as the 
soft threshold based on the approximate scale-free topol-
ogy. We calculated adjacency and generated a hierarchi-
cal clustering tree. 11 modules with similar expression 
profiles were identified by dynamic tree cutting. Mod-
ules with highly co-expressed genes were merged. Finally, 
we associated the modules with the immune traits (i.e., 
immune score, stromal score, and estimate score) and 
chose the most relevant module.

http://tide.dfci.harvard.edu
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Identification and validation of the most immune‑related 
gene biomarker
The overlapping genes were intersected by the most rel-
evant module of WGCNA (module dark-orange), DEGs 
of GSE17025, and IRGs from InnateDB. Univariate Cox 
regression analysis, LASSO regression analysis, and mul-
tivariate Cox regression analysis were successively used to 
obtain the prognostic gene biomarker on the training set 
and tested by the test set. The risk score was calculated 
by multivariate Cox regression analysis. The risk score 
formula was: Risk score = ∑n

i = 1Coefi × Expi. In this 
formula, Coefi is the coefficient of the prognosis-related 
gene, and Exp is the expression level of each retained 
gene. The median value of the risk score divided the cases 
into high- and low-risk groups. The predictive perfor-
mance of the gene biomarker was evaluated by the area 
under the curve (AUC), concordance index (C-index), 
and Kaplan–Meier (K–M) estimate. The theoretical value 
of the C-index is between 0 and 1. If the C-index exceeds 
0.5, the prediction performance is better than a random 
guess. Independent prognostic analysis can determine 
whether our model can be used as an independent prog-
nostic factor independent of other clinical factors.

Database for annotation, visualization, and integrated 
discovery (DAVID)
DAVID (version 6.8) [32, 33] is an online annotation tool 
used to interpret the biological function of gene sets. 
Here, we used the gene set of the most relevant module 
from WGCNA to do the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Pathway and Gene Ontology 
(GO) analysis by DAVID. GO analysis can provide bio-
logical information on gene function. KEGG pathway 
analysis can indicate the possible signaling pathways of 
the gene set. We input gene symbols onto the website 
and chose Homo Sapiens as the species. GO-BP-direct, 
Go-CC-Direct, Go-MF-Direct, and KEGG PATHWAY 
were selected for functional annotation. Other param-
eters were set to default.

Comprehensive analysis of protein–protein interaction 
(PPI) network
PPI was performed by STRING [34], a Search Tool for 
the Retrieval of Interacting Genes Database (https://​
www.​string-​db.​org/). The website analyzed overlapping 
genes to explore the possible relationships between them.

Evaluating the difference in immune function and immune 
cells between the high‑ and low‑risk group
Based on the ’limma’ [35], ’GSVA’ [36], ’GSEABase’ [37], 
‘ggpubr’ [38], and ’reshape2’ [39] R packages, we calcu-
lated the different immune functions and cells between 
the high-risk and low-risk groups.

Evaluating tumor mutation burden between the high‑ 
and low‑risk group
TMB refers to the relative number of gene mutations in 
specific tumor tissue. Calculation formula: TMB (mut/
Mb) = total mutation number (including synonymous, 
non-synonymous point mutation, replacement, insertion, 
and deletion mutation)/coding area size of a target area.

Perl (https://​www.​perl.​org/) was used to extract 
somatic mutation information and estimate the TMB 
value. Then we used R to combine the patient’s TMB 
information with clinical information, including survival 
time and status. The ’ survminer ’ [40]package was used 
to calculate the best cutoff value of TMB. According to 
the optimal critical value, the patients were divided into 
a high-TMB group and a low-TMB group. K–M survival 
analysis and the log-rank tests were performed to com-
pare the OS differences between the above two TMB 
groups, and the OS differences in the four TMB groups 
combined with the risk score were compared. In addi-
tion, we explored the difference in TMB between the 
high-risk group and the low-risk group.

