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In brief

Structural variation (SV) is part of the

cancer genome mutational landscape

driving tumor characteristics. Due to its

nature, detection of somatic SVs is

complicated and unresolved. DNA

sequencing technology and data analysis

tools are developing rapidly. Valle-Inclan

et al. describe the generation of a

carefully curated and validated somatic

SV truth set based on the COLO829 cell

line that can be used as a reference for

benchmarking existing and novel somatic

SV detection techniques.
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SUMMARY
Accurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem.
This is in part due to the lack of high-quality, gold-standard datasets that enable the benchmarking of exper-
imental approaches and bioinformatic analysis pipelines. Here, we performed somatic SV analysis of the
paired melanoma and normal lymphoblastoid COLO829 cell lines using four different sequencing technolo-
gies. Based on the evidence frommultiple technologies combinedwith extensive experimental validation, we
compiled a comprehensive set of carefully curated and validated somatic SVs, comprising all SV types. We
demonstrate the utility of this resource by determining the SV detection performance as a function of tumor
purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics
projects. The truth somatic SV dataset aswell as the underlying rawmulti-platform sequencing data are freely
available and are an important resource for community somatic benchmarking efforts.
INTRODUCTION

Structural genomic variations (SVs) form amajor class of somatic

genetic variation in cancer genomes,1,2 involving dozens to

thousands of somatic SVs with varying size distribution and pat-

terns.2 While some SVs represent simple deletions, others tend

to be complex, involving multiple breakpoints across a relatively

short genomic interval. For example, chromothripsis is a form of

complex SVs frequently observed in cancer genomes,3,4 result-

ing from aberrant chromosome segregation or telomere

dysfunction.5,6 Other types of complex SVs involve oncogene

amplifications arising from breakage-fusion-bridge cycles.2,7,8

SVs in cancer genomes may promote cancer development

through a variety of mechanisms, such as oncogene activation

through gene fusions, disruption of tumor-suppressor genes,

or by affecting gene regulation.9,10 Oncogenic fusion genes

resulting from somatic SVs form important targets for cancer

drugs, and somatic SVs may form neo-antigenic targets for

immunotherapies,11 demonstrating the relevance of accurate

somatic SV detection for personalized cancer treatment.10,12

While classical karyotyping and fluorescence in situ hybridiza-

tion (FISH) analyses have been instrumental in systematic copy
This is an open access article und
number analyses in tumor samples,10,12 these technologies

provide limited resolution or do not allow for comprehensive

genome-wide analysis and are thus unable to resolve the com-

plete spectrum of SV events. Most of our knowledge on

genome-wide, high-resolution SVs in cancer genomes stems

from the analysis of short-read, whole-genome sequencing,

which is currently the only scalable and cost-efficient technology

for high-resolution, genome-wide cancer genome analysis.2,13

Although short reads are effective for detection of simple SV

breakpoints in non-repetitive regions of the genome, the interro-

gation of complexly rearranged regions or the detection of SV

breakpoints in low-complexity genomic regions may require

other sequencing techniques or targeted approaches.14 For

example, long-insert, mate-pair sequencing has proven a valu-

able strategy for genome-wide mapping of somatic SVs,15,16

and single-cell template strand sequencing enables the

detection of copy number variants and copy neutral structural

variants.17 Furthermore, long-read sequencing methods and

linked-read approaches, such as Pacific Biosciences, Oxford

Nanopore, and 103 genomics, provide a promising alternative

for the detection of SVs. Initial studies have shown that long-

read, single-molecule sequencing can greatly improve detection
Cell Genomics 2, 100139, June 8, 2022 ª 2022 The Author(s). 1
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of germline SVs.18–21 Similarly, recent work has demonstrated

the advantage of long-range sequence information for identifica-

tion of SVs in cancer genomes, such as cancer-gene amplifica-

tions and gene-fusion events.8,22–24

A major limitation of studies on cancer SVs is the lack of

comprehensive ground-truth, genome-wide somatic SV data-

sets, including all types and sizes of somatic structural aberra-

tions. Such truth sets can form a resource for benchmarking

sequencing and analysis approaches as well as for evaluating

detection problems related to intratumor heterogeneity and

tumor purity. Truth sets have been established for germline

SVs21,25 or somatic single-nucleotide variants (SNVs).26

However, attempts at benchmarking somatic SVs have only

been performed by using in silico simulated data27,28 or mouse

data.29

We addressed this caveat by generating a multi-platform,

short-read, long-read, linked-read sequencing and optical map-

ping dataset for the COLO829 melanoma cell line and the paired

COLO829BL lymphoblastoid reference cell line. These cell lines

were derived from a male individual and have been used before

to establish somatic SNV and copy number alteration (CNA) truth

sets.26,30,31 By cross-platform comparison and extensive valida-

tion and curation, we define a truth set of 68 somatic SVs in

COLO829. We evaluated the completeness of this validated SV

truth set and demonstrated its use to study the effect of tumor

purity and sequencing coverage variation on the accuracy of

somatic SV calling. We believe this somatic SV truth set to be

of broad value for benchmarking and quality control of large-

scale, cancer-genome sequencing studies, which are currently

undertaken in research and the clinic.

RESULTS

Multi-platform, genome-wide analysis of the COLO829
tumor-normal melanoma cell line pair
In this study, we aimed to obtain a high-quality validated set

of somatic structural variants. We cultured COLO829 and the

corresponding lymphoblastoid cell line (COLO829BL) according

to standard conditions (STAR Methods). A large batch of cells

expanded from one original vial directly obtained from the

ATCC cell line repository was used for DNA isolation and

subsequent genomic analysis using five different technology

platforms: Illumina HiSeq X Ten (ILL), Oxford Nanopore

Technologies (ONT), Pacific Biosciences (PB), 103 genomics

(sequenced on Illumina NovaSeq) (10X), and Bionano Genomics

Saphyr optical mapping (BNG) (STAR Methods).

The sequencing and optical mapping data were analyzed with

respect to the reference human genome (GRCh37) using align-

ment methods specific for each technology (STAR Methods).

