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Abstract 

Metabolic diseases, such as obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D), are now a widespread 
pandemic in the developed world. These pathologies show sex differences in their development and prevalence, 
and sex steroids, mainly estrogen and testosterone, are thought to play a prominent role in this sexual dimorphism. 
The influence of sex hormones on these pathologies is not only reflected in differences between men and women, 
but also between women themselves, depending on the hormonal changes associated with the menopause. The 
observed sex differences in gut microbiota composition have led to multiple studies highlighting the interaction 
between steroid hormones and the gut microbiota and its influence on metabolic diseases, ultimately pointing to a 
new therapy for these diseases based on the manipulation of the gut microbiota. This review aims to shed light on 
the role of sexual hormones in sex differences in the development and prevalence of metabolic diseases, focusing on 
obesity, MetS and T2D. We focus also the interaction between sex hormones and the gut microbiota, and in particular 
the role of microbiota in aspects such as gut barrier integrity, inflammatory status, and the gut–brain axis, given the 
relevance of these factors in the development of metabolic diseases.

Highlights 

•	 Accumulating evidences show that the alterations in the gut microbiota associated to metabolic diseases are 
different in men and women, and these differences may influence sex differences in the development and preva-
lence of metabolic diseases.

•	 The key aspects involved in these pathologies include lipopolysaccharide-inflammation, gut barrier integrity, gut 
microbiota-derived metabolites and gut–brain axis.

•	 Sex steroids, mainly estrogen and testosterone, are thought to play a prominent role in the sexual dimorphism of 
gut microbiota.

•	 The influence of sex hormones is reflected both in men and women, and among women themselves due to hor-
monal changes associated with the menopause.

•	 The interaction between sex steroids and the gut microbiota plays a prominent role in the development of meta-
bolic diseases.
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Introduction
The increasing incidence of metabolic diseases, and in 
particular obesity, MetS, and T2D, in the world popula-
tion, has made these pathologies a serious health, social, 
and economic problem [1–3]. Interestingly, these pathol-
ogies show a marked sexual dimorphism in their devel-
opment and prevalence, with a clear influence of sex 
hormones [4]. The overall prevalence of obesity is higher 
in women than in men, as women are more likely to gain 
abdominal fat with age. In fact, the prevalence of visceral 
obesity associated with MetS is currently much higher in 
women in many regions of the world. Moreover, the prev-
alence of T2D is reversed by life stage, with more men 
having diabetes before puberty and more women having 
diabetes after menopause. It is interesting, in this regard, 
to observe the pattern of body fat distribution, given its 
key role in metabolic diseases. Two patterns of fat distri-
bution have been described, an abdominal (visceral) pat-
tern, typical of men and postmenopausal women, and a 
peripheral (subcutaneous) pattern, typical of premeno-
pausal women [5, 6]. Both patterns, which have a genetic 
basis and are regulated by sex steroid hormones [7], are 
related to the development of metabolic diseases, with 
central fat distribution showing a pathological profile [8] 
versus a protective profile of peripheral fat [9].

The influence of sex hormones on metabolic diseases 
is supported by conditions in which their normal level 
is altered. Both transgender men and women show fat 
redistribution after sex steroid treatment [10]. The hor-
monal changes of menopause also lead to fat redistribu-
tion [11], as well as an increased risk of T2D [12], while 
hormone therapy with estrogens and progestogens in 
postmenopausal women reduces its incidence [13]. 
Androgen deprivation therapy in men with prostate can-
cer results in increased fat mass [14], higher prevalence 
of MetS [15] and elevated risk of T2D [16], while tes-
tosterone treatment decreases visceral fat in nonobese 
aging men with symptoms of androgen deficiency and 
low-normal serum testosterone levels [17]. In addition, 
testosterone replacement improves insulin sensitivity 
and glycemic control, patients with hypogonadism suf-
fering T2D and MetS, partially through reducing central 
obesity [18]. Polycystic ovary syndrome (PCOS) is a mul-
tifactorial disorder with various genetic, endocrine and 
environmental abnormalities [19]. Considerable genetic 
heterogeneity underlies PCOS, as several genes’ variants 
have been linked to this disorder. Moreover, women with 
PCOS present hyperandrogenism which has been associ-
ated to increased central adiposity [20] and increased risk 

of MetS [21]. Oophorectomy-induced estrogen depletion 
in postmenopausal women increases the risk of T2D [22].

In recent years, a sexual dimorphism in the composi-
tion of the gut microbiota has also been highlighted [23] 
in which sex hormones seem to play a prominent role 
[24]. In fact, a growing body of scientific evidence indi-
cates that the interaction between the gut microbiota and 
its host is key to the development of metabolic diseases 
[25]. The alteration or protection of the intestinal mucosa 
by the gut microbiota is a key factor in the maintenance 
of the so-called gut barrier [26], which limits the access of 
microorganisms to the bloodstream and thus influences 
the inflammatory state described in processes such as 
obesity and MetS [27]. However, the action of the micro-
biota is not restricted to the gut, as its action extends to 
the central nervous system to influence food intake, via 
the gut–brain axis [28], and even to the liver to regulate 
nutrient metabolism, via the gut–liver axis [29]. This new 
scientific knowledge has made it possible to approach the 
treatment of metabolic diseases from a different angle, 
and offers a new therapy based on the modification of the 
microbiota through the use of probiotics [30].

Methods
PubMed databases were used to search for reviews and 
research studies published in English using the search 
terms: sex steroids (testosterone and estrogen) and 
microbiota, sex steroids (testosterone and estrogen) and 
obesity, sex steroids (testosterone and estrogen) and met-
abolic syndrome, sex steroids (testosterone and estrogen) 
and diabetes, microbiota and gut barrier, microbiota and 
inflammation, microbiota and short chain fatty acids, 
microbiota and bile acids, microbiota and phytoestro-
gens, gut–brain axis. Publication dates were not limited 
in order to fully review the available literature. Follow-
ing this search, an initial selection of articles was made 
according to their titles and abstracts. Subsequently, a 
second selection was made based on a critical reading of 
the articles.

Interaction between gut microbiota and sex 
hormones
Evidence for interaction between gut microbiota and sex 
hormones
The composition of the gut microbiota has been found 
to be sex-dependent [23] and may in turn influence sex 
hormone levels, influencing, for example, non-ovarian 
estrogen levels in men and postmenopausal women via 
the enterohepatic circulation (Fig. 1) [31].
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Fig. 1  Interaction between gut microbiota and sex hormones. Various factors, such as puberty, pregnancy, menopause, polycystic ovary syndrome 
(PCOS), and gonadectomy, result in changes in sex hormone levels (testosterone and estradiol), which in turn lead to changes in the composition of 
the gut microbiota
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Studies in rodents
Studies in mice have shown a change in estradiol and tes-
tosterone levels following microbial colonization [32, 33]. 
Regarding hormonal changes associated with puberty, 
no differences in microbial alpha-diversity have been 
observed in prepubertal mice, while the microbiota of 
post-pubertal mice shows a sex bias [34]. In this latter 
study, after reducing androgen levels by castration, the 
microbiota of castrated males showed more similarities 
with the microbiota of females than with the microbiota 
of gonadal-intact males.