Drug sensitivity and immunotherapy
We estimated the half-maximal inhibitory concentra-
tion (IC50) of commonly used chemotherapy drugs via 
the ’pRRophetic’ [41] package. The potential response to 
immunotherapy was predicted and verified by the TIDE 
algorithm (http://​tide.​dfci.​harva​rd.​edu). The lower the 
TIDE score is, the more sensitive to immune checkpoint 
blockade (ICB).

Development and validation of a nomogram
To explore the prognostic significance of gene biomark-
ers and clinical traits (such as age, histological grade, and 
FIGO stage), we developed a predictive nomogram to 
evaluate the prognosis of endometrial adenocarcinoma. 
First, the cases were grouped by the median predicted 
risk score, and the survival differences between the two 
groups were compared by K–M plot and log-rank test. 
Second, calibration curves evaluated the consistency 
between the predicted and the actual survival probability 
at 3 and 5 years. A 45-degree calibration curve indicates a 
perfect prediction.

RNA extraction and quantitative RT‑PCR
Trans Script All-in-One First-Strand cDNA Synthe-
sis SuperMix for qPCR (One-Step gDNA Removal) by 
TransGen Biotech (Beijing, China) was used to extract 
total RNA from tissues. Reverse transcription of total 
RNA into cDNA was performed with EasyPure RNA 
Kit by TransGen Biotech (Beijing, China) for real-time 
PCR analysis. Specific PCR primers were designed by 
Comate Bioscience Co., LTD. (Jilin, China). The fold 

https://www.string-db.org/
https://www.string-db.org/
https://www.perl.org/
http://tide.dfci.harvard.edu


Page 4 of 14Dong et al. BMC Medical Genomics           (2023) 16:20 

change in expression was calculated using the 2-∆∆Ct 
method, with GAPDH as an internal control. The primer 
sequences: GAPDH: Forward: AAT​TCC​ATG​GCA​CCG​
TCA​AG, Reverse: AGC​ATC​GCC​CCA​CTT​GAT​TT; 
CXCR3: Forward: TAC​TGC​TAT​GCC​CAC​ATC​CTG, 
Reverse: TGA​TAG​GGG​GTC​CAG​CAG​AG.

Statistical analyses
All statistical analysis was performed in the R Studio soft-
ware (version 3.6.1). R packages such as ‘caret’ [42], ‘dplyr’ 
[43], ‘WGCNA’ [23, 44], ‘limma’ [35], ‘GSVA’ [36], ‘GSEA-
Base’ [37], ‘ggpubr’ [38], and ‘reshape2’ [39], ‘pheatmap’ 
[45], ‘pec’ [46], ‘regplot’ [47], ‘stringr’ [48], ‘flashClust’ 
[44], ‘glmnet’ [49, 50], ‘ggplot2’ [51], ‘org.Hs.eg.db’ [52], 
‘DOSE’ [53], ‘enrichplot’ [54], ‘survival’ [55, 56], ‘sur-
vminer’ [40], ‘timeROC’ [57], ‘rms’ [58], ‘circlize’ [59], 
‘RColorBrewer’ [60], ‘ComplexHeatmap’ [61],’ maftools’ 
[62], ‘clusterProfiler’ [63, 64], and ’pRRophetic’ [41] were 
used. Continuous variables between the two groups were 
analyzed using a t-test. The Wilcoxon test performed a 
non-parametric comparison between the two groups. 
P < 0.05 was considered statistically significant.

Result
Study protocol
The schematic diagram of the study protocol is shown in 
Fig. 1.

Identification of GSE17025 DEGs in endometrial 
adenocarcinoma
One hundred three cases of endometrial adenocarci-
noma from GSE17025 were used as an external gene set 
to develop the prognostic gene biomarker using RNA-
seq data. 4697 DEGs were obtained by GEO2R. Adjust 
P value < 0.05 and | log FC |> 1 were set as the criteria. 
DEGs were displayed in the volcano plot (Fig. 2A).