From the combined short- and long-read sequencing data of

the COLO829 sample, we obtained a total average base

coverage of 2353. The BNG data generated an additional phys-

ical coverage of 2183. For the COLO829BL control cell line, a

combined average base coverage of 1553 and a BNG physical

coverage of 2203 was obtained (Figure 1A; Table S1). Average

physical molecule lengths were 534 bp for ILL paired-end in-

serts, 11 kbp for ONT, 19 kbp for PB, 20 kbp for 10X, and 98

kbp for BNG optical maps (Figure 1B; Table S1).
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To assess the consistency of each of the technologies with

respect to representation of the sequence content of the

COLO829 cancer cell line, we determined the presence of

CNAs. Unfortunately, no single CNA caller was available to

detect CNAs with high resolution for all technologies. Neverthe-

less, low-resolution CNA calling revealed a highly similar copy

number profile for each of the technologies (Figure 1C), with a

correlation of copy number calls in the different datasets of

0.87–0.96 (Figure S1A). Furthermore, we compared our copy

number calls with those generated in previous bulk26 and sin-

gle-cell32 sequencing of COLO829. The overall CNA landscape

of the bulk sequencing and the dominant cluster from single-

cell sequencing is very similar to the one we obtained (Fig-

ure S1B), with a correlation of 0.99 (bulk) and 0.97 (single cell

group A) (Figure S1C). However, the previously described sub-

clonal single cell clusters (B–D) possess some distinct copy

number aberrations that are not observed in our bulk sequencing

datasets (i.e., extra copy of chromosome 8 in group D or lack of

gain in short arm of chromosome 1), in line with the proposed

continuous genomic evolution of cell lines and subculture-spe-

cific nature of these events. Finally, classical FISH analysis for

six genomic locations of the culture used in our study confirmed

the sequencing-derived chromosomal copy number states

(Figure S1D).

Generation of a somatic structural variation consensus
truth set
To build an accurate and comprehensive somatic SV truth set,

we used a combinatorial analysis approach involving the four

sequencing platforms (ILL, ONT, PB, and 10X). To avoid incon-

sistencies derived from nomenclature and classification of SVs

in the different datasets, we focused on the detection of individ-

ual breakpoints rather than complex events, with a minimum

event size of 30 bp. We used state-of-the-art SV calling tools

appropriate for each of the sequencing datasets. Due to the

lack of an existing benchmark and best-practices protocols in

the somatic SV calling field, this study was oriented to the crea-

tion of a validated truth set and not to the benchmarking of so-

matic SV calling tools and sequencing technologies. Therefore,

we chose optimal mapping and SV calling tools to the best of

our knowledge (STAR Methods; Figure 2A). SV calling parame-

ters were not optimized for highest precision but for high sensi-

tivity to not miss any real event. As a result, individual candidate

call sets for each technology resulted in highly variable lists of

predicted somatic SVs, ranging from 92 breakpoint calls in ILL

up to 6,412 for ONT, adding up to a total of 8,831 merged candi-

date somatic SV calls (Figure 2A). Only 18 of those somatic SV

calls were found by all four sequencing approaches, and 125

SV calls were supported by at least two call sets (Figure S2A).

To make an initial assessment of accuracy, we selected 88

high-confidence SV candidates for PCR validation based on vi-

sual inspection of the mapped reads using Integrated Genome

Viewer (IGV). In addition, we randomly selected 296 additional

SV candidates for PCR validation. Based on short- and long-

read sequencing of the PCR products, 63 of these breakpoints

were labeled as PCR validated (Figure S2B). Moreover, we

decided to perform a separate validation of all 8,831 somatic

SV calls from the union of the four SV call sets, using a



Figure 1. Overview of the COLO829 multi-technology genomic dataset

(A and B) Sequencing depth (A) and log-scaled molecular analysis length (B) distributions per technology dataset for COLO829 (blue) and COLO829BL (red).

Means are indicated by horizontal black lines.

(C) Copy number profile of COLO829 calculated independently for each of the datasets.
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capture-based enrichment method using multiple probes flank-

ing and overlapping each candidate break junction (STAR

Methods). Based on the short-read sequencing of the enriched

products, 114 breakpoints were labeled as capture validated

(Figure S2B). Lastly, we used the 52 BNG somatic SV calls as

an additional layer of validation. In total, 137 SV calls were

validated by at least one of the aforementioned methods. In

addition, 78 SV calls were not validated but still supported by

more than one technology (Figures 2A and S2C).

Next, we manually curated these 215 SV calls that were either

validated or supported bymultiple technologies. Based on visual

inspection of the genomic alignment data from each of the

sequencing sets and from the validation experiment results, we
assessed each SV call individually. We found that 48 calls

were real events but also had evidence in the germline control,

and another 99 were considered false positives as the support-

ing or reference data were very noisy at the given genomic loca-

tion (also in the independent validation data). This may reflect the

impact of low-confidence regions in the reference genome, for

which unambiguous mapping of sequencing reads is compli-

cated due to simple sequence or repeat content. Taken together,

we conclude that 68 of the SV candidates are real somatic events

and thus considered as our truth set (Figures 2A and S2C;

Table S2). To verify the efficacy of ourmanual curation approach,

we manually curated 179 randomly selected additional SV calls

that were supported by a single technology and not validated
Cell Genomics 2, 100139, June 8, 2022 3



Figure 2. Generation of a validated somatic SV truth set

(A) State-of-the-art somatic SV calling pipelines were used independently for each technology dataset. The number of somatic SV candidates identified are

indicated in boxes. Overlapping variant calls obtained by the different platforms were merged and independently validated using a combination of targeted

enrichment with hybrid capture probes followed by next-generation sequencing, PCR, and Bionano genomics. Validated somatic SV candidates and calls

supported by more than one dataset were manually curated, leaving a total of 68 somatic SVs in the truth set.

(B and C) Intersections between the 68 somatic SVs in the truth set and the original SV call sets (B) and the validation results (C) are shown. 10X, 103Genomics;

BN, Bionano; ILL, Illumina HiseqX; MULT, support by multiple sequencing platforms; ONT, Oxford Nanopore; PB, PacBio.
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and therefore left out from the candidate SV curation pipeline. All

these SV calls were either germline events (63; 35%) or false

positives due to noisy mapping data (116; 65%) (Figure S2D).

To corroborate that the breakpoint-merging threshold of

200 bp used in our filtering pipeline was not too stringent, we

did a re-run of the filtering analysis step using 1,000 bp as a

merging threshold, resulting in an extra 121 breakpoints sup-

ported by more than two technologies. We verified these

breakpoints similarly as the original filtering pipeline and classi-

fied 70 as false positives and 51 as germline, resulting in no

added value for the truth set (Figure S2E).

Of the compiled set of 68 validated somatic SVs in COLO829,

55 (81%) were present in more than two original call sets,

including the 18 SVs detected by all technologies (Figure 2B).

Moreover, most of the SVs were validated by capture-based

enrichment and by PCR (50; 74%). In addition, eight somatic

SVs were validated by capture-based enrichment, but not by

PCR, and seven somatic SVs were validated by PCR, but not

by capture-based enrichment. Of the remaining three SVs, one

was validated by BNG and two were not validated by any tar-

geted assay but are supported by multiple technologies and

manually verified by inspection of raw sequencing data from

both tumor and normal samples (Figure 2C). The resulting
4 Cell Genomics 2, 100139, June 8, 2022
somatic SV truth set is presented in Table S3 and freely available

as a variant call format (VCF) file. We also provide a GRCh38-

lifted version of the somatic SV truth set.