Furthermore, gonadectomy has demonstrated the 
influence of sex hormones on the observed sexual bias in 
gut microbiota composition [35]. This study showed that 
testosterone treatment prevented the observed changes 
in gut microbiota composition in gonadectomized males. 
Along the same lines, we have described that gonadal 
hormone depletion in rats by gonadectomy, alone or 
combined with postnatal overfeeding, modified the gut 
microbiota towards a more deleterious profile, with a 
greater effect in females than in males, and mainly in the 
presence of an overfeeding condition [36]. In this study, 
we have identified several gut microRNAs (miRNAs) as 
potential mediators of the impact of changes in the gut 
microbiota on host physiology. We have also observed 
that exposure of female rats to high doses of androgens 
in early postnatal life not only persistently altered the sex 
steroid profile and several anthropometric and physio-
logical parameters when subjected to obesogenic manip-
ulations, but also impacted on the gut microbiota, with 
higher abundance of Bacteroidetes and lower Firmicutes 
in early adulthood, which disappeared after overfeed-
ing in adulthood [37]. These changes in the microbiota 
were also related to the intestinal expression of several 
miRNAs. In view of the results presented here, it seems 
plausible that sex hormones may contribute to defining 
sex-dependent differences in the gut microbiota and that 
the interaction between microbiota and the host may be 
mediated by intestinal-derived miRNAs.

Human studies
Men and women with elevated serum testosterone and 
estradiol levels, respectively, harbored a more diverse 
gut microbiota, with a number of bacterial genera cor-
related with testosterone (Acinetobacter, Dorea, Rumi-
nococcus and Megamonas) and estradiol (Slackia and 
Butyricimonas) levels [24]. In humans, it has been shown 
that the gut microbiota is influenced by changes in estro-
gen and androgen levels due to factors such as preg-
nancy, puberty, menopause, or PCOS. In this regard, 
women with PCOS (hyperandrogenic) show a markedly 
altered microbiota [38–40], as it changes from first to 
third trimester of pregnancy, with an overall increase in 

Proteobacteria and Actinobacteria and reduced richness 
[41].

Sex differences in gut microbiota composition increase 
at puberty, with girls’ gut microbiota becoming more 
similar to that of adults with pubertal progression. These 
results might also suggest that gut microbiota may affect 
the timing of puberty, possibly by regulating host sex 
hormone levels [42–44].

In men and postmenopausal women, urinary estrogen 
levels have shown a strong association with gut micro-
biota richness and alpha-diversity, whereas premenopau-
sal female estrogen levels, highly variable when collected 
during menstrual cycles, did not show this associa-
tion [31, 45]. Recently, it has been reported that the gut 
microbiota of postmenopausal women is more similar to 
that of men than that of premenopausal women, with no 
significant differences actually observed between post-
menopausal women and men of equivalent age [46, 47]. 
This study also showed an association between gonadal 
steroids and differences in microbiota, with steroid bio-
synthesis and degradation pathways being enriched in 
premenopausal women and significantly associated with 
plasma testosterone levels. In addition, the microbiota 
allowed prediction of circulating testosterone levels in 
both humans and (antibiotic-treated) male mice after 
transfer of human fecal material.

We have previously described in several studies a 
series of differences in the composition of the micro-
biota according to sex. In this regard, when studying the 
patterns of gut microbiota associated with obesity in 
men and postmenopausal women, according to sex and 
body mass index (BMI), we have observed a lower abun-
dance of the genera Bacteroides (for a BMI over 33) and 
Bilophila in men, as well as a greater presence of the gen-
era Veillonella and Methanobrevibacter [48]. In another 
study on differences in gut microbiota associated with 
sex and hormonal status conducted in premenopausal 
and postmenopausal women, together with their respec-
tive groups of control men, a higher proportion of Fir-
micutes/Bacteroidetes and the genera Lachnospira and 
Roseburia was observed in postmenopausal women, 
whose levels were similar to those of men. In contrast, the 
genera Prevotella, Parabacteroides and Bilophila showed 
lower levels in premenopausal women, whose levels were 
similar to those of men [47]. Another study on sex differ-
ences in the gut microbiota of patients with MetS showed 
a higher abundance of the genera Collinsella, Alistipes, 
Anaerotruncus and Phascolarctobacterium, as well as 
a lower abundance of the genera Faecalibacterium and 
Prevotella in women with MetS than in men with MetS 
[49]. Taken together, these results suggest that the sexual 
dimorphism observed in the incidence of metabolic dis-
eases and their comorbidities might be, at least partially, 
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related to differences in the composition of the gut 
microbiota between sexes and among women with differ-
ent hormonal status.

Mechanism of interaction between gut microbiota and sex 
hormones
Bile acids
It has recently been suggested that part of the sex bias 
of the gut microbiota may depend on bile acids, as the 
bile acid pool is larger in males than in females [50, 51]. 
After being synthesized in the liver from cholesterol, 
they are metabolized by the gut microbiota into second-
ary bile acids, which in turn can modify the structure of 
the microbiota and lead to various pathologies [52–54]. 
Thus, gut microbiota regulates the secondary metabo-
lism of bile acids and inhibits their synthesis in the liver 
by regulating the expression of fibroblast growth factor 
15 (FGF15) in the ileum and cholesterol 7α-hydroxylase 
(CYP7A1) in the liver through mechanisms dependent 
on the farnesoid X receptor (FXR) [55, 56], a nuclear 
receptor for bile acids. FGF15 represses the expression of 
CYP7A1 in the liver [57], the enzyme that catalyzes and 
regulates the first step of bile acid synthesis [58]. Further-
more, it has been observed that a reduction of bile acids 
leads to bacterial proliferation and that FXR inhibits bac-
terial overgrowth [59].

Several studies have confirmed the relationship 
between bile acids, sex hormones and the composition of 
the gut microbiota. In this way, administration of cholic 
acid to rats induced changes in the microbiota similar to 
those induced by high-fat diets, increasing levels of Fir-
micutes at the expense of Bacteroidetes [60]. In addition, 
transplantation of fecal microbiota (from a lean donor) 
produced changes in the gut microbiome and bile acid 
profiles similar to those of the lean donor [61], while 
gonadectomy in mice altered the bile acid pattern [35], as 
in germ-free (GF) and antibiotic-treated rats [62]. Since 
testosterone is synthesized from bile acids [63], and as 
described above, bile acid levels are altered by the micro-
biota, it is tenable that the microbiota might indirectly 
influence the level of testosterone.