Identification and validation of the most immune‑related 
module
The 425 cases with RNA-seq data and the correspond-
ing immune score of each endometrial adenocar-
cinoma case were analyzed by WGCNA to identify 
the most immune-related module. 38,589 genes with 
extremely low expression levels were filtered out. 
16,299 WGCNA candidate genes were obtained. 22 
was set to be the soft threshold (Fig. 2B–C). All genes 

Fig. 1  Flow chart depicting the protocol. 1Four hundred twenty-five endometrial adenocarcinoma cases with RNA-seq data from TCGA were used 
to analyze the most immune-related genes. One hundred three endometrial adenocarcinoma cases with RNA-seq data from GSE17025 were used 
as an external test set. Moreover, 5559 immune-related genes were downloaded from InnateDB. The three sets were used to identify and validate 
prognostic gene biomarkers. 2We used KEGG analysis and GO analysis to determine if the most relevant module correlated to immunity. 3The 
gene biomarker was identified and validated from 53 overlapping IRGs using univariate Cox regression analysis, LASSO regression analysis, and 
multivariate Cox regression analysis based on the training set (n = 199) and the test set (n = 198). Twenty-eight cases with missing clinical data were 
excluded from the study. 4Age, histological grade, FIGO stage, and risk group were used to develop and validate the prognostic nomogram. 5QPCR 
verified the relative expression between normal endometrium tissue and endometrial adenocarcinoma tissue
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were classified and merged into the 11 highly co-
expressed modules (Fig.  2D). Among them, the dark-
orange module was the strongest immune-related 
module (P = 2e−54, r = 0.67). The module contained 
325 genes. In addition, the dark-orange module was 
also significantly correlated to the stromal scores 
and estimate scores in endometrial adenocarcinoma 
(Fig.  2E). DAVID analyzed 325 genes in the dark-
orange module to testify whether this module was 
immune-related. All pathways in GO and KEGG were 
found to be immune-related. (Fig. 2F–G).

Identification of overlapping genes and PPI network
Fifty-three overlapping genes were obtained by inter-
secting 325 genes from Module dark-orange, 5559 
IRGs from InnateDB, and 4697 DEGs from GSE17025 
to select eligible immune genes to develop the 
immune-related gene biomarker (Additional file  1: 
Table  S1, Fig.  3A). STRING was used to explore the 
interaction between overlapping genes (Fig. 3B).

Identification and validation of prognostic immune‑gene 
biomarker
Three hundred ninety-seven endometrial adenocarci-
noma cases with RNA-seq data and complete survival 
data from TCGA were randomly divided into a train-
ing set (n = 199) and a test set (n = 198) (Additional 
file  2: Table  S2). Baseline characteristics were compa-
rable between the sets (Table  1). First, 28 genes were 
selected from 53 overlapping genes based on the train-
ing set with univariate Cox regression analysis (P < 0.05) 
(Fig.  4A). Second, CXCR3, successively screened by 
LASSO regression and multivariate cox regression, 
was identified as the gene biomarker in the training set 
and validated in the test set (Fig.  4B–D). Third, based 
on the gene biomarker, we calculated the risk score of 
each case with multivariate Cox regression and then 
separated all the endometrial adenocarcinoma cases 
into the high-and low-risk group by the median value 
of the predicted risk score (the median value of risk 
score in the training set was 0.97) (Fig. 5A–J). The sur-
vival difference between the two groups was significant 