Characterization of the COLO829 somatic SV truth set
The carefully curated and validated somatic SV truth set consists

of 38 deletions, 3 insertions, 7 duplications, 7 inversions, and 13

translocations (Figure 3A). Most of the deletions (24; 61%) are

larger than 10 kbp, and seven are smaller than 100 bp. There

are also three duplications and three inversions larger than 10

kbp. Two tumor-driver genes are affected by somatic SVs in

COLO829 (Table S3). First, there are two large heterozygous de-

letions (72 and 141 kb) in FHIT, located in the fragile site FRA3B

on chromosome 3, which is commonly affected by somatic

SVs.2 Second, there is a homozygous 12-kbp deletion affecting

PTEN on chromosome 10. There are breakpoints in all chromo-

somes except 2, 13, 17, and 21 (Figure 3B). These chromosomes

also do not show any CNA event. Annotation of the somatic SV

breakpoints with gnomAD-SV,33 segmental duplications, simple

repeats, ormicrosatellites from theUniversity of California, Santa

Cruz (UCSC) genome browser did not reveal any overlap.

Frequently, SVs do not occur as simple isolated events but are

part of a complex landscape induced in a single event like, for



Figure 3. Characterization of the somatic SV truth set

(A) Distribution of different types of SVs in the COLO829 truth set, divided in size bins. Translocations (BND) are assigned a size of 0 bp.

(B) Correlation between CNAs and somatic SVs in the COLO829 truth set. The circos plot shows copy number gains (green) and losses (red) and somatic SVs.

Each copy number change is expected to be flanked by an SV event. Two complex breakage-fusion-bridge events are present in COLO829.

(C) The first one occurs in chromosome 3 (blue), with templated insertions from chromosomes 6 (pink), 10 (green), and 12 (red) (see also Video S1 for an animation

of the proposed mechanism shaping this event).

(D) The second one occurs in chromosome 15, with templated insertions from chromosomes 6 (pink) and 20 (green). Breakpoints are indicated by vertical lines

with arrowheads showing breakpoint orientations. Dashed lines indicate junctions between two breakpoints. Break junctions are labelled with truth set SV ID

number (Table S3).
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example, chromothripsis or due to a cascade of events over time

like breakage-fusion-bridge cycles. There are also two clusters

of complex chained somatic SVs that affect three or more

chromosomes and involve more than five breakpoint junctions.

Both of them resemble breakage-fusion-bridge events, since

they are flanked by foldback inversions and show oscillating

copy number profiles.2 One of them occurred in chromosome

3 and involves four foldback inversions, two of which have

templated insertions from chromosomes 10 and 12 and

chromosome 6, respectively (Figure 3C). The breakpoint and

copy number profile of chromosome 3 can be fully explained

by four cycles of breakage-fusion-bridge followed by chromatid

duplication through a whole-genome doubling event. Initiated by

replication of unrepaired double-stranded break, the unstable

chromosome 3 (due to the presence of two centromeres in a sin-

gle chromatid) underwent a further three more rounds of

breakage-fusion-bridge (BFB) with a fragment of chromosome

6 inserted prior to the third doubling cycle and fragments of

chromosomes 10 and 12 inserted immediately after the fourth

doubling cycle. A stable state was achieved after the final

breakage through repair to one of the centromeres (Video S1).

The other BFB event occurred on chromosome 15 and includes

templated insertions from chromosomes 6 and 20 (Figure 3D).
The donor locations of these templated insertions are not

affected by SV events.

To evaluate the completeness of the somatic SV truth set, we

compared it with the somatic CNA calls, since each CNA should

have SV breakpoints or telomeres at either end. We found 43

total CNA breakpoints that are not telomeric ends of chromo-

somes. Of these, 26 (60%) are concurrent with an SV breakpoint.

We evaluated the rest of the CNAs in the raw genomic data

(Table S4). From these remainder CNAs, six copy number break-

points (14%) are present in the germ line, flanking heterozygous

germline CNA events that are homozygous in the tumor through

a somatic loss of the other allele. The SV break junctions of these

CNAs are germline and therefore not part of the truth set. Finally,

there are 11 somatic CNA breakpoints (26%) not concurrent with

an SV breakpoint. Five of these missing CNA breakpoints are

located in a centromeric region (chromosomes 1, 4, 6, 14, and

16) and are likely due to a missing somatic SV involving the

centromere, which is typically hard to fully resolve due to its re-

petitive nature. For another two missing CNA breakpoints (chro-

mosome 3 and chromosome 9), breakends can be found in the

raw ILL dataset, meaning an SV breakpoint was found, but the

SV junction partner could not be unequivocally determined.

GRIDSS2 annotation did reveal that the chromosome 3 single
Cell Genomics 2, 100139, June 8, 2022 5



Figure 4. Recall and precision of somatic SV calling as function of tumor purity and sequencing depth effect

Different tumor purities (0%, 10%, 20%, 25%, 50%, 75%, and 100%) were simulated by mixing data from COLO829 and COLO829BL for the ILL, ONT, and PB

datasets.

(A) Somatic SV calling was performed independently for each purity subset, and recall (left) and precision (right) were calculated against the COLO829 somatic SV

truth set. Lines represent the median of independent triplicate measurements.

(B) For each tumor purity subset in the ILL dataset, different sequencing depths (13, 53, 103, 303, 503, and 983) were sampled. Somatic SV calling was

performed independently for each sequencing depth and tumor purity subset, and recall (left) and precision (right) were calculated against the COLO829 somatic

SV truth set.
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break does map to one of the centromeres. Four more missing

CNA breakpoints flank two supposed deletions in chromosome

1, but no SV call in these locations can be found for either

COLO829 or COLO829BL in any of the datasets. Manual

inspection of the raw data for these CNAs (Figures S3A and

S3B) indicates that these CNAs may actually reflect heterozy-

gous germline events followed by loss of heterozygosity (LOH)

as witnessed by the lower read coverage in the COLO829BL

as compared with the flanking segments. Furthermore, one

CNA involves a long interspersed nuclear element (LINE)-rich

region, while the other overlaps with a segmental duplication.

Next, we compared our somatic SV truth set with the somatic

SV calls presented by Arora et al.26 They provide two different

somatic SV call sets, one generated by the HiSeq platform

with 77 somatic SV calls and the other by the NovaSeq platform

with 75 somatic SV calls. Since these were provided based on

GRCh38 genomic coordinates, we lifted our somatic SV coordi-

nates over to GRCh38. We found that 58 (75.34%) and 59

(78.6%) of the somatic SV calls for the HiSeq and the Novaseq

call sets, respectively, overlapped with our somatic SV truth

set on both sides of the SV (Figure S3). We manually inspected

the 20 non-overlapping somatic SV calls from the Arora et al. da-

taset in our raw ILL, ONT, and PB data (Table S5). In the long-

read raw data (ONT and PB) only 3 out of the 20 have some sup-

port (maximum three reads). In the ILL raw data, 9 out of the 20

have limited evidence, with only one or a few supporting reads.

