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Summary

Background Leprosy is an infectious disease that mostly affects underserved populations. Although it has been
largely eliminated, still about 200’000 new patients are diagnosed annually. In the absence of a diagnostic test, clin-
ical diagnosis is often delayed, potentially leading to irreversible neurological damage and its resulting stigma, as
well as continued transmission. Accelerating diagnosis could significantly contribute to advancing global leprosy
elimination. Digital and Artificial Intelligence (AI) driven technology has shown potential to augment health work-
ers abilities in making faster and more accurate diagnosis, especially when using images such as in the fields of der-
matology or ophthalmology. That made us start the quest for an Al-driven diagnosis assistant for leprosy, based on
skin images.

Methods Here we describe the accuracy of an Al-enabled image-based diagnosis assistant for leprosy, called Al4Le-
prosy, based on a combination of skin images and clinical data, collected following a standardized process. In a Bra-
zilian leprosy national referral center, 222 patients with leprosy or other dermatological conditions were included,
and the 1229 collected skin images and 585 sets of metadata are stored in an open-source dataset for other research-
ers to exploit.

Findings We used this dataset to test whether a CNN-based AI algorithm could contribute to leprosy diagnosis and
employed three AI models, testing images and metadata both independently and in combination. AI modeling indi-
cated that the most important clinical signs are thermal sensitivity loss, nodules and papules, feet paresthesia, num-
ber of lesions and gender, but also scaling surface and pruritus that were negatively associated with leprosy. Using
elastic-net logistic regression provided a high classification accuracy (9o%) and an area under curve (AUC) of
96.46% for leprosy diagnosis.

Interpretation Future validation of these models is underway, gathering larger datasets from populations of differ-
ent skin types and collecting images with smartphone cameras to mimic real world settings. We hope that the
results of our research will lead to clinical solutions that help accelerate global leprosy elimination.

Funding This study was partially funded by Novartis Foundation and Microsoft (in-kind contribution).

Copyright © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Leprosy; Artificial intelligence; AI; Image-based diagnosis; Dermatology; Skin lesions; Al4leprosy

*Corresponding authors.
E-mail addresses: jlavista@microsoft.com (J.L. Ferres), milton.moraes@fiocruz.br (M.O. Moraes).

 Co-first authors.

www.thelancet.com Vol 9 Month May, 2022

Check for
updates

The Lancet Regional
Health - Americas
2022;9: 100192
Published online 3 Febru-
ary 2022
https://doi.org/10.1016/j.
lana.2022.100192


http://crossmark.crossref.org/dialog/?doi=10.1016/j.lana.2022.100192&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jlavista@microsoft.com
mailto:milton.moraes@fiocruz.br
https://doi.org/10.1016/j.lana.2022.100192
https://doi.org/10.1016/j.lana.2022.100192

Articles

Research in context

Evidence before the study

According to the WHO Leprosy Guidelines (2018) diag-
nosis must be based on clinical evaluation, ideally with
assistance of slit-skin smears or skin or nerve biopsies
histopathological examination. One of the following
cardinal signs should be detected such as the presence
of the mycobacteria, through acid fast staining testing
slit-skin smears, or presence of thickened peripheral
nerves. Most of the available laboratory methods exhibit
low sensitivity, while qPCR, which exhibits higher sensi-
tivity, still needs reproducibility and standardization
with good manufacturing practices. Moreover, all meth-
ods from slit-skin smears to biopsies are invasive and
laborious requiring infrastructure that is not available in
many settings. Early diagnosis is central towards leprosy
control, but the delay in diagnosis has been impeding
further achievements towards reduction of incidence.
Digital health technologies such as Al-powered apps
could improve diagnosis of leprosy since it has been
successfully applied to the diagnosis of melanoma and
other skin conditions.

Added value of this study

From 2018 until 2020, a research protocol for collection
of high-resolution images, from leprosy patients and
other dermatological diseases along with clinical and
demographical data was implemented at FIOCRUZ
clinic, Rio de Janeiro, Brazil. Images were stored, labelled
and artificial intelligence algorithms were tested. Data
show that the Al model’s accuracy to detect leprosy pre-
viously identified by dermatologists reached 90% and
an area under curve (AUC) of 96.46% when elastic-net
logistic regression was used. Here we provide a proof-
of-concept that Al can be effectively used to determine
the probability of leprosy.

Implications of all available evidence

With further independent validation, this Al model may
be the first step toward alleviating challenges around
skin diseases. This Al model may lead to a non-invasive
approach, using a specific set of predictors, that is easy
to implement in mobile phones to estimate the proba-
bility of leprosy. In the future, this approach may aid
health professionals in referring suspect patients to ref-
erence centers, when necessary, which in turn provides
increased precision to public health strategies on con-
trolling disease burden.

