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In this issue of Cell Genomics, Garcia-Perez et al.1 report a comprehensive and careful association analysis
between gene expression and splicing measured by the GTEx Consortium2 in 46 human tissues and 21
demographic and clinical traits.
In this issue of Cell Genomics, the study

by Garcia-Perez et al.1 expands on previ-

ous work in two major ways. While previ-

ous studies have typically considered a

single tissue3–5 (e.g., blood or brain) or a

small number of tissues,6 the work by

Garcia-Perez et al. investigated 46

different tissues, allowing them to sys-

tematically characterize which genes are

affected by common demographic fea-

tures (age, sex, ancestry, body mass in-

dex [BMI]) and to determine whether

these effects are broadly shared or tissue

specific. They found that ancestry, age,

sex, and BMI had mostly additive and tis-

sue-specific effects on gene expression,

while interactions were rare. Overall, the

expression level of most genes was asso-

ciated with at least one demographic

feature in at least one tissue (Figure 1A).

Although ancestry had similar effects on

splicing to gene expression (both largely

explained by cis-acting genetic variants),

the effects of sex and BMI on splicing

were much more limited (Figure 1B),

suggesting that largely independent regu-

latory mechanisms control gene expres-

sion levels and splicing. Secondly, the

authors expanded their analysis to 17

additional clinical traits extracted from

either medical history (diabetes) or

donor-matched histopathology images

(Figure 1C). The most interesting associa-

tion was observed between type 1 and

type 2 diabetes and gene expression

changes in the nerve tissues that corre-

spond to diabetic neuropathy. This asso-

ciation was further validated using histo-

pathology imaging. Together with a

previous study focusing on the effect of

BMI on gene expression patterns in the

adipose tissue,3 these studies highlight
This is an o
the value of havingmatched histopatholo-

gy images together with tissue gene

expression samples.

An important limitation of this study,

and many of the previous studies, is that

while associations with splicing patterns

are easy to detect, they are much more

difficult to interpret. This is because refer-

ence transcriptome annotations are often

incomplete and alternative transcripts or

splicing events are strongly correlated

with each other. As a result, a high expres-

sion estimate for a given transcript does

not imply that all exons assigned to that

transcript are actually expressed in the

sample.7 Consequently, the observation

that ribosomal genes are often differen-

tially spliced between individuals of Euro-

pean and African American ancestries

and that these differences are driven by

cis-acting genetic variants is an inter-

esting one, but it is unclear whether these

changes have any discernable functional

impact. Future studies based on long-

read RNA sequencing combined with bet-

ter computational models of protein

structure and function will hopefully help

to address these issues.8

This study neatly highlights the value of

combining large transcriptomic datasets

with rich phenotyping. However, this is

very challenging to achieve at scale,

because large biobanks such as the UK

Biobank, FinnGen, and other resources

focus on recruiting healthy volunteers.

This means that they can assemble large

collections of phenotypes via question-

naires and linking to registries but are

limited by the type of samples that they

can obtain from those participants, which

is typically frozen whole blood. In

contrast, studies like GTEx2 have focused
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on postmortem samples to maximize the

number of tissues that can be accessed,

but this typically comes at the cost of hav-

ing access to amuch smaller set of organ-

ismal phenotypes. Thus, achieving good

coverage of both disease phenotypes

and tissue samples is likely to remain an

ongoing logistical challenge. Most large-

scale transcriptomic datasets profiling

tissues other than whole blood lack

high-resolution phenotyping. A compara-

ble study is perhaps the TwinsUK that has

extremely thorough phenotypic informa-

tion as well as transcriptomic data from

four tissues (blood, skin, adipose, and

lymphoblastoid cell lines).3,6

The observed association between dia-

betes and diabetic neuropathy further re-

affirms how associations between gene

expression levels and disease pheno-

types often reflect consequences of dis-

ease processes rather than their causes.

In a related study, Porcu et al. used a

novel design relying on shared genetic as-

sociations to link gene expression levels

measured in the eQTLGen Consortium9

to complex traits measured in completely

unrelated cohorts.10 This Mendelian

randomization approach demonstrated

that, in whole blood, most observed cor-

relations between gene expression levels

and complex traits are consequences of

disease processes rather than their

cause. Nevertheless, these associations

can yield early biomarkers of the disease,

provide important insights about disease

progression, and reveal whether and

how different tissues are affected by the

disease.

Because of its comprehensive design

and careful execution, the study by Gar-

cia-Perez et al. is likely to remain an
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Figure 1. Effects of demographic features and clinical traits on gene expression and splicing levels
(A) Number of unique differentially expressed genes associated with each of the four demographic features in at least one tissue.
(B) Number of unique differentially spliced genes associated with each demographic feature in at least one tissue.
(C) Overview of clinical traits studied and affected tissues.
Adapted from Garcia-Perez et al.1
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important reference for future disease-

transcriptome association studies for

many years to come. I expect future

single-cell and spatial transcriptomic

studies, combined with histopathology

imaging, to further clarify the molecular

and cellular mechanisms of disease-

associated changes.3 However, these

studies are, at least initially, still likely to

focus on easily accessible tissues such

as blood. Matching the tissue coverage

of GTEx with the phenotypic complexity

of large biobanks is likely to remain a ma-

jor logistical challenge. It is always worth

pausing and reflecting on whether the ap-

proaches and methodologies that have

taken us here are also those that will

take us forward. Perhaps there are clever

alternatives, like the Mendelian randomi-

zation approach proposed by Porcu

et al.,10 that can achieve similar goals

with a smaller logistical footprint. The

beauty of science is that we do not have

these answers yet.
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