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Abstract

One goal of genomic medicine is to uncover an individual’s genetic risk for disease, which 

generally requires data connecting genotype to phenotype, as done in genome-wide association 

studies (GWAS). While there may be clinical promise to employing prediction tools such as 

polygenic risk scores (PRS), it currently stands that individuals of non-European ancestry may 

not reap the benefits of genomic medicine because of underrepresentation in large-scale genetics 

studies. Here, we discuss why this inequity poses a problem for genomic medicine and the reasons 

for the low transferability of PRS across populations. We also survey the ancestry representation 

of published GWAS and investigate how estimates of ancestry diversity in GWAS participants 

might be biased. We highlight the importance of expanding genetic research in Africa, one of 

the most underrepresented regions in human genomics research, and discuss issues of ethics, 

resources, and technology for equitable advancement of genomic medicine.
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THE PROMISE AND CHALLENGES OF GENOMIC MEDICINE

From its initial objective of identifying all the genes in the human genome, the Human 

Genome Project (HGP) has led to a multitude of discoveries and outcomes related to 

human health and disease prevention. Genomic analyses have led to the discovery of new 

trait-associated loci (1) and, in some cases, the identification of causal variants impacting 

common disease risk (2). Clinically, genomics has had some success in improved diagnoses 

of rare, often congenital, diseases (3); treatments for chronic conditions (4); and even 

cures for certain monogenic diseases (5). Precision medicine (also known as personalized 

medicine) has benefited from developments in genomics, which has the potential to improve 

healthcare.

Precision medicine considers an individual’s genetics and environment for a tailored 

treatment and prevention strategy to promote health. Genomic medicine, a subset of 

precision medicine, has benefited from the massive growth in datasets with genetic and 

phenotypic data. The growth of participants included in genome-wide association studies 

(GWAS) has been tremendous (6). Many complex traits and diseases have a polygenic 

basis and a considerable genetic variance component based on heritability studies (7, 8). 

Thus, applying knowledge gained from large genetic datasets to quantify risk can potentially 

benefit patients through both preventative and treatment approaches.

One tool used in genomic medicine is the polygenic risk score (PRS). A PRS aggregates the 

effects of independent genetic variants, which typically have small effects on the phenotype, 

to quantify genetic risk or burden. While in recent years there has been a flurry of new 

methods for PRS calculation (9), most of them rely on GWAS summary statistics to estimate 

weights for alleles to estimate an individual’s genetic risk. The field of human genetics has 

entered an era of GWAS sample sizes on the order of hundreds of thousands, and even 

millions, of individuals, as in the case of height and type 2 diabetes (10, 11). With growing 

sample sizes, GWAS are estimating the effect sizes of common variants more accurately, 

which can be useful for risk stratification for clinically relevant phenotypes (12, 13).

Despite these numbers, the populations that form some of the largest GWAS cohorts 

do not adequately represent all of the genetic variation in the world. This inadequate 

representation in biomedical research participation has resulted in an incomplete catalog 

of human genetic variation and an incomplete understanding of the relationship between 

genetic and phenotypic variation. The extent of the disparity presents a major roadblock 

toward equitably advancing genomic medicine. For example, a potential issue lies in the 

equitable use of PRS for disease risk prediction, which has been shown to be less useful in 

non-European groups (14, 15). However, there have been efforts to broaden our knowledge 

of human genetic variation, including the National Heart, Lung, and Blood Institute’s 

TOPMed initiative, the PAGE (Population Architecture Using Genomics and Epidemiology) 

Study, the H3Africa Consortium, and the National Institutes of Health’s All of Us initiative 

(16–19).

In this review, we discuss why the lack of ancestry diversity in large human genetic studies 

poses a problem for genomic medicine. We survey the ancestries represented by participants 
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in GWAS and how these estimates are influenced by resampling individuals across GWAS. 

Finally, we discuss the barriers to equitable representation in human genetic data, with a 

focus on African genomics given its underrepresentation in human genetics, and we outline 

future directions to help ameliorate inequities in precision medicine.

WHAT IS THE CURRENT LANDSCAPE OF ANCESTRY REPRESENTATION 

IN GENOME-WIDE ASSOCIATION STUDIES?

The ancestry of individuals in GWAS is heavily biased toward European populations (6, 

20–22). Previous surveys of ancestry diversity in GWAS have generally relied on metadata 

provided by the GWAS Catalog, a publicly accessible database of GWAS (23). The GWAS 

Catalog metadata contain entries for individual studies, where one study is one GWAS 

for a phenotype, and each entry contains information about the study, such as the number 

of individuals and their ancestry, if known. A statistic often reported is the proportion of 

individuals belonging to a particular ancestry group across all GWAS up to some timepoint. 

For example, Morales et al. (22) reported 78% of all individuals in GWAS were of European 

ancestry up to 2017, and Sirugo et al. (20) reported 78% up to 2019. The GWAS Diversity 

Monitor, an online web resource, updates these ancestry diversity statistics in real time, and 

reported that 83.8% of all participants in GWAS were of European ancestry as of November 

2021 (24).

We downloaded metadata of published GWAS from the GWAS Catalog and conducted 

several analyses related to the ancestry composition of studies and individuals used in 

studies to examine changes over time.1 The numbers of studies and participants in GWAS 

have grown tremendously since 2005 (Figure 1a). Examining yearly trends, we observed 

that the European bias in GWAS has changed little over the decade of 2011–2020, 

whether considering the proportion of studies using European compared to non-European 

participants or considering the ancestry of individual participants (Figure 1b). After 2012, 

which had the lowest proportion of European ancestry participants, there was a rise to a 

stable proportion of ~80% over the period of 2015–2020 (Figure 1b).