Introduction

Leprosy is a neglected tropical disease (NTD) for which
diagnosis is often delayed because symptoms take
between two months to 20 years to appear and disease
progression is slow." While histological analysis and

qPCR of skin biopsies can aid leprosy diagnosis, as does
Ziehl-Neelsen staining for detection of Mycobacterium
leprae on slit skin smears from ear lobes,” there is cur-
rently no diagnostic test considered the gold standard
for leprosy. Up to date, leprosy diagnosis remains a clin-
ical one." Waning leprosy expertise amongst health
workers, and delayed healthcare seeking caused by lep-
rosy-associated stigma, often results in delayed diagno-
sis, when neurological damage has already taken place,
leading to irreversible disabilities.

Although the widespread availability of free multi-
drug therapy (MDT) secured a 99% reduction of the
global leprosy burden, there are still up to 200’000
patients newly diagnosed annually, and new tools are
needed to cover the last miles towards leprosy elimina-
tion,” defined as zero transmission. One recently vali-
dated strategy is contact tracing followed by post-
exposure-prophylaxis (PEP) for contact persons of lep-
rosy patients, recommended by WHO following the suc-
cessful implementation of the Leprosy PEP initiative.*

Clinical presentation of leprosy depends on a
patient’s specific immunity. The World Health Organi-
zation (WHO) classifies the disease into paucibacillary
(PB) and multibacillary (MB) forms, for people present-
ing with 1-5 or more than 6 skin lesions, respectively.’
Compared to a standard classification for research pur-
poses,”® the PB leprosy group includes tuberculoid (TT)
and borderline tuberculoid (BT) patients, while the MB
group includes patients with borderline-borderline
(BB), borderline-lepromatous (BL), and lepromatous
(LL) leprosy. Differential diagnosis for PB leprosy
includes dermatological manifestations, such as those
caused by pityriasis alba, syphilis, psoriasis, granuloma
annulare, and sarcoidosis, while MB leprosy and specifi-
cally the LL forms need to be differentiated from dis-
eases such as lymphoma, neurofibromatosis and
xanthoma.

As previously demonstrated, digital technology can
accelerate leprosy diagnosis, allowing frontline health
workers to send mobile phone skin images to a refer-
ence dermatologist for guidance and referral.”
Increasing evidence around machine learning
enabling faster and more accurate image-based diag-
nosis in disciplines such as radiology, pathology, and
dermatology, motivated us to develop an Artificial
Intelligence (AI) driven “diagnosis accelerator” for
leprosy, AlgLeprosy, using a combination of skin
images, clinical and reported symptoms.

Most of the Al-driven diagnosis evidence in derma-
tology comes from melanoma, and algorithms such as
deep convolutional neural networks (CNN) have deliv-
ered comparable accuracy to dermatologists, in differen-
tiating malignant from benign lesions.® Deep neural
networks have shown to exceed specialists in differenti-
ating melanoma from benign mimickers such as nevi
and seborrheic keratoses on dermoscopy images.?
Larger training datasets and advances in algorithm
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development further increased its performance,’ while
augmenting human performance for lesions where
physicians reported low diagnostic confidence.”

This paper describes the process of developing an Al
model that analyzes skin lesions, metadata and de-iden-
tified patient information to determine the probability
of leprosy, explaining the acquisition and compilation
of images in a high-resolution image open-source data-
base, their CNN analysis and combination with clinical
data. Further, we describe the methodology for storage
of skin images and their labeling as leprosy or leprosy-
like lesions. Our de-identified images include a diversity
of clinical manifestations and skin types and are openly
available in a dataverse repository for further use by
researchers and healthcare workers. Combining
images, clinical and demographic data from confirmed
leprosy patients and patients with leprosy-like skin
lesions, we trained Al algorithms to differentiate leprosy
from other conditions. To our knowledge, this is the
first large open-source image- and databank available
for leprosy, and Al model for suspecting leprosy. Our
results indicate that Al modeling can work as a power-
ful tool to accelerate and increase accuracy of leprosy
suspection for further diagnostics confirmation.

Methods

Ethics

Data and image collection were conducted at the leprosy
clinic of the Oswaldo Cruz Foundation in Rio de
Janeiro, a national reference center receiving a diversity
of patients and their families from all over Brazil.
Patient interviews, clinical consultations and image col-
lections followed standard operational processes. The
study was approved by the Ethics and Research Com-
mittee of the Oswaldo Cruz Foundation CAAE:
38053314.2.0000.5248, number: 976.330—10/03/2015.
All study participants provided informed consent and
could request clarification about the research or its risks
and benefits at any time. Images from skin lesions were
de-identified and follow up photos could be taken to
evaluate disease improvement or progression.