Only four of these nine SV calls passed bioinformatic calling

criteria in our original ILL somatic SV calls, but none of these

were called by any other technology or independently validated

by more sensitive PCR or targeted capture and deep

sequencing. Therefore, we considered these candidates as
6 Cell Genomics 2, 100139, June 8, 2022
technology-specific noise and discarded them from our truth

set, although we cannot formally exclude that these are real var-

iants that are present at very low frequency (<1% in the sample).

Finally, 13 SVs are present in our truth set and not in the Arora

et al. dataset. All were detected by at least two different

sequencing techniques and independently validated.

Effect of tumor purity and sequencing depth on somatic
SV calling
To demonstrate the utility of the COLO829 somatic SV truth set,

we evaluated the effect of tumor purity, which is highly variable

among clinical samples, on SV calling. We used the available

raw datasets and simulated tumor purities of 75% (TP75), 50%

(TP50), 25% (TP25), 20% (TP20), and 10% (TP10) by random

in silico mixing of the genomic data from COLO829 and

COLO829BL for ILL, ONT, and PB, respectively. We performed

SV calling independently on each of these mixed sets and on

the original tumor file (100% purity [TP100]) and the normal file

(0% purity [TP0]). We then calculated the recall (percentage of

truth set found) and precision (percentage of calls that belong

to the truth set). With the standard settings used, somatic SV

recall and precision were found to be highly dependent on tumor

purity for all three technologies (Figure 4A). At TP75 and TP100,

recall is the highest, with >94% (ILL), >67% (ONT), and >65%

(PB). With TP50, the recall slightly decreases to 90% (ILL),

52% (ONT), and 61% (PB). For purities lower than TP50, the

recall decreases further to <76% (ILL), <22% (ONT), and <48%

(PB). Precision follows a similar trend in the case of ILL, with pre-

cisions >78% for purities larger than TP50 and a drop to 63% in

TP25. In the case of ONT and PB, the higher number of false pos-

itives severely impact the precision rates, potentially reflecting
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thematurity level of platform-specific tools for somatic SV detec-

tion in tumor-normal paired samples but also presenting oppor-

tunities for further analysis parameter and tool optimization.

Sequencing depth is another essential parameter to consider

in tumor-sequencing projects, as it represents a trade-off deci-

sion between variant detection sensitivity and costs. To investi-

gate the effect of sequencing depth in combination with tumor

purity in somatic SV detection, we took one of the triplicates

from each of the simulated ILL tumor purities (983 coverage)

and subsampled them to 503, 303, 103, 53, and 13 depths.

We again performed somatic SV calling using the same standard

pipeline on each of these simulated sets and calculated recall

and precision (Figure 4B). We observed that, for depths of 503

and 983 and tumor purities over 50%, recall was over 82%. In

the case of 983, even at TP20, a recall of 71% was obtained,

whereas for 503, at TP25, the recall decreased to 42%. For

303 sequencing depth, at TP100, recall was 84%, but at

TP50, there was a decrease to 54% and, at TP25, further to

10%. For lower coverages, recall was low. Surprisingly, depths

of 303 and 503 had a higher precision at all tumor purities

than 983, with precision around 95% over TP50, compared

with approximately 70% for 983. While this could in theory be

explained by the presence of subclonal SVs that are not included

in the truth set but become detectable at higher sequencing

depth, this might also be caused by stochastic effects due to

increased measurement noise at higher sequencing depth,

which increases the number of false positives and therefore re-

duces precision (although recall is not affected). Another

possible explanation is that SV-detection tools have been devel-

oped and optimized using sequencing depths around 303 and

therefore function better at those depths, needing optimized pa-

rameters for optimal performance at different sequencing

depths. Further optimization of analysis tools and settings and

deeper sequencing may resolve these issues.

Benchmarking against the COLO829 truth set
To aid future benchmarking using the COLO829 truth set

described, we developed a script to directly compare SVs

with this or other future benchmarks. This script compares

SVs at the breakpoint resolution to generate a precision and

recall plot. To demonstrate its use, we compared the ILL,

ONT, and PB calls used for the development of the truth set

with the most updated versions of SV variant calling tools avail-

able at the time of submission of this work (Figure S4). We

observed an improvement in recall for the updated version of

PBSV. The drop in precision for GRIDSS is likely due to differ-

ential manual pre-processing of the original GRIDSS file, which

was substituted by automatic filtering in the updated version.

Surprisingly, a drop in recall can be observed in the updated

version of Sniffles, while maintaining the low precision. We

did not further analyze in detail the causes for these changes,

as this is beyond the scope of the current work, but the frame-

work presented does allow for a versatile approach to bio-

informatic tool and parameter optimization. We included the

updated VCF files from each technology in the updated data

bundle. Any other benchmarking with own VCF files can be

performed using the R script with our COLO829 or other future

truth sets.
DISCUSSION

We produced a carefully curated and validated somatic SV truth

set by building upon the strengths of different sequencing

technologies. Bioinformatic integration of results and large-scale

independent validation strategies turned out to be a powerful

approach for reducing the large number of candidate events ob-

tained. Manual curation and inspection of raw sequencing data

were, however, essential to exclude sequencing or mapping arte-

factsand remaininggermlineevents.Thesesomatic falsepositives

are thus germline false negatives and were likely included in the

initial somatic SV calls due to the lower sequencing analysis

depths for the control sample as compared with the tumor (typi-

cally 3-fold lower) in combination with specific local genomic

characteristics (e.g., lower average coverage due to, for example,

local GC content or involving low-complexity sequences).34

While reconstruction of the derived chromosomal tumor

genome topology based on the 68-truth-set somatic SVs results

in an overall stable genomic configuration for most derived chro-

matids harboring a single centromere and two telomeres, some

breakpoint junctions are still clearly missing. This is corroborated

by the fact that not for all CNAs breakpoint junctions were iden-

tified at either end. Our results indicate that these missing events

typically involve centromeric regions that are not directly acces-

sible by any current sequencing technology. Annotation data

provided by the GRIDSS2 SV caller35 suggest a junction be-

tween a single break-end in chromosome 3 and the centromere

in chromosome 1, which shows a copy number change. Prob-

ably, this cannot be resolved directly due to the repeated nature

of the centromeric region. When excluding the missing events

that likely involve centromeres, there are two copy number aber-

rations that remain unexplained by the truth set, providing room

for further improvement based on the existing or to-be-gener-

ated data. Of course, we can formally not exclude that there

are more events missing from our truth set due to limitations in

current sequencing and data analysis approaches, for example,

due to inaccessibility of centromeres, telomeres, or other repet-

itive elements. Therefore, we do recommend following up prom-

ising novel candidates that emerge in future benchmarking

studies, with orthogonal validations to further improve the

current truth set.