Enzymatic action
The commensal microbial community can affect sex 
hormone levels through the activity of its enzymes. 
In this way, the term “strobolome” has been coined to 
define as the set of genes in the gut microbiota capable 
of activating estrogens from their inactive glucuronides, 
notably thanks to the enzymes β-glucuronidases, which 
deconjugate estrogens into their active forms [64–66]. 
These active estrogens pass into the bloodstream and 
act on estrogen receptors alpha (ERα) and beta (ERβ) 
[67]. Similarly, a recent study has concluded that the gut 

microbiota is involved in the metabolism and intestinal 
deglucuronidation of dihydrotestosterone (DHT) and 
testosterone, resulting in extremely high levels of the 
most potent androgen, DHT [68].

Another possible mechanism of action of the gut 
microbiota in sex bias could be found in its hydroxyster-
oid dehydrogenase (HSD) enzymes, which are involved 
in the metabolism of steroid hormones and control the 
binding of steroids to their nuclear receptors, making 
them act as activators or inhibitors [69, 70].

Phytoestrogens
In addition to the three main forms of estrogens (cho-
lesterol-derived steroid hormones), estradiol (E2, pre-
dominant in non-pregnant women before menopause), 
estrone (E1, predominant after menopause) and estriol 
(E3, predominant during pregnancy), there are plant 
compounds, called phytoestrogens, which show struc-
tural and functional similarities to estrogens [71]. Phy-
toestrogens include isoflavones, such as genistein and 
daidzein, which are mainly abundant in soya and are acti-
vated after being metabolized by the gut microbiota [72]. 
In this sense, the intestinal microbiota allows O-des-
methylangolensin (ODMA) and equol to be obtained 
from daidzein, both of which have estrogenic activity 
[73–76].

Similar to estrogens, phytoestrogens cause physiologi-
cal effects by affecting cell signaling, as they can induce 
or inhibit estrogen action by activating or inhibiting 
ERα or ERβ, and may trigger also epigenetic effects and 
intracellular signaling cascades [77–79]. Related to this, 
several human studies suggest that phytoestrogens can 
ameliorate various pathologies by modulating the endo-
crine system, including menopausal symptoms [72], and 
can reverse symptoms of metabolic endotoxemia [80]. 
In this regard, the phytoestrogen metabolite, equol, has 
been associated with a reduced risk of female hormone-
related diseases by promoting urinary excretion of estro-
gen and modifying its blood levels in women [81, 82], 
while non-production of ODMA has been associated 
with obesity [73, 74].

Phytoestrogens are consumed in the diet, as they 
appear in fruits, veggies, legumes, and some grains. 
Indeed, dietary composition has an acute effect on 
the gut microbiota ecosystem [83]. A plant-based diet 
appears to be beneficial for human health by promoting 
the development of more diverse and stable microbial 
systems [84]. From the three basics bacterial enterotypes 
[85], the one rich in Prevotella is associated to those indi-
viduals who consume less animal products and more 
plant-based foods [84]. In contrast, the enterotype rich 
in Bacteroides has been positively correlated with con-
sumption of diets rich in animal protein and saturated 



Page 6 of 24Santos‑Marcos et al. Biology of Sex Differences            (2023) 14:4 

fat. This is likely due to their ability to tolerate bile, which 
is common in the intestinal environments of those who 
consume animal products [86, 87]. Finally, the third ente-
rotype is the one rich in Ruminococcus, whose biological 
significance is less evident [88].

Key aspects of gut microbiota action in metabolic 
diseases
Since the discovery in 2005 of an increased Firmicutes/
Bacteroidetes ratio in obese compared to lean mice [89], 
many studies have addressed the role of the gut micro-
biota in obesity and associated pathologies, such as MetS 
and T2D [90]. The putative mechanisms whereby the 
microbiota contribute to these processes lies especially in 
the actions of lipopolysaccharide (LPS), the maintenance 
of the intestinal barrier, the by-products of its metabo-
lism, and its intervention in the gut–brain axis (Fig. 2).

Inflammation
Gut microbiota has been linked to diseases characterized 
by chronic low-level inflammation, such as obesity and 
T2D. Specifically, the inflammatory state is mainly influ-
enced by LPS, the intestinal barrier, and several metabo-
lites derived from bacterial metabolism.

Lipopolysaccharide
The LPS, an endotoxin from the outer membrane of 
Gram-negative bacteria, is involved in chronic low-grade 
inflammation by inducing the secretion of potentially 
diabetogenic pro-inflammatory cytokines and key com-
ponents of the innate immune response in adipose tis-
sue [91]. In addition, a high concentration of LPS in the 
bloodstream, defined as metabolic endotoxemia, has 
been linked to insulin resistance, adipocyte hyperplasia 
and reduced pancreatic beta-cell function [92]. Related 
to this, the genus Prevotella, which is in principle ben-
eficial by producing short-chain fatty acids (SCFAs) 
[93], using a wide variety of polysaccharides [94], has 
also been described as detrimental by inducing tumor 
necrosis factor alpha (TNF-α) production by a LPS-
induced mechanism [95] and producing phosphorylated 

dihydroceramide lipids, which in turn lead to the secre-
tion of pro-inflammatory cytokines, as IL-6 [96].

The link between elevated levels of circulating LPS and 
metabolic diseases has been proven by chronic infusion 
of LPS in mice, which resulted in increased fasting blood 
glucose, hyper-insulinemia, and insulin resistance, as well 
as increased macrophage infiltration in adipose tissue 
[97]. In addition, the above study showed that ablation of 
the LPS co-receptor, CD14, reversed LPS-induced meta-
bolic diseases.

Two non-exclusive mechanisms of LPS absorp-
tion from the gut into the circulatory system have been 
proposed [98]: (1) chylomicron-facilitated transport 
(lipoproteins that transport dietary lipids to periph-
eral tissues), supported by the fact that LPS secretion 
increases when cells are stimulated with fatty acids that 
promote chylomicron formation, while inhibition of chy-
lomicron formation blocks LPS uptake; and (2) extra-
cellular transport through the epithelial tight junctions, 
supported by the fact that reducing intestinal permeabil-
ity and improving tight junction integrity reduces plasma 
LPS levels, circulating inflammatory cytokine concentra-
tions, and hepatic inflammation.