Study design and workflow

Patient inclusion and exclusion criteria and overall
workflow until Al data analysis, are illustrated in Sup-
plementary Fig. 1. At the first visit, patients presenting
skin lesions were examined and those diagnosed with
“leprosy-like lesions” (macule, plaques or nodules) were
eligible to enroll. These patients received information
on the research, completed the informed consent as
well as general health and demographic information
along with potential symptoms. Photography was taken
and then skin biopsies and slit skin smears from ear
lobes were used to confirm (or exclude) leprosy
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diagnosis. Leprosy diagnosis was defined only after the
results of histology and Ziehl-Neelsen staining of slit
skin smears for the detection of leprosy tissue morpho-
logical features or Mycobacterium leprae, respectively.
qPCR was only performed when equivocal results in
histological analysis were found.” Final diagnosis was
only established at the third visit (up to 30 days after
visit two), as laboratory results would then be available
and enable the dermatologists to communicate the diag-
nosis and initiate the appropriate treatment. Leprosy
diagnosis followed the WHO operational classification
and the Ridley and Jopling® (Supplementary Figs. 2 and
3). Confirmed leprosy patients were treated with MDT,
according to the national guidelines of the Ministry of
Health and WHO.?

Patients’ socio-demographic data were recorded in
the standard local health information system, including
a tag (name and register number) to identify study
patients. Skin lesion images were stored in a computer
exclusively used for the study and on a backup device,
and labeled with the VGG image annotator.”” Image
assessments followed minimal requirements of the
International Skin Imaging Collaboration (ISIC) includ-
ing background color, lighting, field of view, focus/
depth of field, resolution, scale, and color calibration.
Details on the step-by-step process for image capture,
and storage are described in Supplementary Fig. 4.
Overall, up to three images were taken from each skin
lesion: a panoramic photo to identify the body part
where the lesion was situated, a close-up photo and
another picture from the edge of the lesion, including
surrounding normal skin. The DOI for repository can
be accessed at: https://doi.org/10.35078 /1PSIEL. The
code can also be seen here: https://github.com/micro
soft/leprosy-skin-lesion-ai-analysis.

To keep the original features, images were stored in
raw format and .jpeg extensions were generated for
transfer onto Microsoft Azure™. Specific study meta-
data describing demographics, clinical information and
skin lesions details were entered into Epi info™ ™ and
images were uploaded on the cloud to develop the AI
algorithms.

Inclusion and exclusion criteria

All patients with leprosy-like skin lesions and above
the age of six were included, except those who did
not provide informed consent, or who were diag-
nosed with HIV or tuberculosis. Parental consent
was required for minors under 18 years old and
patients who did not present for their final diagnosis
at visit 3, were excluded.

Clinical examination and data collection
The dermatologists assessed inclusion and exclusion
criteria before inviting patients to participate in the
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Figure 1. Data modelling overview. Of the 228 recruited patients, 222 patients were finally included in the data analysis. Images
(model 1) or metadata (model 2) from 182 patients were used to train the algorithms in a training dataset, while 40 patients were
separated as an independent testing group only used for validation in model 3. The outputs of models 1 and 2 were histograms

that fed the accuracy and area under curve (AUC) calculations.

study, completed the study forms and linked each skin
lesion image to the corresponding patient metadata.

During the consultation, dermatologists assessed
symptoms at the lesion sites, such as pain, itching, sen-
sitivity loss or hyperesthesia, and checked for the pres-
ence of paresthesia in the hands and feet. Peripheral
nerve thickening was also evaluated by dermato-neuro-
logical examination. In addition, dermatologists
assessed whether there was diffuse skin infiltration,
loss of eyebrows, lichenification or scaling at the lesion
surface. Color (erythematous, hypo-or hyperpigmented)
and body location (upper limbs, lower limbs, or trunk)
of skin lesions were recorded, as well as their type (mac-
ule, papule, plaque, nodule, ulcer, vesicle, or blister).
The diameter of skin lesions was measured and for
lesions > 4 cm, the temperature was assessed on the
lesion and on the adjacent healthy skin area, as well as
contralaterally. Lastly, sensitivity (thermal, pain and tac-
tile) was checked for those skin lesions that were larger
than 1.5 cm, resulting in nodules e.g., not being evalu-
ated for temperature or sensitivity. Sensitivity in leprosy
skin lesions was assessed using a standard clinical test
performed during the dermatological examination. To
evaluate thermal sensitivity tubes containing warm and
cold water are used, a sharp stick or needle was used to
assess the sensation of pain, and the tactile sensation
was assessed using a piece of cotton. Demographic and
descriptive tables were plotted for all variables, using
continuous or discrete statistics to compare demo-
graphic and metadata variables.