This study was not designed to compare performance of

sequencing platforms or data analysis pipelines, since that

benchmarking would require the very latest platform, chemis-

tries, and pipeline versions to be useful. Nevertheless, some

interesting observations can be made. First, there is clear

complementarity between the various platforms for the compre-

hensive identification of all real events. However, bioinformatic

pipelines for somatic SV detection are still clearly in different

stages for the different platforms, with the most commonly

used Illumina-based approaches yielding lowest numbers of

false positives. For example, joint calling in the tumor and normal

sequencing data and cancer-specific somatic filtering are very

important to reduce false-positive rates in somatic SV calling.

However, such an approach was only available for the Illumina

dataset, as no somatic-specific callers or protocols exist for

the other datasets yet. We believe future tool optimization for so-

matic SV calling, assisted by truth variant call datasets as well as
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the development of platform-specific germline and artefact-

filtering datasets (‘‘pools of normals’’) based on large numbers

of samples, will effectively address this challenge. Second,

data analysis pipelines yield different annotations for the same

event. This calls for further standardization of variant annotation

and nomenclature, although some observed differences are

intrinsic to the use of short- and long-read technologies. For

example, a long-templated insertion may be called as two inde-

pendent translocations by short-read SV callers, while long-

read-based technology would detect this readily as an insertion.

Third, despite previous studies showing the added value of long

reads for SV detection for germline events, our somatic SV truth

set is resolved almost in its entirety with the ILL short-read data-

set. Likely, this is mostly due to the more advanced somatic SV

calling pipelines developed for short-read data than for long-

read data, as previously discussed. However, this observation

may also be explained by fundamental differences between

germline and somatic SVs, such as the overall distribution

throughout the genome, the involvement of repetitive regions,

and the total number of such events.With further methodological

advances in the somatic and germline SV calling, these differ-

ences will undoubtedly be further characterized and better

understood.

Apart from the benchmarking opportunities provided by our

truth set, the COLO829 cell line has the advantage that it is, in

contrast to real tumor samples, a renewable source. Therefore,

it can be used for assessing the impact of future platform devel-

opments or the performance of completely new technologies for

somatic mutation detection by generating new datasets from the

same cell line. However, although the COLO829 cell line is repre-

sentative of SV as observed in cancer, including small and large

CNAs (including aneuploidies) and both simple and complex SV

events, it is not necessarily representative in all aspects for real

tumor samples. First, tumor samples do typically not consist of

tumor cells only but are a mix of tumor and normal cells (e.g.,

stromal cells and infiltrating immune cells). We show that the

raw data obtained in this study can be used effectively to mimic

variable tumor purity and that the truth set is instrumental for

assessing the performance of the bioinformatic data analysis

tools at variable tumor purity. As expected, our results show

that both recall and precision heavily depend on tumor purity

for all platforms. Secondly, tumors evolve continuously and are

typically genetically heterogeneous, especially primary tumors,

involving potentially subclonal SV events. While the COLO829

cell line is relatively stable at the genomic level, it has a certain

level of genetic heterogeneity and is subject to mutation

accumulation and evolution throughout culture like any cell

line. This variation is dynamic and might differ between cell line

isolates, as already demonstrated by the various studies on

this cell line,31,32 and thus limit the utility of a single defined truth

set obtained as presented here. Therefore, novel somatic SVs

not present in our current truth set should be validated indepen-

dently, especially when data were generated using different

batches of cells from the COLO829 cell lines. Finally, tumors

are in general very heterogeneous both within the context of a

specific tumor type but especially between tumor types. For

example, microsatellite instable (MSI) tumors show a high

number of small indels,36 homologous-recombination-deficient
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(HRD) tumors present many deletions with microhomology and

large duplications,37 and pediatric hematological cancers

usually show very low mutational load but enhanced levels of

somatic SVs, although often involving specific but complex

genomic loci (e.g., the immunoglobulin H [IgH] locus).38,39 The

specificity for capturing such heterogeneity effectively or the

impact of specific genomic events that may co-occur in a given

tumor sample, like, for example, whole-genome duplication or

chromothripsis, on overall performance of a specific sequencing

technique or data analysis tool is of course not captured in a

single cell line and requires the development of complementary

datasets. The COLO829 truth set should therefore be used with

caution, and analyzing additional cancer cell lines with matching

normal cell lines may provide an attractive route for future

improvements, as these represent, in principle, an endless

source of genomic material for benchmarking of future DNA

analysis technologies but also for quality monitoring in routine

production labs under accreditation. However, availability of

suited cell lines that represent the full genetic diversity of cancer

is a clear limitation. Ideally, one would thus resort to thoroughly

analyzed real tumor samples, even though, in practice, availabil-

ity of sufficient material for multi-lab and multi-technology

analyses can be problematic and sharing and reusing of patient

material and data may require complex consenting and legal

procedures. The use of synthetic samples could also be a

complementary approach,40 although its utility for mimicking

complex structural variation remains to be demonstrated and

technical challenges may arise when the sequencing technology

that one wants to benchmark requires input of high-molecular-

weight molecules.

Taken together, we believe the SV truth set described here

as well as the underlying raw data are valuable resources for

benchmarking and fine-tuning analysis settings of somatic SV

calling tools, but the data may also be used for the development

of novel analysis tools, for example, phasing of structural vari-

ants. All analysis results and raw data are publicly available to

enable such applications without access restrictions (ENA:

PRJEB27698; an overview of the available data and specific ac-

cess link can be found at Table S6). We demonstrate this utility

by analyzing the impact of tumor purity and sequencing depth

on SV recall and precision for different technologies, thereby

providing valuable insights in the potential impact of technology

platform choice and experimental design in relation to diagnostic

accuracy and overall costs. Furthermore, these results highlight

the need of benchmarking somatic SV detection methods at

different tumor purities and sequencing depths rather than under

a single fixed condition, since these parameters are highly

variable within and between cohorts and can result in strong

performance variation.

Limitations of the study
In this study, we used different sequencing techniques and

analyzed the tumor cell line genome to a variable but limited

depth. As a consequence, subclonal events with a frequency

below 5% are likely missed in our analyses. This effect could

potentially be larger for events that can only be detected with a

specific technology and for which sequencing coverage was in

the range of only 303 to 503 (PB and 10X). In addition, we
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sequenced tumor samples to a higher depth than the germline

control samples, which is a routine practice to compensate for

variable tumor purity and heterogeneity, but it has been shown

that performance of somatic variant calling is affected by unbal-

anced coverage of test and reference samples.34 Nevertheless,

it needs to be demonstrated whether this effect is also present

for structural variant calling and the variant calling tools used.