Fig. 2  Identification and validation of immune-related modules A. Volcano plot of GSE17025 DEGs. B, C Determination of soft threshold power 
in WGCNA. B The panel showed a scale-free index for various soft-threshold powers (β). C This panel showed the mean connectivity for various 
soft-threshold powers. D Clustering dendrogram of genes, with dissimilarity based on the topological overlap, together with assigned module 
colors. E Module-trait association. Each row represents a module, and each column represents a feature. Each cell contains the corresponding 
correlation and P value. The dark-orange module (MEdarkorange) was most correlated with the immune score (P = 2e−54, r = 0.67). F Most of the 
KEGG pathways were also associated with immunity, demonstrating that the dark-orange module was immune-related. G Most of the categories 
in GO enrichment analysis based on genes in the dark-orange module were related to immunity, supporting that the dark-orange module was 
immune-related
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(P < 0.05; Fig. 4E–G). Fourth, the AUC of the risk, age, 
histological grade, and FIGO stage was 0.724, 0.616, 
0.683, and 0.728, separately (Fig. 6A). The AUC for one 
year, three years, and five years was 0.724, 0.630, and 
0.64, separately (Fig. 6B). The C-index of the risk score 
was larger than 0.5 (Fig. 6C). Fifth, independent prog-
nostic analysis testified that risk score was a prognostic 
indicator independent of age, histological grade, and 
FIGO stage (Fig.  6D–E). In the subgroup analysis of 
patients by age, histological grade, and FIGO stage, we 
found the survival probability in the low-risk group was 
higher than the high-risk group in stratification such as 
histological grade of G2, G3, age more than 60  years, 
age less than 60 years, FIGO stage I–II and FIGO stage 

III–IV. For patients with a histological grade of G1, the 
survival probability between the two groups was no dif-
ferent (Fig. 6F–L).

Functional enrichment analysis between the high‑ 
and low‑risk groups
The potential mechanism of the DEGs between the high 
and low-risk groups was explored by KEGG pathway 
analysis. KEGG analysis showed that the DEGs were 
mainly enriched in viral protein interaction with cytokine 
and cytokine receptor, cytokine-cytokine receptor inter-
action, chemokine signaling pathway, natural killer 
cell-mediated cytotoxicity, and cell adhesion molecules 
(Fig. 7A).

Fig. 3  Identification of the overlapping genes by intersecting the genes from the dark-orange module, IRGs from InnateDB, and DEGs from 
GSE17025. A Venn diagram of GSE17025, the dark-orange module, and IRGs. B PPI network of overlapping genes

Table 1  Baselisne of patients in the test set and the training set

Covariates Type Total The test set The training set P-value

Age < = 60 178 (44.5%) 88 (44%) 90 (45%) 0.9199

> 60 222 (55.5%) 112 (56%) 110 (55%)

Grade G1 97 (24.25%) 45 (22.5%) 52 (26%) 0.474

G2 117 (29.25%) 56 (28%) 61 (30.5%)

G3 186 (46.5%) 99 (49.5%) 87 (43.5%)

Stage Stage I 284 (71%) 147 (73.5%) 137 (68.5%) 0.0897

Stage II 34 (8.5%) 21 (10.5%) 13 (6.5%)

Stage III 69 (17.25%) 26 (13%) 43 (21.5%)

Stage IV 13 (3.25%) 6 (3%) 7 (3.5%)
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We performed a GO analysis to determine the biologi-
cal characteristics of the DEGs between the two groups. 
BP analysis showed that the biological processes were 
significantly enriched in antigen binding, immunoglobu-
lin receptor binding, cytokine receptor activity, cytokine 
receptor activity, and cytokine binding. CC analysis 
showed that the DEGs functioned in the external side of 
the plasma membrane, immunoglobulin complex, plasma 
membrane signaling receptor complex, T cell receptor 
complex, and circulating immunocomplex. MF analysis 
showed that the DEGs were mainly enriched in antigen 
binding, immunoglobulin receptor binding, immune 
receptor activity, cytokine receptor activity, and cytokine 
binding (Fig. 7B).

Immune function and TMB difference between the high‑ 
and low‑risk groups and the response to immunotherapy
We found that the low-risk group had better immune 
functions in APC coinhibition, APC costimulation, CCR, 
checkpoint, cytolytic activity, HLA, inflammation-pro-
moting, MHC class I, parainflammation, T cell coinhibi-
tion, T cell costimulation, type I interferon response, and 
type II interferon response (Fig. 8A).

CD8 T cells, activated CD4 memory T cells, follicular 
helper T cells, monocytes, and M1 macrophages in the 
low-risk group were more than in the high-risk group. 
M0 macrophage and activated dendritic cells in the 
high-risk group were more than in the low-risk group 
(Fig. 8B).