Data modeling

As the predictive models we used require equal input
dimensions, we developed a two-step patient-level
model, first predicting the probability of leprosy based
on the skin lesion image (Model 1) or the metadata

(Model 2). Each model produced a probability of leprosy
for each image or set of metadata, as shown in Figure 1.
Given that patients could have multiple lesions or meta-
data records, we combined outputs from both models
per patient in a histogram, to represent the predicted
probabilities. Lastly, Model 3 was trained to combine
analysis made in the first step, with the patient informa-
tion. This last step established the overall probability by
combining the histograms from Model 1 and 2, with
patient information.

Preprocessing data

When any of the variables had too few observations,
they were grouped with the most frequently occurring
variable. For example, we combine “Nodule” and
“Papule” into a new group for the variable “type”. If the
lesions were too small, the diameter and temperatures
were not measured and the diameter would be imputed
as 1 cm, while the temperature would be replaced by the
median of the patient’s temperatures. If no temperature
could be measured for a patient, the median of all
patients’ temperatures would be used. The value
“missing” became an additional category for sensory
loss of lesions that were too small to measure sensory
function. Predictors that mostly consisted of a single
value were dropped.

Role of funding source

The Novartis Foundation established the concept of
Alyleprosy, provided technical input into the design
phase of the initiative, and ensured overall coordination
of the initiative, while it was not involved in the data
analysis. Microsoft provided data science expertise and
in-kind cloud credit for the development of the model.
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Results

A total of 228 patients diagnosed with leprosy or other
dermatological manifestations were recruited. Three
patients, who did not adhere to the consultations sched-
ule and failed to confirm their diagnosis (visit 3), were
excluded. Age, gender, and general clinical features of
the 225 included patients are presented in Supplemen-
tary Table 1. Because of the absence of close-up images,
three patients were excluded, resulting in a final 222
study patients (Supplementary Fig. 5). From those, a
total of 582 skin lesions and 1226 images were collected,
uploaded, and stored on the cloud. Loss of eyebrows or
eyelashes, diffuse skin infiltration, enlarged nerves and
foot paresthesia were more common in patients with
confirmed leprosy, while lichenification and scaling sur-
face of skin lesions were more often seen in patients
with other dermatologic conditions (Supplementary
Table 1). All the models were evaluated by comparing
the estimated probability of leprosy with the previous
diagnoses made by dermatologists.

Learning algorithms
We first split the 222 patients into two groups. One
group of randomly selected 40 patients, was used as the
testing patients to validate the final patient-level models.
The remaining 182 patients were used for both model
training and selection. For each experiment of Model 1
or 2, we used 5-fold cross-validation to evaluate the per-
formance of each algorithm (Supplementary Fig. 6).
For Model 1, we combined the following settings (i)
the neural network architecture: Inception-v4 or

ResNet-50; (ii) tuning strategy: tune all (fine-tune the
complete neural net model) or freeze (train only the out-
put layer); (iii) input image type: close-up only or all
images; (iv) optimizer: stochastic gradient descent. A
fine-tuned ResNet-50 using close-up images gave the
best cross-validated accuracy (ACC) as well as the area
under curve, AUC (Table 1). This was the final algo-
rithm to train Model 1, which generated the probability
histogram to feed Model 3, as shown in Figure 1. The
performance of the ResNet-50 was superior (66.6%
accuracy and 74.56% for AUC), although lower accuracy
and AUC was achieved when both close-up and other
images were included (Table 1).

For Model 2 we tested the three machine learning
methods, elastic-net logistic regression (LR), XGBoost
(XGB), random forests (RF) (Table 2). Temperatures
and diameters are time-consuming to measure in prac-
tice. Thus, we evaluated the impact of removing these
two features by creating a subset of features without
temperatures and diameters. The data demonstrated
that elastic-net logistic regression using the subset fea-
tures achieved the highest AUC score (88.6%). This
was the final algorithm to train Model 2, which gener-
ated the probability histogram to feed Model 3.

Removing temperature and diameter of skin
lesions only minimally influenced performance of
the algorithms. To interpret the model, we used elas-
tic-net logistic regression with repeated 1o-fold cross
validation, on the complete dataset including the
subset features. The model selects the following vari-
ables: type, color, site, sensory loss, thermal, tactile,
pruritus, hyperesthesia, and asymptomatic as shown

Mean ACC & AUC ResNet-50 Inception-v4
Tune All Freeze Tune All Freeze
All ACC (SD)* 0.6138 (0.040) 0.5723 (0.051) 0.5828 (0.070) 0.5212 (0.050)
AUC (SD) 0.6760 (0.057) 0.6003 (0.094) 0.6144 (0.106) 0.5487 (0.045)
Close-up ACC (SD) 0.6660 (0.099) 0.5790 (0.064) 0.5834 (0.092) 0.5661 (0.059)
AUC (SD) 0.7456 (0.113) 0.6542 (0.104) 0.6590 (0.099) 0.5919 (0.089)

* ACC — accuracy; AUC- area under curve; SD — standard deviation.