Gut barrier integrity
The small intestine has an unattached mucus layer, 
while the colon has two layers, the inner, attached layer, 
and the outer, less dense and unattached layer [99]. 
The mucus layer of the intestinal epithelium, which is 
composed of glycans, or mucins (highly glycosylated 
proteins secreted by goblet cells, most notably the 
MUC2 protein), and forms the so-called intestinal bar-
rier, represents a barrier to intestinal bacteria, provid-
ing protection against inflammation [27] involved in 
the pathogenesis of insulin resistance, which in turn is 
linked to obesity and T2D [100]. In this regard, the gut 
microbiota is known to influence the integrity and per-
meability of the intestinal barrier and thus the inflam-
matory state, due to its interaction with mucin-type 
O-glycans [25, 26], which in turn may lead to the devel-
opment of metabolic diseases, such as insulin resist-
ance. Related to this, increased intestinal permeability 

Fig. 2  Involvement of gut microbiota in metabolic diseases. An "obesogenic" microbiota (higher Firmicutes/Bacteroidetes ratio), with a 
greater capacity to extract energy from the diet, may contribute to the state of obesity. Metabolic diseases are associated with chronic 
low-grade inflammation and the resulting imbalances in adipose tissue and pancreas. The microbiota can influence the inflammatory state via 
lipopolysaccharide (LPS), the gut barrier, and several of its metabolites (especially short-chain fatty acids (SCFAs)). LPS potentiates inflammation 
by inducing macrophage infiltration and pro-inflammatory cytokines in adipose tissue. The structure and permeability of the intestinal barrier 
(mucosa), which protects against inflammation by preventing bacterial translocation, is affected, positively or negatively, by the presence or 
absence of different types of bacteria. SCFAs improve the intestinal barrier by reinforcing tight junctions, reduce inflammation by increasing 
regulatory T cells (Treg cells) and anti-inflammatory cytokines and decreasing inflammatory cytokines, and improve glucose homeostasis and 
insulin sensitivity. SCFAs also intervene in the gut–brain axis by regulating the levels of hormones involved in the control of gastrointestinal motor 
function and food intake, such as leptin, ghrelin, peptide tyrosine tyrosine (PYY), cholecystokinin (CCK), and glucagon-like peptide-1 (GLP-1). MetS 
metabolic syndrome, T2D type 2 diabetes

(See figure on next page.)
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has been associated with T2D risk [101], and the low-
grade inflammation and insulin resistance that charac-
terize both obesity and T2D are mediated by bacterial 
LPS (metabolic endotoxemia) [25, 97]. Indeed, in GF 

mice the presence of gut microbiota is necessary for the 
maintenance of the gut mucosal structure [102, 103] 
and this structure can be modified by the transfer of 
fecal microbiota [104].

Fig. 2  (See legend on previous page.)
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Akkermansia muciniphila and representatives of the 
genera Bifidobacterium and Lactobacillus are among the 
bacterial species that improve intestinal barrier integrity 
and inflammation, which is why they have long been used 
as probiotics [30]. In general, probiotic administration 
leads to an improvement in several factors related to obe-
sity and MetS, such as increased intestinal permeability, 
and therefore a reduction in LPS translocation and low-
grade systemic inflammation, while also improving hypo-
thalamic insulin resistance and glucose tolerance [105, 
106].

Specifically, Akkermansia muciniphila is able to 
degrade mucin [107], and plays a prominent role in intes-
tinal barrier integrity and inflammatory processes. In 
terms of intestinal barrier integrity, this bacterium is able 
to restore the thickness of the mucous layer by increas-
ing mucin-producing goblet cells [108, 109] and restore 
its integrity by inducing intestinal expression of occludin 
(intercellular junction proteins) [110, 111]. Moreover, the 
Amuc_1100 protein, specific to the outer membrane of 
this bacterium, improves the intestinal barrier and vari-
ous processes of intestinal physiology by interacting with 
Toll-like receptors (TLR) 2 and 4 [112–114], while induc-
ing the production of the anti-inflammatory cytokine, 
IL-10. This bacterium also contributes to the decrease 
in adipose tissue inflammation by reducing macrophage 
infiltration, restoring regulatory T cells (Treg cells), 
reducing pro-inflammatory cytokines (such as IL 6 and 
IL-1β), and increasing anti-inflammatory factors (such as 
α-tocopherol and β-sitosterol) [109, 111, 115].

Different species of Lactobacillus genus are able to 
ameliorate damage to the intestinal barrier caused by 
other bacteria [116]. L. plantarum is widely cited as 
enhancing intestinal barrier integrity by improving epi-
thelial tight junctions [117–119], while inhibiting the 
inflammatory response by reducing the expression of 
pro-inflammatory cytokines through modulation of TLR, 
nuclear factor kappa B (NF-κB) and mitogen-activated 
protein kinase (MAPK) signaling pathways [120, 121], 
and inducing the secretion of human β-defensin 2, a pep-
tide involved in host defense [122]. Similar effects have 
also been observed with L. fructosus, L. acidophilus, L. 
fermentum, L. casei and L. rhamnosus [123–129].

Bifidobacterium genus improves the intestinal barrier 
by increasing tight junction proteins [130] and modulat-
ing goblet cell function by secreting metabolites, thereby 
increasing the production of MUC2 [131]. In addition, 
this genus also induces an increase in intestinal Reg I 
proteins [132], which play a prominent role in the villous 
structure of the small intestine [133]. Moreover, these 
bacteria reduce inflammation by several mechanisms: (1) 
decreasing pro-inflammatory cytokines (IL-6 and IL-17) 
and increasing anti-inflammatory cytokines (IL-4 and 

IL-10) [130, 134]; (2) decreasing bacterial translocation 
[135–137]; (3) preventing LPS uptake into the blood-
stream [130]; and (4) enhancing macrophage and den-
dritic cell function in relation to phagocytosis, cytokine 
production and induction of T-lymphocyte proliferation 
[134].

Gut microbiota‑derived metabolites
SCFAs (mainly acetic, propionic and butyric acids) 
from bacterial fermentation of dietary fiber have been 
linked to a decrease in inflammation [138, 139], as well 
as improved glucose homeostasis and insulin sensitivity 
[140]. These compounds improve gut barrier function 
and inflammatory status through several mechanisms: (1) 
upregulation of intestinal tight junction proteins [141–
143]; (2) regulation of tight junction assembly via an acti-
vation-dependent mechanism of AMP-activated protein 
kinase (AMPK) [144–146]; (3) increase in Treg cells [141, 
147]; and (4) increase in anti-inflammatory cytokines and 
decrease in inflammatory cytokines [147, 148].

The inflammatory state is highly dependent on the bal-
ance between Treg cells producing the anti-inflammatory 
cytokine, IL-10, and T-helper (Th) 17 cells producing 
the inflammatory cytokine, IL-17, so that an increase 
in the Treg/Th17 ratio reduces the inflammatory state. 
In this sense, treatment of inflammatory bowel disease 
with parthenolide (a sesquiterpene lactone originally 
extracted from the shoots of the plant, Tanacetum bal-
samita) reduces inflammation in a gut microbiota-
dependent manner, as it improves the Treg/Th17 balance 
in the intestinal mucosa through increased production of 
SCFAs [149]. Related to this, butyrate plays a key role in 
regulating the Treg/Th17 balance by inducing intestinal 
Treg cells differentiation in a histone acetylation-depend-
ent mechanism in the promoter regions of certain genes, 
via inhibition of histone deacetylase [150, 151]. This 
increase in Treg cells translates into increased levels of 
anti-Th17 cytokines (IL-10 and IL-12) and reduced levels 
of IL-17 [152].