Finally, it should be noted that the structural variant call set

was manually curated. Although all true events were indepen-

dently validated, curation may have incorrectly removed real

variants.
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Critical commercial assays

Truseq Nano reagent kit Illumina Cat#:20015965

Hiseq X Ten reagent kits Illumina V2.5

MinION/GridION flow cells Oxford Nanopore Technologies R9.4

Sequel chemistry Pacific Biosciences V5.0

Sequel binding kit Pacific Biosciences Cat#:101-365-900

Sequel sequencing kit Pacific Biosciences Cat#:101-309-500

Chromium Genome platform 10X genomics N/A

Novaseq platform Illumina V1

SP Blood & Cell culture Isolation chip Bionano genomics Cat#:80030

Direct Label and Stain kit Bionano genomics Cat#:80005

Saphyr chip and instrument Bionano genomics Cat#:20367

Biotin-labelled custom targeted probes Twist Biosciences Cat#:100253; 100255; 100527; 100400

SpectrumOrange probes Abbott Vysis Cat#:08N31-030

Vysis ALK Break Apart FISH Probe Kit Abbott Vysis Cat#:06N38-023

SpectrumAqua probes Leica Biosystems N/A

Leica DM5500 fluorescence microscope Leica Biosystems N/A

Deposited data

Raw and mapped genomic data for

COLO829 and COLO829BL

This paper ENA: PRJEB27698

Raw and processed somatic SV

VCFs and CNA calls

This paper Zenodo: http://doi.org/10.5281/zenodo.4716169

Somatic SV and CNA calls Arora et al., 2019 https://www.nygenome.org/bioinformatics/3-

cancer-cell-lines-on-2-sequencers/

Experimental models: Cell lines

COLO829 ATCC CRL-1974

COLO829BL ATCC CRL-1980

Software and algorithms

BWA mem v0.7.5 Li, 2013 https://github.com/lh3/bwa

GATK v.3.4-46 DePristo et al., 2011 https://gatk.broadinstitute.org/hc

GRIDSS v.2.0.1 Cameron et al., 2021 https://github.com/PapenfussLab/gridss

NGMLR v.0.2.6 Sedlazeck et al., 2018 https://github.com/philres/ngmlr

Sniffles v.1.0.9 Sedlazeck et al., 2018 https://github.com/fritzsedlazeck/Sniffles

NanoSV v.1.2.2 Cretu Stancu et al., 2017 https://github.com/mroosmalen/nanosv

SURVIVOR v.1.0.6 Jeffares et al., 2017 https://github.com/fritzsedlazeck/SURVIVOR

Minimap2 v.2.11-r797 Li, 2018 https://github.com/lh3/minimap2

pbsv v.2.0.1 https://github.com/PacificBiosciences/pbsv

LongRanger-WGS v2.2.2 https://support.10xgenomics.com/genome-

exome/software/pipelines/latest/using/wgs

Bionano Access https://bionanogenomics.com/support-

page/bionano-access-software/

Sambamba v.0.6.5 Tarasov et al., 2015 https://github.com/biod/sambamba

Bedtools v.2.25.0 Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

Picard v.1.141 http://broadinstitute.github.io/picard
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BIC-SEQ2 v0.7.2 Xi et al., 2016 compbio.med.harvard.edu/BIC-seq/

Ginkgo Garvin et al., 2015 http://qb.cshl.edu/ginkgo

Manta v.0.29.5 Chen et al., 2016 https://github.com/Illumina/manta

Primer3 v.1.1.4 Untergasser et al., 2012 https://github.com/primer3-org/primer3

SV-plaudit Belyeu et al., 2018 https://github.com/jbelyeu/SV-plaudit

Integrated Genome Viewer (IGV, v.2.4.0) Robinson et al., 2017 https://software.broadinstitute.org/software/igv/

ENSEMBL Assembly converter https://www.ensembl.org/Homo_sapiens/

Tools/AssemblyConverter

StructuralVariantAnnotation v1.2.0 Cameron and Dong 2019 https://www.bioconductor.org/packages/

release/bioc/html/StructuralVariantAnnotation.

html

BioRender https://biorender.com/

Other

All code used in the analysis This paper https://github.com/UMCUGenetics/COLO829_

somaticSV; https://doi.org/10.5281/zenodo.

6426985

Code used for tumor purity and

sequencing depth analysis

This paper https://github.com/UMCUGenetics/tumps;

https://doi.org/10.5281/zenodo.6426991
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Edwin Cuppen (e.

cuppen@hartwigmedicalfoundation.nl).

Materials availability
This study did not generate new unique reagents or materials.

Data and code availability
d All genomic data generated and used in this study are available in ENA with project ID ENA: PRJEB27698. Raw, somatic and

truth set VCF files, including updated calls used in benchmarking and GRCh38 lifted-over truth set, and CNA files are available

at Zenodo: http://doi.org/10.5281/zenodo.4716169. More data availability details are available in Table S6.

d All code used in the preparation of the somatic SV truth set is available at GitHub: https://github.com/UMCUGenetics/

COLO829_somaticSV (https://doi.org/10.5281/zenodo.6426985). The code used for simulations of tumor purity and sequencing

depth is available at GitHub: https://github.com/UMCUGenetics/tumps (https://doi.org/10.5281/zenodo.6426991).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODELS AND SUBJECT DETAILS

COLO829 (ATCC� CRL-1974TM) and COLO829BL (ATCC� CRL-1980TM) cell lines were obtained from ATCC in September 2017. A

single batch of cells was thawed and cells were expanded and grown according to standard procedures as recommended by ATCC.

Cell pellets were split for technology-specific DNA isolation at 33 days (COLO829 & COLO829BL for the ILL and ONT datasets),

35 days (COLO829 for the PB, 10X and BNG datasets) and 23 days (COLO829BL for the PB, 10X and BNG datasets).

METHODS DETAILS

Genomic analyses per technology
Illumina

COLO829 and COLO829BL libraries were prepped with Truseq Nano reagent kit and sequenced on the HiSeq X Ten platform using

standard settings and reagent kits (chemistry version V2.5). Reads were mapped to GRCh37 with BWA mem (version 0.7.5,41), fol-

lowed by indel realignment with GATK (v3.4-46,42). SVs were called jointly for COLO829 and COLO829BL with GRIDSS (v2.0.1,43).

Somatics SVs were filtered with the GRIDSS somatic SV filtering script (https://github.com/PapenfussLab/gridss/blob/master/

scripts/gridss_somatic_filter.R).
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COLO829 and COLO829BL libraries were sequenced on the MinION and GridION platforms using R9.4 flow cells. Reads were map-

ped to GRCh37 with NGMLR (v0.2.6, default parameters,44) with default parameters. SV calling was performed with both NanoSV (v.