Table 1: The performance comparison for Model 1 (images only) using ResNEt-50 and Inception-v4 neural network architectures.

Mean score Elastic-net Regression (LR) XGBoost (XGB) Random forest (RF)

Full Subset Full Subset Full Subset
ACC (SD) 0.813 (0.058) 0.817 (0.06) 0.808 (0.086) 0.818 (0.075) 0.779 (0.088) 0.818 (0.073)
AUC (SD) 0.881 (0.082) 0.880 (0.080) 0.849 (0.086) 0.846 (0.092) 0.836 (0.071) 0.863 (0.090)
Sensitivity (SD) 0.841(0.118) 0.845 (0.115) 0.818 (0.067) 0.85 (0.092) 0.795 (0.129) 0.845 (0.090)
Specificity (SD) 0.791 (0.173) 0.794 (0.174) 0.79(0.177) 0.784 (0.155) 0.763 (0.177) 0.789 (0.158)

Table 2: The performance comparison for Model 2 using features extracted from the form of the lesion for Elastic-net logistic regression
(LR), XGBoost (XGB) and Random forests (RF) machine learning methods. For the full data analysis, data included 15 predictors collected
at the clinical evaluation as described in the methods section. For subset analysis, temp

ature and di features were excluded.
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67
89

71 (0.086)
(0.03)

65
90
95
80
65
88
78

68 (0.099)
91 (0.061)
100 (0)
77 (0.089)
77 (0.089)
91 (0.061)
91 (0.061)

78 (0.098)
(0.09)
89 (0.074)

94 (0.054)
83 (0.087)
83 (0.087)

78

72
92
88
80
78
90
88

Model 2 outputs + patient info

Model 1 outputs + patient info
All

Model 1 outputs
Model 2 outputs
Patient info

Model 1 & 2 outputs

Table 3: The performance comparison for Model 3 using the all the training patients and logistic regression (LR), XGBoost (XGB) and random forest (RF). All metrics were obtained by validating the

models on a separate testing dataset from 40 patients. Results are shown for Models 1 and 2 separately or combined. Patient info means the information collected on the patient information

document.

*ACC-accuracy; AUC area under curve; SEN-sensitivity; SP-specificity; SE-standard error.

in Table 3, which OR estimates are summarized in
Supplementary Table 2.

The findings of this model are aligned with clini-
cal observations, given that e.g., sensory loss is a typ-
ical feature of leprosy or that leprosy lesions rarely
cause pruritus.

For Model 3, the other two models were retrained
with the complete set of 182 patients, using ResNet-50,
respectively elastic-net logistic regression algorithms.
These two were the best algorithms selected by 5-fold
cross-validation in the first step. Then we trained Model
3 using all the 182 patients by elastic-net logistic regres-
sion, XGBoost and Random Forest. The final patient-
level models were validated on the 4o-testing patients.
Random Forest using patient information alone deliv-
ered the highest AUC — 98.74% (Table 3). For XGBoost
and Random Forest, there is little benefit of including
Model 1 and Model 2 outputs, in addition to the patient
information. However, for elastic-net logistic regres-
sion, the inclusion of Model 2 outputs increases the
AUC as compared to the model built on patient infor-
mation alone (Table 3).

XGBoost and Random Forest are better at capturing
nonlinear relationships than elastic-net logistic regres-
sion, and this could be the reason why the inclusion of
Model 2 outputs increases the AUC for elastic-net logis-
tic regression but not for XGBoost or Random Forest.
In addition, higher input dimension could lead to over-
estimation of the algorithm accuracy, especially for
complex machine learning models. Such overfitted
model tend to produce over-optimistic results, which
overstate its predictive power. Finally, overlapping fields
existed between the metadata and patient information
such as sensory loss or pruritus. Although values were
not the same, they characterized similar aspects: for
example, ‘nodule’ would be recorded both on the lesion
document and the patient information. As for the mod-
els built on a single data resource, using Model 1 out-
puts alone yields a moderate AUC around 70%,
whereas using Model 2 outputs or patient information
gives a strong model with an AUC > 90%.