In addition to the increase of the anti-inflammatory 
cytokine IL-10 and the reduction of the pro-inflamma-
tory cytokine IL-17 cited above, SCFAs also appear to be 
involved in the reduction of other pro-inflammatory fac-
tors, such as TNF-α, IL-1β, IL-6, and NO [153, 154], and 
in the inhibition of NF-κB activity [155, 156], which has 
been linked to inflammatory processes [157].

In addition, bacterial metabolites other than SCFAs, 
such as 4-hydroxyphenylpropionic acid, 4-hydroxyphe-
nylacetic acid and caffeic acid, may mediate inflamma-
tion, possibly by mediating the aryl hydrocarbon receptor 
(AHR) and modulating the Treg/Th17 ratio [158]. 
In line with this, secondary bile acids resulting from 
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bacterial deconjugation of bile acids have been reported 
to enhance Treg cells differentiation in the gut [159, 160].

Gut–brain axis
It is widely reported that the influence of microbiota on 
the development of obesity and related pathologies may 
be due in part to altered levels of intestinal hormones 
involved in the gut–brain axis, so that the central nervous 
system regulates food intake through the products of gut 
microbiota activity, including SCFAs [28]. Interestingly, 
the absence of gut microbiota may induce the consump-
tion of obesogenic nutrients, such as fats and sugars, 
due to increased expression of their receptors [161, 162]. 
Together, these latter compounds appear to mediate 
the control of gastrointestinal motor function and food 
intake [163, 164]. Interestingly, the gut–brain axis acti-
vated by GLP-1 for the control of insulin secretion and 
gastric emptying has been reported to be affected by a 
set of ileum bacteria [165]. More specifically, microbially 
derived SCFAs have been found to induce an increase 
in GLP-1 levels [127, 166, 167]. Conversely, both pep-
tide tyrosine tyrosine (PYY) and cholecystokinin (CCK), 
produced by intestinal L-cells, are considered anorectic 
hormones that inhibit food intake and reduce weight gain 
[168, 169].

GLP-1 is an incretin hormone whose action on insu-
lin release from pancreatic b-cells to maintain nor-
moglycemia has been described [170, 171]. Moreover, 
GLP-1 reduces the entry of nutrients into the circula-
tion by increasing satiety and reducing the rate of gas-
tric emptying [172, 173]. More specifically, GLP-1 has 
been shown to modulate central mechanisms of food 
intake in the hypothalamus by stimulating the activity of 
proopiomelanocortin (POMC) anorexigenic neurons and 
inhibiting the activity of agouti-related protein (AgRP)/
neuropeptide Y (NpY) orexigenic neurons [174].

Both the orexigenic hormone, ghrelin, and the anorexi-
genic hormone, leptin, play a key role via the gut–brain 
axis in metabolic regulation and energy homeostasis 
and thus in the development of obesity [163, 175, 176]. 
Ghrelin is linked to adiposity and excessive weight gain 
by inducing an increase in gastric emptying rate and a 
decrease in energy expenditure [177–179], while increas-
ing food intake by stimulating orexigenic AgRP/NpY 
neurons and inhibiting anorexigenic POMC neurons 
in the hypothalamus [180]. It is important to note that 
ghrelin is also involved in GH secretion [181, 182], which 
plays a key role in sexually dimorphic gene expression. In 
this sense, the sexual dimorphism observed in metabolic 
diseases could be due, at least in part, to the influence of 
the microbiota on ghrelin levels and thus on GH release. 
Regarding leptin, it is known to reduce food intake, 
body weight and circulating insulin, elevate circulating 

concentrations of n-octanoyl ghrelin, and promote the 
release of GH [183–185].

As an additional component of this gut–brain axis, 
there is solid evidence for the impact of conditions of 
stress and chronic activation of the hypothalamic–pitui-
tary–adrenal (HPA) axis on the composition of the gut 
microbiota, as well as on intestinal permeability [186]. 
Considering that glucocorticoid stress responses are 
sexually distinct [187], this might represent an additional 
mechanism for sex divergences in gut microbiota com-
position, and its influence on metabolic health. Further-
more, since chronic activation of the HPA axis is linked 
to suppression of gonadal function [188], stress may also 
indirectly alter the microbiome by inhibiting sex steroid 
levels in both sexes. However, the actual contribution of 
this adrenal pathway to setting the physiological sex dif-
ferences in gut microbiota and, thereby, in metabolic dis-
ease remains largely unexplored.

Obesity
Obesity, established for a BMI of 30 kg/m2 or higher, has 
increased in prevalence in the developed world in both 
adults and children. This pathology, which is the result 
of complex genetic, socio-economic and cultural rela-
tionships, leads to serious health, economic, and social 
problems [1]. Scientific evidence has shown that the 
development of some metabolic disorders is related to the 
distribution of body fat, and that this distribution shows 
sexual dimorphism. In this sense, fat tends to accumulate 
around the trunk and abdomen in men (android distribu-
tion) and around the hips and thighs in women (gynoid 
distribution) [5]. Abdominal adiposity, and especially vis-
ceral adiposity, has been associated with increased meta-
bolic complications in both men and women [8, 189, 190] 
by causing an increase in blood glucose and triglycerides, 
a decrease in high-density lipoproteins (HDL) choles-
terol and an increase in low-density lipoproteins (LDL) 
particles, as well as an increase in inflammatory markers 
[191]. On the contrary, gluteo-femoral fat is associated 
with a protective lipid and glucose profile and decreased 
metabolic risk, appearing to exert its protective effect 
through long-term fatty acid storage and a beneficial adi-
pokine profile (positive association with leptin and adi-
ponectin levels and negative association with the level of 
inflammatory cytokines) [9] (Table 1).

Role of sex hormones in obesity
A body of evidence supports the view that sex steroids 
modulate body fat distribution. In this regard, puber-
tal hormonal changes have been associated with dif-
ferent body weight gain between the sexes, due to 
increased lean mass in boys and increased fat mass in 
girls, and with android and gynoid fat distribution [6]. 
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Furthermore, several studies have shown the involve-
ment of some genes in the sexual dimorphism observed 
in body fat distribution, as well as the potential role of sex 
steroid hormones in the regulation of these genes [7, 192, 
193].

In men, testosterone inhibits the uptake of triglycerides 
in the intra-abdominal region and appears to promote 
their accumulation in the subcutaneous region [194], 
while causing a reduction in catecholamine-stimulated 
lipolysis in subcutaneous but not in visceral fat [195]. 
These processes appear to be influenced by the andro-
gen receptor (AR) gene, as in AR knockout mouse mod-
els, deletion of the AR causes an increase in adiposity, 
and especially late adiposity, by decreasing lipolysis [196, 
197]. Furthermore, it appears that protein caveolin-1 
(CAV1) plays an important role in fat accumulation and 
that it is regulated differently by estrogens (estradiol) and 
androgens (DHT) [198].