TMB was significantly higher in the low-risk group 
than in the high-risk group (P < 0.001) (Fig. 8C). Kaplan–
Meier analysis was used to evaluate the prognosis of 
endometrial adenocarcinoma according to TMB com-
bined with the risk score. The results showed that TMB 
(Fig. 8D, P = 0.02) was significantly positively associated 
with prognosis. Patients in the high-TMB group had a 
better prognosis than the low-TMB group, no matter 
with a high risk or a low risk. High-TMB patients with 
low-risk scores had the best prognosis (Fig. 8E, P < 0.001). 
In addition, the TIDE score was calculated by the TIDE 
online tool to investigate the effectiveness of immune 
checkpoint inhibitors in the two groups. The TIDE score 
of the low-risk group was higher than that of the high-
risk group, indicating that the immunotherapy effect in 
the low-risk group was worse than that in the high-risk 
group (Fig. 8F, P < 0.001).

Fig. 4  Identification and validation of the gene biomarker. A–D Univariate Cox regression analysis was used to identify the potential prognostic 
gene biomarkers. LASSO regression was used to eliminate redundant genes further. A Twenty-eight genes were screened to basing on univariate 
Cox regression analysis. B Tuning parameter (λ) selection in the LASSO model used tenfold cross-validation via minimum criteria. C LASSO 
coefficient profiles of 2 variables against the log (λ) sequence. D Multivariate Cox regression analysis was used to screen for genes significantly 
associated with overall survival. As shown in the forest plot, CXCR3 with a P value less than 0.05 was significantly associated with overall survival. 
E–G The survival difference between the low-risk and high-risk groups was divided by the median risk score threshold using multivariate Cox 
regression analysis. In the all-set, training, and test set, the survival of the low-risk group was significantly longer than that of the high-risk group
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Response of high‑ and low‑risk patients to chemotherapy
According to the “pRRophetic" algorithm, we predicted 
the IC50 values of 56 chemotherapeutic drugs relevant 
to risk score, including 5-Fluorouracil, AC220, AP-24534, 
AS605240, AUY922, BAY 61-3606, Bexarotene, Bleo-
mycin, CAL-101, CGP-60474, CGP-082996, CP466722, 
Crizotinib, Cyclopamine, DMOG, FMK, FR-180204, 
FTI-277, Genentech Cpd 10, GSK429286A, HG-6-64-1, 
IPA-3, JQ12, JW-7-24-1, KIN001-102, LAQ824, LFM-
A13, LY317615, Midostaurin, NG-25, PAC-1, Paclitaxel, 
Pazopanib, PHA-665752, Phenformin, Rapamycin, Ros-
covitine, Ruxolitinib, Salubrinal, STF-62247, Sunitinib, 
TGX221, Thapsigargin, Tipifarnib, TL-1-85, TL-2-105, 
Tubastatin A, WH-4-023, WZ-1-84, XL-184, XMD8-85, 
XMD14-99, YM155, Zibotentan, Z-LLNle-CHO, and 
ZSTK474 (Additional files 3, 4, 5: Figs. S1–S3). By com-
paring the IC50 values of these associated drugs in the 
two-risk group, the values of YM155 and Thapsigargin 
were higher in the low-risk group, and the values of the 
other drugs were higher in the high-risk group (Wilcoxon 
test, P < 0.001; Fig.  8G–H, Additional files 6, 7, 8: Figs. 
S4–S6).

Development and validation of a prognostic nomogram
Considering the prognostic significance of the gene bio-
marker, we tried to combine it with clinical factors to 
better predict the survival of patients with endometrial 
adenocarcinoma. First, age, histological grade, FIGO 
stage, and risk group were included to develop the pre-
dictive nomogram of endometrial adenocarcinoma. Total 
points were calculated by summing up each item in the 
nomogram and predicting the survival rate of one year, 
three years, and five years (Fig. 9A). Second, the 1-year, 
3-year, and 5-year calibration curves indicated high con-
sistency between the predicted and actual survival ratios 
(Fig. 9B).