As shown in Table 2, Random Forest using patient
information alone achieves the highest AUC on the test-
ing patients. The ten most important features we identi-
fied were: thermal sensitivity loss, nodules and papules,
feet paresthesia, number of lesions, gender, scaling sur-
face, pruritus, trunk, no symptoms in the skin lesion
and diffuse infiltration (Figure 2). The permutation fea-
ture importance was measured by the decrease in model
accuracy when changing the feature’s values. Interest-
ingly, the odds ratio (OR) estimates using model 2 by
elastic-net logistic regression with clinical information
confirmed some of these variables exhibiting the high-
est OR values (Supplementary Table 2).

Because of the small sample size, we chose to also
use elastic-net logistic regression with Model 2 outputs
and patient information. This offered a high
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Figure 2. Permutation feature value, representing the most important features after model 3 training.
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classification accuracy (90%) and AUC (96.46%) and
was simpler and more interpretable than XGBoost or
Random Forest. To define the final model, we used
elastic-net logistic regression with repeated 1o-fold
cross validation on the complete dataset including
the testing patients which is summarized in Supple-
mentary Table 3.

The top 10 features described in Figure 2 were
selected by logistic regression except nodules, papules,
pruritus, and the absence of symptoms. The three
remaining features were selected by Model 2 and the
probability histogram was used by logistic regression.
Thus, both random forests and elastic-net logistic
regression have a similar preference with regards to the
variables they use.

Discussion

Our study was designed to provide an open-source data-
set of high-quality skin images and clinical data to evalu-
ate the feasibility and accuracy of Al driven leprosy
analysis model based on skin images and clinical symp-
toms. We are not aware of other such existing datasets
and hope that our work can be an inspiration for further
training of AI models in dermatology. As several other
NTDs present skin manifestations, the model described
here could be an example for replication and assist other
research on NTDs, which can be debilitating diseases
and often affect the poorest populations in the world.
We understand that data security and privacy is of major
concern, and, therefore, we defined a protocol avoiding
individual recognition. Although we provide access to
the dataset, it will be restricted and made available only
upon registration and user validation.

The results of our research indicate that probability
models were able to recognize leprosy with high accu-
racy (96.4%), especially when combining Elastic-net
Regression model 2 outputs and patient information.
Another CNN-based Al dermatology diagnosis assistant
(AIDDA) delivers 89.4% accuracy for the diagnosis of
psoriasis and 92.57% for atopic dermatitis and eczema.
AIDDA’s availability on a smartphone app has proven
to significantly increase diagnostic accuracy for less
specialized health professionals.”* Based on evidence
from AIDDA research, in the next phase of research on
Alyleprosy, we will train the algorithm by collecting
images and data through a smartphone app, to help vali-
date and further improve the model on lower quality
images and ultimately better mimic real-world settings.
This rollout is foreseen to happen in remote rural and
urban environments in Asian and African settings, with
the aim to remediate any selection bias that would have
been introduced in our study by collecting data in a lep-
rosy reference center. Training the model in frontline
settings and on other skin types will be essential, even
though Brazil has a quite diverse population that
allowed image collection from a variety of skin types.

A previous study from India also tested skin image-
based leprosy diagnosis with Al" however, we were
unable to trace the origin of the images and verify the
dataset labels. As it is extremely common for leprosy
patients to present multiple skin lesions, ignoring that
fact could result in the model trying to memorize pat-
terns of skin and providing overoptimistic results pre-
diction. A rigorous image collection and processing
protocol is a prerequisite to help prevent the introduc-
tion of systematic biases in the algorithms.”

Not surprisingly, a cardinal sign for leprosy such as
sensitivity loss contributed significantly to the AI algo-
rithm. This symptom plus the features of diffuse skin
infiltration, enlarged nerves, hand or foot paresthesia
and hyperesthesia, and the loss of eyebrows or eye-
lashes, were ideal to build a logistic model that was
aligned with clinical observations and provide an accu-
rate estimate. Besides those, lichenification and scaling
surfaces were also incorporated in the model, as signs
that are mainly indicative of non-leprosy lesions. The
presence of skin lesions in more than one site signifi-
cantly increased the predicted probability for leprosy.
On the other hand, our study demonstrates that the
model experiences more difficulties in detecting leprosy
from skin images than from the metadata or patient
information. Type, colour, and sensitivity of the lesion,
for example, are all descriptions introduced by human
experts, who know that these features are useful in the
diagnosis of leprosy. If we would feed the model exclu-
sively with images and not with clinical descriptions,
the algorithm would have to learn this by itself. Con-
trarily to our observations, others have demonstrated
rather good correlations between dermatologic data and
visual characteristics of the skin lesions.”® Although we
understand that collecting clinical data can be challeng-
ing and would need training, we developed an applica-
tion to help data collectors adequately use the
algorithm, further increasing its applicability. This
application is not meant to be a diagnostic tool, but one
that helps the clinician or healthcare worker to identify
lesions suspect of leprosy and as such can accelerate
referral to health professionals for proper diagnosis.