At the cellular level, differences in the effect of sex ster-
oids (androgens and estrogens) on adipocyte function in 
white adipose tissue have been observed, regarding key 
aspects such as adipocyte differentiation, lipolysis/lipo-
genesis, insulin sensitivity, and adipokine production/
secretion [199]. In this context, testosterone and DHT 
regulate the differentiation of pluripotent mouse mes-
enchymal cells, promoting and inhibiting their differ-
entiation into myocytes and adipocytes, respectively, in 
an AR-dependent manner [200]. Similarly, in an in vitro 
study with human cells, DHT inhibited adipogenic differ-
entiation of human mesenchymal stem cells and human 
preadipocytes in an AR-dependent manner, increased 
lipolysis and reduced lipid accumulation [201]. In cas-
trated mice (a model of male hypogonadism), fat mass 
increased through adipocyte hypertrophy and adipogen-
esis [202], whereas when these mice were subjected to 

hormone replacement therapy, testosterone prevented 
the expansion of visceral and subcutaneous fat mass. In 
addition, obesogenic adipogenesis was also elevated by 
inhibiting AR activity. This study also showed differential 
regulation of fat distribution, with testosterone-derived 
estradiol and DHT blocking the increase in visceral and 
subcutaneous fat, respectively.

At the enzymatic level, the action of lipoprotein lipase 
(LPL), a key enzyme in lipid uptake and storage by adipo-
cytes [203], appears to be suppressed by estradiol in the 
adipose tissue of obese women [204] and by testosterone 
in the adipose tissue of obese men [205], with this sup-
pression being greater in the thigh than in the abdomen 
in the case of men, and could therefore be a key element 
in their central fat accumulation. Furthermore, testos-
terone deficiency in men increases LPL and acyl-CoA 
synthetase (ACS) activity and induces fatty acid accu-
mulation in femoral adipose tissue [206, 207], and testos-
terone replacement reduces abdominal LPL activity and 
triglyceride uptake in this area [208]. As for the influence 
of female steroids, in women, sex steroid deficiency after 
menopause influences ACS and diacylglycerol acyltrans-
ferase (DGAT) activity and promotes increased storage 
of fatty acids in subcutaneous adipose tissue [209]. In 
addition, in premenopausal women, femoral adipogenic 
factors respond to acute sex hormone suppression to a 
greater extent than abdominal ones, and estrogen and 
progesterone appear to have different effects on the regu-
lation of fatty acid metabolism [210].

Obesity in men
Testosterone concentrations have been negatively cor-
related with central obesity [211, 212], and testoster-
one treatment has been found to decrease visceral fat 
in men with symptoms of androgen deficiency and 

Table 1  Summary of the influence of elevated (↑) and decreased (↓) values of the sex hormones testosterone (T) and estradiol (E) on 
obesity, metabolic syndrome (MetS), and type 2 diabetes (T2D)

a A non-physiological value of estradiol (increased or decreased) would be responsible for the same effect, the increased risk of developing T2D

Men Women

↑T Reduction of central obesity
Decrease in visceral fat

Increase in central obesity
Increase in MetS
Increase in T2D

↓T Increased fat mass (subcutaneous fat accumulation, not intra-abdominal 
fat accumulation)
Increased adiposity (preferential accumulation of visceral abdominal fat) 
(ageing)
Increased MetS
Increased T2D

↑E Increased T2D (non-physiological value)a

↓E Increase in central obesity
Increased MetS
Increase in T2D (non-physiological value)a
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low-normal serum testosterone levels [17]. In this con-
text, oxandrolone, an artificial steroid similar to testos-
terone, reduced total, abdominal and peripheral fat, but 
mainly total and abdominal fat, in elderly men [213]. In 
this study, visceral adipose tissue decreased to a greater 
extent than subcutaneous adipose tissue in the abdomi-
nal region. In addition, testosterone replacement therapy 
improved glycemic control, insulin resistance, and dyslip-
idemia in patients with hypogonadism, partly by reduc-
ing central obesity [18, 214, 215]. On the other hand, 
androgen deprivation therapy in men with prostate can-
cer leads to an increase in fat mass [14, 216, 217]. In rela-
tion to this, and contrary to what might be assumed, it 
has been described that the increase in abdominal fat is 
due to the accumulation of subcutaneous fat rather than 
intra-abdominal fat [218, 219]. Furthermore, the decline 
in testosterone with aging is accompanied by increased 
adiposity, with a preferential accumulation of abdominal 
fat and a greater accumulation of visceral adipose tissue 
[220]. It has also been reported that visceral adipose tis-
sue correlates inversely with bioavailable and free testos-
terone, and that subcutaneous adipose tissue correlates 
negatively with sex hormone binding globulin (SHBG) 
[221]. A more recent study in male twins has shown an 
inverse correlation between the amount of subcutaneous 
fat and serum concentrations of total and free testoster-
one, DHT and SHBG, as well as between intra-abdominal 
fat and total testosterone and SHBG [222]. However, it 
has also been pointed out that low testosterone concen-
tration might be linked with an increase in total body fat 
rather than with an excess of visceral fat; observations 
that underline the importance of adrenal steroids in body 
composition in men [223]. Finally, fat redistribution after 
sex steroid treatment is also observed in transsexual men 
[10, 224, 225].

Obesity in women
In women, central obesity has been correlated with 
increased testosterone levels and decreased estradiol 
[211]. The hormonal changes of menopause lead to a 
redistribution of fat, independent of total fat and age, 
towards a more central and android phenotype [11, 226, 
227]; yet, some studies have suggested that the distribu-
tion of upper body fat after menopause may be due to 
ageing rather than menopause per se [228, 229]. Recently, 
body or trunk fat mass has been associated with lower 
total estradiol and higher calculated free estradiol con-
centrations in premenopausal women, as well as higher 
concentrations of total and calculated free testoster-
one and lower concentrations of SHBG and insulin-
like growth factor-I (IGF-I) in both premenopausal and 
postmenopausal women [230]. Related to this, the shift 
towards central and android fat distribution observed 

in perimenopausal and postmenopausal women may be 
counteracted by hormone replacement therapy [231]. In 
addition, women with hyperandrogenism due to PCOS 
show increased central adiposity [20, 232, 233]. Also 
remarkably, fat redistribution is observed in transgender 
women after sex steroid treatment [10, 224, 225].

Metabolic syndrome
MetS is a pathological condition characterized by 
abdominal obesity, insulin resistance, hypertension and 
hyperlipidemia, which has spread across the globe and 
contributes to the rising prevalence of diseases, such as 
T2D, coronary heart disease, and stroke [3] (Table 1).