The relative expression of CXCR3 in endometrial 
adenocarcinoma
The expression of CXCR3 was tested by qPCR with clini-
cal samples from adenocarcinoma patients and normal 
endometrium from patients with other diseases that need 
to remove the uterus to identify the effect of CXCR3 
(Fig.  9C), indicating that the expression of CXCR3 was 
lower in endometrial adenocarcinoma.

Fig. 5  Risk curves. A–C The vertical axis represents patients’ risk score, and the horizontal axis represents the number of patients. The patients 
were divided into high- and low-risk groups according to the median value of the risk score. The low-risk group was shown in blue, and the 
high-risk group was shown in red. D–F The vertical axis represented the survival time (unit: years), and the horizontal axis represented the number 
of patients. The red dot represented the dead patient, and the blue dot represented the living patient. As the risk increased, the number of dead 
patients increased. G–I It represented the difference in CXCR3 expression between high- and low-risk groups. The low-risk group had a high 
expression, and the high-risk group had a low expression, indicating that CXCR3 might be an anti-tumor gene
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Discussion
In our study, we developed and validated a gene bio-
marker and prognostic nomogram model combin-
ing gene markers and clinical factors (age, histological 
grade, and FIGO stage) for patients with endometrial 
adenocarcinoma, which had not been reported before. 
In endometrial adenocarcinoma, CXCR3 was identified 
as a meaningful anti-tumor gene. The Nomogram model 
can effectively predict 1-year, 3-year, and 5-year survival 
ratios.

CXCR3 is a G protein-coupled receptor that binds 
to ELR-negative CXC chemokines, which could affect 
immune responses [65] and be required for the efficacy 
of anti-PD-1 therapy [66]. CXCR3 consists of CXCR3-
A, CXCR3-B, and CXCR3-alt. The first two have oppo-
site physiological functions. CXCR3-A mainly exists in 
hematopoietic cells, which could promote tumor progres-
sion by survival, cell proliferation, chemotaxis, invasion, 
and metastasis [65]. CXCR3-B mainly exists in epithelial 
cells, which could lead to growth inhibition, apoptosis, 

and anti-angiogenesis [65]. Higher CXCR3 expression 
has been reported to be related to a good prognosis of 
renal and gastric cancer [67–69]. However, there were 
also some studies indicating that higher CXCR3 expres-
sion predicted poor survival in solid tumor l [70].

CXCR3 expressed on regulatory T cells could induce 
peripheral CD4 T cells to differentiate into regulatory T 
cells and improves effector T cell function [71], which 
is consistent with the higher fraction of CD4+ T cells 
and CD8+ T cells in the low-risk group in our study. 
Chemokine ligands 9, 10, 11 (CXCL 9-11) interact-
ing with CXCR3 expressed on monocytes, T cells, 
and NK cells may be involved in inhibiting angiogen-
esis [72], which is consistent with our study that high 
expression of CXCR3 had better survival outcome and 
the fraction of CD4+ T cells, CD8+ T cells and mono-
cytes were higher in the low-risk group. CXCL11 could 
inhibit angiogenesis, affect the proliferation of differ-
ent cell types, increase adhesion properties, inhibit M2 
macrophage polarization and promote the migration 