A model will only work well when additional data
from new patients from multiple geographical back-
grounds are used to continue to train and improve it.
This is possible when further data collection follows a
similar protocol to that used for the model’s training,
enhanced by digital data collection tools to prevent man-
ual errors. Model transferability in different populations
must be considered.”” In 2018, Han et al."”® trained their
skin lesion model on an Asian population and tested it
on a European population. This resulted in an accuracy
of 55.7% over the 1o-classes of Dermfit,"® which was sig-
nificantly lower than that of other models trained and
tested over Dermfit (81%).” Such a decrease in the
accuracy can be attributed to the differences in skin
manifestations across populations or the lack of
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transferability in learned features across datasets, due to
image acquisition protocols. For that reason, it will be
paramount to train the Al4leprosy model in multiple,
diverse populations.

Contributors

The concept of Al4Leprosy was established by AA, MOM,
JLE, RRB, AMS, AT, ENS, AC, ST, FM, EB, and GM and
its full development was coordinated by LS, JLF, GM, RB,
EB and JC. Data and image collection was performed by
RRB, RB, PTSS, AMS, JACN, ES. Experiments were run
by RB1, ST, RRB, PTSS, YX, RB2 and MS, while data cura-
tion was performed by RRB, PTSS and YX; data analysis
and modelling was done by YX, MOM, JLF, RRB, PTSS
and MS. Results analysis and global protocol design were
performed by LS, MG, AAN, JLF with contributions from
KW, JC, AT, CS, DS, AC, AA. Leprosy expertise was pro-
vided by CS, DS, AC and AA. The full draft was developed
by RRB, YX, MOM, JLF and AA. All authors reviewed and
approved the final draft.

Funding
This study was funded by the Novartis Foundation, with
in-kind expertise from Microsoft Al4Health.

Declaration of interests
We declare no competing interests.

Acknowledgements

We express our gratitude to John Kahan from Microsoft for
championing and driving this partnership as from the start
and for his unrivalled support to the entire initiative. We
thank Johannes Boch from the Novartis Foundation for
supporting the coordination of this initiative at several
points in time. And we are grateful to all patients for their
willingness to participate in the study.

Supplementary materials

Supplementary material associated with this article can
be found in the online version at doi:ro.1016/j.
lana.2022.100192.

References

1 Cooreman E, Gillini L, Pemmaraju V, et al. Guidelines for the diag-
nosis, treatment and prevention of leprosy. World Heal Organ.
2018;1.

www.thelancet.com Vol 9 Month May, 2022

10

II

15

16

7

Barbieri RR, Manta FSN, Moreira SJM, et al. Quantitative polymer-
ase chain reaction in paucibacillary leprosy diagnosis: a follow-up
study. PLoS Negl Trop Dis. 2019;13(3). https://doi.org/10.1371/jour-
nal.pntd.oooy147.

OMS. Weekly epidemiological record. Global leprosy update, 2018:
moving towards a leprosy. Wkly Epidemiol Rec. 2019;94.

Richardus JH, Tiwari A, Barth-Jaeggi T, et al. Leprosy post-expo-
sure prophylaxis with single-dose rifampicin (LPEP): an interna-
tional feasibility programme. Lancet Glob Heal. 2021;9(1):e81-e90.
https://doi.org/10.1016/S2214-109X(20)30396-X.

WHO Expert Committee on Leprosy (1997 : Geneva, Switzerland) &
World Health Organization. WHO Expert Committee on Leprosy : Sev-
enth Report. World Health Organization; 1998. https://apps.who.
int/iris/handle/10665/42060.

Ridley DS, Jopling WH. Classification of leprosy according to
immunity. A five-group system. Int | Lepr Other Mycobact Dis.
1966;34(3).

Mieras LF, Taal AT, Post EB, Ndeve AGZ, van Hees CLM. The
development of a mobile application to support peripheral health
workers to diagnose and treat people with skin diseases in
resource-poor settings. Trop Med Infect Dis. 2018;3(3). https://doi.
org/10.3390/tropicalmed3o3oroz2.

Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classifica-
tion of skin cancer with deep neural networks. Nature. 2017;542
(7639):115-118. https://doi.org/10.1038 /nature21056.