Role of sex hormones in metabolic syndrome
There is a large body of scientific evidence confirming 
the role of sex hormones in the development of MetS. 
An inverse association between serum SHBG levels and 
the prevalence of MetS has been observed in children 
aged 12–16  years, with SHBG being a more sensitive 
marker of MetS in boys, but not in girls, indicating sexual 
dimorphism already at an early age [234]. At older ages, 
an association between lower SHBG levels and MetS is 
still observed in both males and females, while total and 
free testosterone levels are lower in males and higher in 
females with MetS [235–237]. However, it has been sug-
gested that low SHBG level would be associated with a 
higher prevalence of MetS in both men and premenopau-
sal women, but not in postmenopausal women, so that 
plasma SHBG level could be a significant predictor of 
MetS only in men and women before menopause [238].

The sexual dimorphism observed in the influence of 
testosterone on MetS appears to be AR-dependent, and 
several mechanisms have been suggested to explain the 
association between testosterone level and MetS [239]. In 
men, there is evidence of an inverse correlation between 
testosterone and the development of visceral obesity, 
insulin resistance and MetS [240, 241]. Along these 
lines, the AR-mediated anti-obesity effect of testosterone 
has been reported in both men [242] and rodents [196, 
243]. In women, elevated testosterone levels have been 
reported to be associated with insulin resistance and 
glucose intolerance by decreasing whole-body glucose 
uptake [244–246]. Regarding the action of testosterone 
on the pancreas, a study in mice has shown that the AR 
regulates male pancreatic beta-cell physiology, so that a 
deficiency of this receptor decreases glucose-stimulated 
insulin secretion and leads to glucose intolerance [247]. 
Conversely, it has been proposed that an excess testos-
terone could lead to pancreatic beta-cell dysfunction 
in women by an AR-dependent mechanism [248], with 
impaired insulin secretion [249].
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At the central nervous system level, studies in rodents 
have confirmed that AR expression is higher in the 
brains of males than in females, where this receptor 
favors the central action of leptin [250]. Another study 
has shown that androgen excess in female mice pre-
vents the activation of brown adipose tissue thermo-
genesis by leptin, which is associated with lower energy 
expenditure and visceral obesity, while hypothalamic 
expression of POMC decreases [251], suggesting that 
the increase in visceral adiposity in hyperandrogenic 
women may have a central origin.

Metabolic syndrome in men
In men, MetS appears to be related to testosterone, but 
not to estradiol [252, 253]. In this regard, testosterone 
levels have been negatively associated with MetS risk 
[254], while testosterone replacement therapy appears 
to improve most MetS parameters (glycemia, triglycer-
ide levels, waist circumference, and high-density lipo-
protein cholesterol) [255]. In addition, a recent study 
has shown that the negative association between tes-
tosterone and MetS holds true for all MetS components 
[256].

Moreover, several articles specify that MetS is 
inversely associated with both total testosterone and 
SHBG [257–259], and that both testosterone and 
SHBG show an inverse association with insulin, glucose 
and triglyceride concentrations, as well as a positive 
association with HDL cholesterol [260–262]. Moreo-
ver, numerous articles point to SHBG levels as the most 
influential in the development of MetS [263, 264] and 
as an independent and dominant risk factor [265–267] 
and a good early marker of MetS [257, 258].

As for free testosterone, although its inverse associa-
tion with MetS has also been reported, most articles 
indicate that this association is smaller than in the case 
of total testosterone and SHBG [268–270], and it has 
even been reported that this relationship does not exist 
[267] or that it may be positive [264].

In relation to the above, men with hypogonadism 
(testosterone deficiency), resulting from androgen dep-
rivation therapy for prostate cancer, show lower levels 
of total and free testosterone, as well as a higher preva-
lence of MetS [15]. Within the MetS parameters, these 
men had a higher prevalence of abdominal obesity and 
hyperglycemia, as well as elevated triglyceride levels 
compared to controls. In line with this, testosterone 
treatment in men with hypogonadism restores physi-
ological testosterone levels and improves MetS compo-
nents, increasing HDL and reducing total cholesterol, 
LDL cholesterol, triglycerides, and glucose [18, 214, 
271].

Metabolic syndrome in women
The level of estrogen also appears to influence the preva-
lence of MetS. Thus, oophorectomy-induced estrogen 
depletion in rats induces a worsening of most MetS com-
ponents (lipids, glucose, HDL, and LDL) [272, 273], while 
in women under 50 years of age, i.e., undergoing meno-
pause, its prevalence increases [274, 275]. Furthermore, 
in women who have suffered hysterectomy (often accom-
panied by bilateral oophorectomy to prevent subsequent 
ovarian cancer) an increase in blood glucose level [276] 
and hypertension [277] has been reported.

Menopause causes a decrease in the level of SHBG, at 
least partially due to a decrease in estrogen, while the 
level of testosterone is not altered during the menopausal 
years [278]. In this sense, menopause can be considered a 
predictor (risk factor) of MetS and all its individual com-
ponents independent of age [279, 280]. Furthermore, an 
inverse association between SHBG and MetS has been 
described, especially among postmenopausal women 
[281].

As for testosterone, its excess (hyperandrogenism) in 
women with PCOS is a powerful predictor of the meta-
bolic disorders characteristic of MetS, with this pathol-
ogy being more prevalent in patients with PCOS than in 
healthy women [21, 282]. However, although the scien-
tific literature widely gives hyperandrogenism a promi-
nent role in the metabolic disturbances associated with 
PCOS [283], a recent review and meta-analysis study has 
shown that the higher prevalence of MetS in women with 
PCOS is associated with obesity and metabolic charac-
teristics, but not with the hyperandrogenism index [284].

Type 2 diabetes
The term diabetes encompasses a group of diseases, dif-
ferentiated by their mechanisms of development, that 
reduce the ability to regulate the level of glucose in the 
blood stream and lead to prolonged hyperglycemia. There 
are two primary forms of diabetes, insulin-dependent 
diabetes (type 1 diabetes, T1D) and non-insulin-depend-
ent diabetes (type 2 diabetes, T2D), due to autoimmune 
and metabolic processes, respectively. T2D is charac-
terized by insufficient insulin production by pancre-
atic b-cells and impaired hepatic glucose metabolism, 
as well as insulin resistance, leading to reduced tissue 
responsiveness to insulin [285, 286]. The emergence of 
this pathology, which has become a pandemic, affecting 
approximately 9% of the world’s population [2], is condi-
tioned by several factors, such as genetics, sedentary life-
style, physical inactivity, smoking, alcohol consumption, 
oxidative stress, and diet [287]. However, obesity is con-
sidered to be the major risk factor for T2D, which influ-
ences both the development of insulin resistance and the 
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course of the disease [288]. In the present review, we have 
considered only T2D because of its metabolic disease 
character (Table 1).

Role of sex hormones in diabetes
Impaired fasting glucose (IFG) and impaired glucose tol-
erance (IGT), which occur as a preliminary step to T2D, 
show sexual dimorphism, with IGT being more frequent 
in women and IFG in men [289–291]. It has been sug-
gested that sex hormones may be responsible for this 
dimorphism. Indeed, estrogen treatment of menopause 
lowers fasting glucose and worsens glucose tolerance 
[290]. Moreover, it has been confirmed that the incidence 
of T2D is higher in men than in women [292, 293], which 
further supports the involvement of sex hormones in the 
development of this pathology. In addition, menopause 
implies an increased risk of T2D, whereas hormone ther-
apy for menopause may delay the onset of T2D [12].