1.2.2, default parameters,20) and Sniffles (v1.0.9, parameters ‘‘–report_BND –genotype’’,44) for COLO829 and COLO829BL sepa-

rately. All SV calls for both NanoSV and Sniffles were merged with SURVIVOR (v1.0.6,45) with a distance of 200 bp and calls with

evidence in COLO829BL for NanoSV or Sniffles were discarded.

PacBio

COLO829 and COLO829BL libraries were sequenced on the Sequel System with the 5.0 chemistry (binding kit 101-365-900;

sequencing kit 101-309-500). Reads were mapped to GRCh37 with minimap2 (v2.11-r797,46). SVs were called jointly for

COLO829 and COLO829BL with pbsv (v2.0.1, https://github.com/pacificbiosciences/pbsv/) using default parameters. Somatic

SV calls were filtered by removing any call with a supporting read in COLO829BL.

10X

COLO829 and COLO829BL 103 genomics libraries were prepared on the Chromium platform and sequenced on the NovaSeq plat-

form (chemistry version V1). Reads were analyzed with the LongRanger WGS pipeline (v2.2.2) separately for COLO829 (somatic

mode) and COLO829BL (default parameters). SV calls for COLO829 and COLO829BL were merged with SURVIVOR (v. 1.0.6,45)

with an overlap distance of 200 bp and SV calls with evidence in COLO829BL were discarded.

Bionano

DNA for COLO829 and COLO829BLwas labelled using the Bionano Direct Label and Stain (DLS) kit. The labelled DNAwas linearized

in a Saphyr chip and imaging was performed on the Saphyr instrument. SV calling was performed on the Bionano Access platform.

For each sample, 1.5million cultured cells were used to purify ultra-highmolecular weight DNA using the SPBlood &Cell Culture DNA

Isolation Kit following manufacturer instructions (Bionano genomics, San Diego USA). Briefly, after counting, white blood cells were

pelleted (2200 g for 2 mn) and treated with LBB lysis buffer and proteinase K to release genomic DNA (gDNA). After inactivation of

proteinase K by PMSF treatment, genomic DNA was bound to a paramagnetic disk, washed and eluted in an appropriate buffer. Ul-

tra-High molecular weight DNA was left to homogenize at room temperature overnight. The next day, DNA molecules were labeled

using the DLS (Direct Label and Stain) DNA Labeling Kit (Bionano genomics, San Diego USA). Seven hundred and fifty nanograms of

gDNA were labelled in presence of Direct Label Enzyme (DLE-1) and DL-green fluorophores. After clean-up of the excess of

DL-Green fluorophores and rapid digestion of the remaining DLE-1 enzyme by proteinase K, DNA backbone was counterstained

overnight before quantitation and visualization on a Saphyr instrument. A volume of 8.5 mL of labelled gDNA solution of concentration

between 4 and 12 ng/ul was loaded on the Saphyr chip and scanned on the Saphyr instrument (Bionano genomics, San Diego USA).

A total of 1.6 Tb and 1.5 Tb of data was collected for the cancer and blood sample, respectively.

De novo assembly Pipeline and Copy number variants calling were performed and against the Genome Reference Consortium

Human Build 37 (GRCh37) HG19 human genome assembly (RefAligner version 7520). Events detected by the de novo

assembly pipeline were subsequently compared against the matched blood control, and those that are absent in the assembly or

the molecules of the control were considered as somatic variants (https://bionanogenomics.com/wp-content/uploads/2018/04/

30190-Bionano-Solve-Theory-of-Operation-Variant-Annotation-Pipeline.pdf).

Consolidation of SV calls

SomaticSVcalls for eachdataset (ILL,ONT,PBand10X)weremergedusingSURVIVOR (v. 1.0.6 45withanoverlapdistanceof200bp.All

analyses aforementioned were performed genome-wide and no genomic regions from GRCh37 were filtered or ignored. In all cases a

minimumSVsizeof 30bpwasestablished.Microsatellite instability falls in the indel sizecategoryand thus is not considered in this study.

Depth and molecular length calculations
Average base depth and depth distribution for ILL, ONT, PB and 10X was calculated based on 1,000,000 random positions on the

genome with Sambamba (v0.6.5,47). Average base depth for BNG was calculated based on the same 1,000,000 random positions

using Bedtools (v2.25.0,48).

Average molecular length and length distribution was calculated based on insert size for ILL, read length for ONT and PB, on syn-

thetic molecular length based on the MI tag for 10X, on optical map length for BNG. For ILL, average insert size was calculated using

Picard (v1.141, http://broadinstitute.github.io/picard).

Copy number analysis
Somatic CNA calling was performed on the ILL dataset with BIC-SEQ2 with default parameters (v0.7.2,49). For the remaining data-

sets, since no specific genome-wide CNA calling algorithms were available for each technology, BAM and optical map (xmap) files

were converted to BED format using Bedtools (v2.25.0,48) andCNA calling was performedwith Ginkgo.50 CNA calls from the different

datasets were merged using 1MB bins to calculate Pearson’s correlation between datasets and for plotting.

Validations
Capture

For each break-junction of the merged somatic SV calls 2 capture probes of 100 bp in length were designed, one at either side of the

breakpoint, with a maximum distance of 100 bp from the breakpoint at GC percentage as close as possible to 50%, for a total of
e3 Cell Genomics 2, 100139, June 8, 2022
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18148 custom probes. These custom capture probes were then ordered from Twist Biosciences. Then, libraries for COLO829 and

COLO829BL were prepared and hybridized with the biotin-labelled custom targeted probes following the manufacturer’s protocol

(Twist Biosciences catalog IDs: 100253, 100255, 100527, 100400). Using streptavidin beads the hybridized DNA was pulled from

the DNA pool, and amplified by PCR. Enriched targeted libraries were sequenced on the Illumina NextSeq platform. NextSeq-Cap-

ture validation sequencing data were mapped with BWA mem (v0.7.5,41) and SV calling was performed with Manta (v0.29.5,51 inde-

pendently for COLO829 and COLO829BL. SV calls for COLO829 and COLO829BL were merged using SURVIVOR (v1.0.6, overlap

distance of 50 bp,45) and only calls with no evidence in COLO829BL were considered as somatic and validated.