Brinker TJ, Hekler A, Enk AH, et al. A convolutional neural net-
work trained with dermoscopic images performed on par with 145
dermatologists in a clinical melanoma image classification task.
Eur J Cancer. 2019;111. https://doi.org/10.1016/j.ejca.2019.02.005.
Marchetti MA, Liopyris K, Dusza SW, et al. Computer algorithms
show potential for improving dermatologists’ accuracy to diagnose
cutaneous melanoma: results of the international skin imaging col-
laboration 2017. ] Am Acad Dermatol. 2020;82(3). https://doi.org/
10.1016/j.jaad.2019.07.016.

Marchetti MA, Codella NCF, Dusza SW, et al. Results of the 2016
international skin imaging collaboration international symposium
on biomedical imaging challenge: comparison of the accuracy of
computer algorithms to dermatologists for the diagnosis of mela-
noma from dermoscopic images. ] Am Acad Dermatol. 2018;78.
https://doi.org/10.1016/j.jaad.2017.08.016.

Dutta A, Zisserman A. The VIA annotation software for images,
audio and video. In: Proceedings of the MM 2019 - 27th ACM Interna-
tional Conference on Multimedia. 2019. https://doi.org/10.1145/
3343031.3350535.

Dean AG, Arner TG, Sunki G, et al. Epi InfoTM, a database and
statistics program for public health professionals. 2011.

Wu H, Yin H, Chen H, et al. A deep learning, image based approach
for automated diagnosis for inflammatory skin diseases. Ann Transl
Med. 2020;8(9). https://doi.org/10.21037/atm.2020.04.39.

Baweja HS, Parhar T. Leprosy lesion recognition using convolu-
tional neural networks. In: Proceedings of the International Confer-
ence on Machine Learning and Cybernetics. 1, 2016. https://doi.org/
10.1109/ICMLC.2016.7860891.

Yang J, Sun X, Liang J, Rosin PL. Clinical skin lesion diagnosis using
representations inspired by dermatologist criteria. In: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Rec-
ognition. 2018. https://doi.org/10.1109 /CVPR.2018.00137.

Kawahara ], Hamarneh G. Visual diagnosis of dermatological dis-
orders: human and machine performance. arXiv. Published online
2019.

Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classifica-
tion of the clinical images for benign and malignant cutaneous
tumors using a deep learning algorithm. ] Invest Dermatol.
2018;138(7). https://doi.org/10.1016/j.jid.2018.01.028.

Kawahara J, Bentaieb A, Hamarneh G. Deep features to classify skin
lesions. In: Proceedings of the International Symposium on Biomedical
Imaging. 2016. https://doi.org/10.1109/ISB1.2016.7493528.


https://doi.org/10.1016/j.lana.2022.100192
https://doi.org/10.1016/j.lana.2022.100192
http://refhub.elsevier.com/S2667-193X(22)00009-6/sbref0001
http://refhub.elsevier.com/S2667-193X(22)00009-6/sbref0001
http://refhub.elsevier.com/S2667-193X(22)00009-6/sbref0001
https://doi.org/10.1371/journal.pntd.0007147
https://doi.org/10.1371/journal.pntd.0007147
http://refhub.elsevier.com/S2667-193X(22)00009-6/sbref0003
http://refhub.elsevier.com/S2667-193X(22)00009-6/sbref0003
https://doi.org/10.1016/S2214-109X(20)30396-X
https://apps.who.int/iris/handle/10665/42060
https://apps.who.int/iris/handle/10665/42060
http://refhub.elsevier.com/S2667-193X(22)00009-6/sbref0006
http://refhub.elsevier.com/S2667-193X(22)00009-6/sbref0006
http://refhub.elsevier.com/S2667-193X(22)00009-6/sbref0006
https://doi.org/10.3390/tropicalmed3030102
https://doi.org/10.3390/tropicalmed3030102
https://doi.org/10.1038/nature21056
https://doi.org/10.1016/j.ejca.2019.02.005
https://doi.org/10.1016/j.jaad.2019.07.016
https://doi.org/10.1016/j.jaad.2019.07.016
https://doi.org/10.1016/j.jaad.2017.08.016
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.21037/atm.2020.04.39
https://doi.org/10.1109/ICMLC.2016.7860891
https://doi.org/10.1109/ICMLC.2016.7860891
https://doi.org/10.1109/CVPR.2018.00137
https://doi.org/10.1016/j.jid.2018.01.028
https://doi.org/10.1109/ISBI.2016.7493528

	Reimagining leprosy elimination with AI analysis of a combination of skin lesion images with demographic and clinical data
	Introduction
	Methods
	Ethics
	Study design and workflow
	Inclusion and exclusion criteria
	Clinical examination and data collection
	Data modeling
	Preprocessing data
	Role of funding source

	Results
	Learning algorithms

	Discussion
	Contributors
	Funding
	Declaration of interests
	Acknowledgements

	Supplementary materials
	References