Diabetes in men
Men with T2D have lower levels of total testosterone and 
free testosterone [294–296]. Related to this, it has been 
suggested that low levels of testosterone and SHBG are 
linked to the development of insulin resistance and sub-
sequent T2D in men [8, 254]. In addition, the combina-
tion of high levels of SHBG and low levels of testosterone 
has been associated with increased mortality in men with 
T2D [297, 298]. Furthermore, other studies have shown 
that in men with T2D, low testosterone levels per se are 
associated with increased mortality, whereas testosterone 
replacement may improve survival in these men [299, 
300]. In the same way, it has been reported that the pro-
portion of men with T2D was reduced after 2  years of 
testosterone treatment [18, 301]. In addition, androgen 
deprivation therapy in prostate cancer has been found to 
induce an increased risk of diabetes [16, 302, 303].

In line with the above, men with T2D tend to have 
low testosterone levels, and most of them have hypog-
onadism [304]. Indeed, numerous studies have confirmed 
that obese T2D patients with hypogonadism and low tes-
tosterone levels show improved insulin resistance and 
glycemic control after undergoing testosterone replace-
ment therapy (TRT) [18, 271, 305].

With regard to female hormones, men with high estra-
diol levels have an increased risk of T2D, and this high 
estradiol concentration, together with a low SHBH con-
centration, carries an additive detrimental effect on the 
risk of T2D in men [8, 306].

Diabetes in women
In contrast to men, high testosterone levels in women 
are linked to insulin resistance and T2D [254, 307, 308]. 
However, one study has shown that although elevated 

SHBG values in Chinese women are associated with a 
lower likelihood of T2D, estradiol and testosterone lev-
els show no association with T2D in this ethnic group 
[306]. These contradictory results regarding the relation-
ship between testosterone and the incidence of T2D may 
be due to the measurement of testosterone, with some 
authors using total testosterone and others using free tes-
tosterone, and according to a recent study, the method 
of analysis may differ between studies [309]. In addition, 
the free androgen index (FAI) is not a reliable indicator of 
free testosterone when the SHBG concentration is below 
30 nmol/L, which would lead to possible research errors 
in women with low SHBG levels [310]. Accordingly, it 
has been reported that in women there is no association 
between total testosterone and T2D, although a higher 
level of free testosterone is associated with an increased 
risk of T2D [311].

As in men, the level of SHBG has also been inversely 
associated with the risk of T2D in women [254, 281, 295, 
312]. In fact, in women, the association between low 
SHBG and T2D appears to be stronger than in men [307, 
308]. Although this inverse association between SHBG 
and T2D is persistent in different ethnic groups [313], 
according to a study in postmenopausal Hispanic women 
with and without T2D, mean SHBG levels were not sig-
nificantly different in the two groups [314]. These contra-
dictory results may be due to the fact that sex hormone 
and SHBG levels may vary in postmenopausal women 
according to racial/ethnic differences [315, 316].

With respect to estradiol, postmenopausal women with 
T2D have been reported to have higher estradiol lev-
els than healthy women [307, 312, 314]. However, data 
from a body of evidence based on earlier menarche or 
menopause and the practice of hysterectomy and oopho-
rectomy suggest that non-physiological estradiol levels 
(higher or lower than normal values) may be responsible 
for an increased incidence of T2D. In this respect, early 
onset of menarche appears to increase the risk of T2D 
[317–319]. Nevertheless, some studies suggest that part 
of the risk of T2D due to early menarche may be due to 
the increased adiposity [22, 320, 321], as early menarche 
has been shown to be associated also with an increase in 
BMI in adulthood [322, 323]. On the other hand, early 
menopause or premature ovarian insufficiency leads to 
an increased risk of developing T2D [324–326]. Similar 
results have been observed in postmenopausal women 
with bilateral oophorectomy [22, 327]. Finally, hysterec-
tomy accompanied by bilateral salpingo-oophorectomy 
(BSO) showed a higher risk of T2D than hysterectomy 
per se [327]. However, other studies have associated hys-
terectomy with an increased risk of T2D, while BSO per 
se or together with hysterectomy did not increase the risk 
of T2D [328, 329]. Pandeya et  al. indicated that women 
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who underwent hysterectomy or oophorectomy show 
an increased risk of developing T2D, but does not differ-
entiate whether the two conditions occurred separately 
or together [22]. Another study showed that, relative to 
intact women, hysterectomized women with bilateral 
oophorectomy had lower levels of both total and bioa-
vailable testosterone, while hysterectomized women with 
ovarian preservation had intermediate levels [330]. This 
study also revealed that hysterectomized women with 
bilateral oophorectomy tended to have lower total estra-
diol levels, while bioavailable estradiol and SHBG levels 
did not differ between hysterectomy and oophorectomy 
status. Related to this, hormone therapy with estrogen 
and progestin in postmenopausal women (both with 
intact uterus and hysterectomized) reduced the inci-
dence of diabetes [13, 331, 332].

Perspectives and significance
In this review, we focused the role of sexual hormones in 
the development and prevalence of metabolic diseases 
such as obesity, metabolic syndrome and type 2 diabe-
tes. Sex steroids, mainly estrogens and testosterone, are 
implicated in the sexual dimorphism in the structure and 
composition of the gut microbiota. Taking into account 
this relationship, it is plausible the contribution of their 
interconnections in the development of disease, and the 
subsequent differences between sexes. This influence 
is reflected both between men and women, and among 
women themselves due to hormonal changes associated 
with the menopause. The mutual interaction between sex 
steroids and the gut microbiota plays a prominent role in 
the development of metabolic diseases, highlighting the 
role of the microbiota in key aspects, such as gut barrier 
integrity, inflammatory status and the gut–brain axis.

The relevance of this field lies in the fact that fecal 
transfer and modification of the composition of the 
microbiota with specific diets, prebiotics, probiotics or 
synbiotics has attracted considerable interest in recent 
years as a potential alternative therapeutic tool for the 
treatment of metabolic diseases. In fact, the intesti-
nal microbiome is currently considered an important 
therapeutic target, since specific changes in the bacte-
rial community could help alleviate associated metabolic 
diseases.

Moreover, the identification of the mechanisms 
responsible for sexual dimorphism in the incidence of 
metabolic diseases has special importance when develop-
ing effective strategies and therapies aimed at reducing 
their incidence. The composition of the gut microbiota 
depends on the interaction with sex hormones in addi-
tion to other factors, such as the nutritional habits of the 
host organism, so the therapies to treat the dysbiosis of 

the gut microbiota associated with these diseases may 
have sex-specific effects.
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