PCR

We selected 88 high-confidence SV candidates for PCR validation based on an initial screening of the somatic SV truth set with IGV

and added 296 randomly selected additional SV candidates for a total of 384 assays.We automatically designed primers for these SV

breakpoints using Primer3 (v1.1.4,52). PCR assays were performed on COLO829 and COLO829BL genomic DNA. Libraries were pre-

pared for PCR results and sequenced on both the MiSeq and ONT-MinION platforms. MiSeq-PCR validation sequencing data were

mapped with BWA mem (v0.7.5,41) and SV calling was performed with Manta (v0.29.5,51), independently for COLO829 and

COLO829BL. ONT PCR validation sequencing data were mapped with minimap2 (v2.15,46), and SV calling was performed with

NanoSV (v1.2.2, default parameters,20) independently for COLO829 and COLO829BL. Moreover, 70 additional SV calls that were

shown as somatic in the Capture validation set were also subjected to PCR and products were sequenced on the MinION through

the same protocol described above.

SV calls for COLO829 and COLO829BL from the Miseq-PCR and the two Nanopore-PCR sets were merged using SURVIVOR

(v1.0.6, overlap distance of 50 bp,45). The threshold to merge SVs was tighter in the validation dataset than in the raw genomic data-

set due to the highly targeted approach and the small size of a few base pairs of the amplicons. Only SV calls with no evidence in any

of the COLO829BL sets were considered somatic and validated.

FISH

For FISH validation, we selected probes that bind to 6 genomic regions, including Chromosome Enumeration Probes (CEP) for the

centromeric region of chromosome 13, 16 and 18 (CEP13, CEP16, CEP18), labeled with SpectrumOrange (Abbott Vysis, Downers

Grove, IL) and centromeric region of chromosome 9 (CEP9), labeled with SpectrumAqua (Leica Biosystems, Amsterdam). Further-

more, locus specific break-apart probes for chromosome 2p23 fusion (SpectrumOrange/SpectrumGreen, Vysis ALK Break Apart,

Abbott Vysis, Downers Grove, IL) and 9p24 fusion (SpectrumOrange/SpectrumGreen Leica Biosystems, Amsterdam) were used.

COLO829 cells were dissociated using trypsin, counted, washed and diluted to contain a total of 50,000 cells in 100 mL. Monolayer

cell suspensions were concentrated on a microscope slide using cytospin. Then, FISH was performed according to diagnostic stan-

dards. Slides were visualized on a Leica DM5500 fluorescence microscope and for each probe, 100 cells/slide were recorded.

SV selection pipeline
Merged somatic SV calls, with an arbitrary size cut-off of 25 bp, were overlapped with the validation outcomes with SURVIVOR

(v. 1.0.6,45) using an overlap distance of 50 bp (PCR, CAPTURE) and 1 kbp (BNG). Only somatic SV calls with support from multiple

datasets and calls with support from a single dataset whichwere validatedwere selected. SVs involving unstablemicrosatellites were

not considered as part of our analyses. All calls were manually curated by using the SV-plaudit cloud-based framework53 that uses

Samplot to generate images fromSV coordinates and BAM files.We generated such images for the somatic SV calls for each dataset

(ILL, ONT, PB and 10X) and for the validations (PCR-ONT, PCR-MISEQ and CAPTURE). We evaluated each of these image datasets

independently and classified each somatic SV call as ‘‘somatic’’, ‘‘germline’’ or ‘‘false positive’’. We also used the Integrated Genome

Viewer (IGV, v2.4.0,54) to verify some SVs. We performed the same analysis on 176 randomly selected SV calls belonging to a single

dataset and which were not validated. Finally, we gathered the somatic SV calls and generated the final somatic VCF file.

Liftover to GRCh38
Somatic SV breakpoint positions were lifted over to GRCh38 genomic coordinates using the ENSEMBL Assembly Converter (https://

www.ensembl.org/Homo_sapiens/Tools/AssemblyConverter). We used a custom script in order to change the ALT field in the VCF.

The lifted-over VCF file is available in the data bundle.

Comparison to external sources
CNA calls from26 were downloaded (HiSeq dataset, https://www.nygenome.org/bioinformatics/3-cancer-cell-lines-on-2-sequencers/)

and lifted to GRCh37 genomic coordinates with liftOver (UCSC). CNA calls from the four different single cell clusters were obtained

from.32 These datasets were then merged using 1MB bins to calculate Pearson’s correlation between datasets and for plotting.

The two somatic SV sets from26 (HiSeq and NovaSeq sets, https://www.nygenome.org/bioinformatics/3-cancer-cell-lines-on-2-

sequencers/) were downloaded. Since these are BEDPE files based on GRCh38 genomic coordinates, we converted our somatic

SV truth set to BEDPE format and lifted it to those coordinates using the liftOver tool from UCSC. We then intersected those SV

sets with our truth set using Bedtools (v2.25.0,48) and differentiated between SVs with overlap on both sides, overlap only on one

side and not overlapping. We lifted all SVs with no overlap or one-sided overlap and manually evaluated them in our data using IGV

v2.4.0,54).
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Tumor purity and sequencing depth analysis
For tumor purity simulations in each of the ILL, ONT and PB datasets, COLO829 and COLO829BL BAM files were randomly sub-

sampled and mixed in different ratios, dependent on the sequencing depth to achieve in silico tumor purities of 10, 20, 25, 50 and

75 with Sambamba (v0.6.5,47). The same somatic SV calling pipeline used for the different datasets was applied to each of the tumor

purity subsets. The resulting somatic SV file of each tumor purity subset was overlapped using a window of 100 bp with the truth set

VCF to determine the number of true and false positives and true negatives. This experiment was performed in triplicate for each

tumor purity and each technology with the original COLO829 BAM file as positive control (100% tumor purity) and the original

COLO829BL BAM file as negative control (0% tumor purity).

For sequencing depth simulations using the ILL dataset, one of the triplicates from each tumor purity simulation was selected

together with the COLO829 and COLO829BL files. Each of these BAM files was subsampled to depths of 13, 53, 103, 303 and

503 (plus the original 983) with Sambamba (v0.6.5,47). Somatic SV calling was performed independently for each of the subsets

and the resulting somatic SV VCF file was overlapped with the truth set to determine the number of true and false positives and false

negatives.

Benchmarking against the COLO829 truth set
We developed an SV comparison script in R, available at: https://github.com/UMCUGenetics/COLO829_somaticSV/blob/master/

SV_benchmarking/SV_benchmarking.R. This script makes use of the StructuralVariantAnnotation package from Bioconductor

(v1.2.0) to overlap breakpoints from one or multiple VCFs with a defined truth set. We rerun GRIDSS (v. 2.10) on the ILL data,

PBSV (v. 2.4.0) on the PB data and Sniffles (v. 1.0.12) on the ONT data. We compared the original version and the updated version

of the calls with the truth set using the script aforementioned. Users can modify overlap parameters like the margin about the

breakpoint.

Figure panels 2-A, 3-C and 3D and the graphical abstract were created using Biorender.com.

QUANTIFICATION AND STATISTICAL ANALYSIS

This study does not involve any statistical analysis or quantification.
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