Fig. 6  AUC and the independent prognostic analysis. A–B AUC and C-index were calculated for the gene marker. A AUC was calculated for the 
risk score, age, histological grade, and FIGO stage. B AUC was calculated at one year, three years, and five years. C The C-index of the risk, age, 
histological grade, and FIGO stage was calculated separately. D–E Univariate Cox regression analysis and multivariate Cox regression analysis were 
used to doing the independent prognostic analysis, which indicated that risk score was the prognostic marker independent of age, histological 
grade, and FIGO stage. D Univariate Cox regression analysis. E Multivariate Cox regression analysis. F–L Subgroup analysis of age, histological grade, 
and FIGO stage. F In patients of histological grade G1, the survival probability of the two risk groups had no difference (P = 0.948). G–H In patients 
of histological grades G2 and G3, the survival probability of the low-risk group was higher than the high-risk group (P = 0.015, P = 0.008 separately). 
I–J In patients younger than 60 years and elder than 60 years, the survival probability of the low-risk group was higher than the high-risk group 
(P = 0.007, P = 0.014 separately). K–L In patients of stage I–II and stage III–IV, the survival probability of the low-risk group was higher than the 
high-risk group (P = 0.044, P = 0.001 separately)
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Fig. 7  Exploration of the enrichment difference between the two risk groups. A Difference of KEGG pathway between the two risk groups. B 
Difference of GO analysis between the two risk groups

Fig. 8  Exploration of the immune functions, TMB difference, immunotherapy and chemotherapy sensitivity between the two risk groups. A The 
difference in immune functions. B The difference in immune cells fractions. C The difference in tumor mutation burden. D The survival probability of 
the high-TMB group was better than the low-TMB group. E The survival probability of the TMB group combined with different risks. The group with 
the high TMB and the low risk score had the best prognosis, and the group with the low TMB and the high risk score had the worst prognosis. F The 
TIDE score of the low-risk group was higher than that of the high-risk group, indicating that the immunotherapy effect in the low-risk group was 
worse than that in the high-risk group. G–H IC50 Values of YM155 and Thapsigargin were higher in the low-risk group
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of some immune cells [73], which was consistent with 
the higher fraction of M1 macrophage in the low-
risk group. However, CXCL9/CXCR3 axis has been 
reported to activate Akt signaling pathway, accompany 
EMT and cytoskeleton rearrangement, and promote 
invasion and metastasis in tongue squamous cell car-
cinoma [74]. CXCL10 promotes CXCR3 expressing 
cancer cells transported to bone [75]. These different 
functions of CXCR3 may be attributed to its different 
variant types and different cell types.

Nevertheless, in our study, the qPCR result showed 
that the relative expression of CXCR3 in endometrial 
adenocarcinoma was lower than in normal endome-
trium. This result indicated that CXCR3 in endometria 
adenocarcinoma might be an anti-tumor effect. T-follic-
ular helper cells (TFH) may contribute to the treatment 
of endometrial cancer, and high TFH infiltration shows 
clinical application potential in anti-PD-1 treatment [76]. 
The increase in the number of CD8+ T cells at the inva-
sive boundary may improve the survival of patients with 
endometrial cancer [77]. In our study, the follicular T 
cells and CD8+ T cells were all significantly increased in 
the low-risk group, which had a higher anti-tumor effect.

In addition, we revealed the immune function, includ-
ing APC coinhibition, APC costimulation, CCR, check-
point, cytolytic activity, HLA, inflammation-promoting, 
MHC-I, parainflammation, T cell coinhibition, T cell 
costimulation, type I-IFN-response, and type II-IFN-
response were better in the low-risk group. By KEGG 
pathway and GO analysis based on the DEGs between the 
two risk groups, we found that viral protein interaction 
with cytokine and cytokine receptor, cytokine-cytokine 
receptor interaction, chemokine signaling pathway, nat-
ural killer cell-mediated cytotoxicity and cell adhesion 
molecules were enriched obviously. The most critical 
immune-related pathway in the low-risk group was the 
cytokine-cytokine receptor pathway, which played an 
important role in B cell-related immune diseases, such 
as autoimmune diseases, and malignant diseases includ-
ing, lymphoma, leukemia [78], colorectal cancer [79], 
renal cell carcinoma [80] hepatocellular carcinoma [81], 
non-squamous non-small cell lung cancer [82], lung 
adenocarcinoma [83], and AIDS-related Kaposi sarcoma 
(AIDS-KS) [84]. TMB could be a candidate biomarker to 
estimate the possible response to immunotherapy [85, 
86]. Zhou [87] reported that the survival of the low-TMB 

Fig. 9  Development and validation of a new predictive nomogram and qPCR verification. A The predictive nomogram was used to predict the 
survival probability at one year, three years, and five years). B Calibration curves of the nomograms at one year, three years, and five years. The 
X-axis represents the predicted probability, and the Y-axis represents the actual probability. The error line represents a 95% confidence interval. 
45° represents a perfect prediction and the excellent performance of our nomogram. C The qPCR verification of the relative expression of CXCR3 
between the normal endometrium and the endometrial adenocarcinoma patients (t-test, P < 0.001)
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group was worse than the high-TMB group, which was 
consistent with our study. High TMB might possess a 
good prognosis for PD-1/PD-L1 blockade in diverse 
tumors [86]. High-TMB tumors with microsatellite sta-
bility can better respond to pembrolizumab with longer 
PFS than low/intermediate TMB tumors [88]. All these 
findings contribute to developing new therapeutic strat-
egies for endometrial adenocarcinoma and provide an 
opportunity for the further immune exploration of endo-
metrial adenocarcinoma.

Currently, there already exist some different immune-
related signatures. For example, Chen [89] found that 
immune and stromal scores had a relationship with the 
prognosis of EC patients by the “ESTIMATE” R tool. 
Based on the immune and stromal scores and the inter-
sected differentially expressed genes, eight immune-
related genes (AQP4, ARHGAP36, CACNA2D2, CTSW, 
NOL4, SIGLEC1, TMEM150B, and TRPM5) were then 
identified by LASSO algorithm and Random-forest algo-
rithm. Tang [90]used the Spearman correlation analysis 
to identify immune-related pseudogenes and then devel-
oped a risk signature consisting of nine immune-related 
pseudogenes by univariate Cox regression, LASSO, and 
multivariate to predict the prognosis. Meng [91] used 
the conjoint Cox regression model to develop a signa-
ture consisting of seven immune-related genes (CBLC, 
PLA2G2A, TNF, NR3C1, APOD, TNFRSF18, and LTB). 
They all indicated that patients in the low-risk group had 
a significantly longer survival time than those in the high-
risk group. However, analyzed by different bioinformatic 
tolls, the signatures were identified differently and con-
sisted of multiple genes leading to needing to be more 
convenient for helping clinical practice.

However, first, our study identified CXCR3 as the 
solely optimized immune-related prognostic biomarker. 
Although it was not newly found, it was first used as a 
predictive gene marker in adenocarcinoma. As CXCR3 
has been studied for years, its effect on cancer is more 
well-known and convenient for clinical applications. 
Moreover, it had been developed and validated in the 
TCGA cohort, which had many cases to guarantee its 
reliability and stability. Second, we revealed the poten-
tial immune pathways, immune cells, tumor mutation 
burden, and TIDE scores between the low-risk and the 
high-risk group, which might help find effective immu-
notherapy. Third, we establish a nomogram to predict 
the prognosis. The last but most crucial finding was the 
discovery of sensitive drugs in the high-risk and low-
risk groups. The high-risk group was more sensitive to 
YM155 and Thapsigargin, and the low-risk group was 
more sensitive to the other 54 drugs by comparing the 
IC50 values of the 56 sensitive drugs between the two 
groups [92].

This study also has some limitations and deserves 
further investigation. First, no suitable external cohort 
with clinical data can be used to demonstrate the model 
further. Second, more in  vitro and in  vivo studies are 
needed to explore the physiological mechanisms. Criti-
cal immune cells, including M1 macrophages, memory-
activated CD4+ T cells, CD8+ T cells, and follicular 
helper T cells, have been proven beneficial to the sur-
vival of endometrial adenocarcinoma patients, and 
the exact underlying mechanism needs to be further 
studied.

In conclusion, we successfully developed and vali-
dated a simple gene biomarker and a new nomogram 
prognosis model based on exploiting the data from 
TCGA and GEO databases with bioinformatics tools. 
Our study also revealed some interesting immune cells 
and pathways in endometrial adenocarcinoma, which 
can be used as potential immunotherapeutic targets.
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