Previous reports of the cumulative proportion of European individuals involved in GWAS 

are affected by the issue of repeated sampling of individuals, which may lead to biased 

estimates if one cares about counting only independent GWAS participants. To investigate 

how repeated sampling of the same individuals might affect estimates of European bias 

in GWAS, we examined all the height GWAS publications and manually kept track of 

repeated sampling of the same individual under the assumption that the same cohort 

across publications contains overlapping individuals. Several large resources for height 

GWAS such as the GIANT (Genetic Investigation of Anthropometric Traits) Consortium 

and the UK Biobank have been repeatedly used across studies (Figure 2a). We found that 

after correcting for repeated sampling, Europeans still constituted the majority of GWAS 

participants for height (68%); this percentage is lower than the percentage of Europeans in 

1We performed analysis of the GWAS Catalog metadata using R version 4.0.3. Code and associated data files for the analysis can be 
found in our GitHub repository (https://github.com/TishkoffLab/GWAScatalogAnalysis). Specific details about steps in the analyses 
and data curation can be found in the R markdown file.
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such studies when not considering repeated sampling of individuals (87%) (Figure 2b). The 

next most common ancestries of height GWAS were East Asian (17%), African American/

Afro-Caribbean (7.5%), and Hispanic or Latin American (3.8%) (Figure 2c). Therefore, 

when one considers the number of independent individuals used in GWAS, the proportion 

of participants of European ancestry may be somewhat smaller than estimates that do not 

consider resampling of individuals across multiple GWAS. Nonetheless, the overall message 

remains the same: that European ancestry individuals still constitute a large majority of 

participants in GWAS.

In order to generate more accurate PRS for individuals of diverse ancestries, researchers 

need to increase the sample sizes of independent participants, since the number of 

independent participants helps drive the performance of predictive models. Because most 

large biobanks are located in North America and Europe (Figure 3), they are generally 

enriched for individuals with European ancestry. For several traits of biomedical interest 

with the largest number of GWAS Catalog studies [e.g., Alzheimer’s disease, asthma, body 

mass index (BMI), coronary artery disease, systolic blood pressure, schizophrenia, type 2 

diabetes], we recorded the GWAS with the highest sample size available across several 

ancestry categories (Figure 4a–g) (22). We observed that European ancestry individuals are 

vastly more represented across the surveyed phenotypes. Among non-European groups, East 

Asian participants were the largest group included in GWAS for the surveyed phenotypes. 

However, even among the GWAS we examined, the largest East Asian sample size (n 
= 433,540) is not even half of the European sample size (n = 1,114,458) (Figure 4g). 

In addition, there were consistently lower numbers of sub-Saharan African participants 

compared to African American or Afro-Caribbean participants across the phenotypes we 

examined. For type 2 diabetes, for example, we see extreme disparities, with the European 

GWAS sample size at n = 1,114,458, the African American or Afro-Caribbean sample size 

at n = 56,092, and the sub-Saharan African sample size at n = 7,809. Other groups, such as 

Native American, Oceanian, and Southeast Asian, were also severely underrepresented for 

type 2 diabetes GWAS.

BUILDING BLOCKS OF POLYGENIC RISK SCORES: TRANSFERABILITY OF 

GENOME-WIDE ASSOCIATION STUDIES RESULTS ACROSS POPULATIONS

A current issue in genomic medicine is understanding the differences in the accuracy of 

PRS across populations of different ancestries and reducing these disparities. While the 

quantitative difference in predictive power for PRS, often based on GWAS of primarily 

European ancestry individuals, varies according to phenotype, generally the same trend 

appears of reduced prediction accuracy for non-European groups compared to that for 

European groups (14, 15). For example, PRS for people of African descent that predict the 

likelihood of cardiomyopathies can be unreliable, or even misleading, if developed using 

data that are largely from European ancestry populations (25).

Various causes of the nontransferability of PRS across populations of different ancestries 

have been explored, but it should be noted that the heritability (i.e., how much genetic 

variance explains the phenotypic variance) places an upper bound on the predictive power 
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of PRS. Heritability can vary widely across phenotypes, within traits across populations, and 

even within ancestry groups for the same phenotype (7). Reasons for heritability differences 

include differences in the environmental variance component or in genetic variation at 

trait-influencing loci. However, differences in heritability cannot fully account for losses of 

explanatory power of PRS across ancestry groups.

One of the causes of PRS’ lack of portability across ancestry groups is that there are 

differences in the patterns of linkage disequilibrium (LD) across ancestry groups due to 

differences in their demographic histories (20). Single-nucleotide polymorphisms (SNPs) 

associated with a phenotype in GWAS typically are tag SNPs that are in LD with the causal 

variant(s). A SNP that tags a causal variant in one population may not tag the same causal 

variant in another population. Under one model, differences in LD and allele frequencies 

can account for up to ~86% of the loss in prediction accuracy between Europeans and 

Africans on average over several traits (26). Several methods have tried to address limited 

PRS transferability by using cohorts of different ancestry, with some success (27–29).

Differences in effect sizes between populations (effect size heterogeneity) at causal variants 

can also contribute to the portability problem of PRS across populations. For some 

phenotypes, effect size correlations across populations can fall significantly under 1, 

suggesting the magnitude and perhaps even direction of effects of some variants might 

differ across populations (30, 31). However, in practice, detecting actual trans-ancestry 

effect size heterogeneity for causal variants presents a challenge. For example, a tag SNP 

in high LD with the causal variant in one population would have a larger effect on the 

phenotype than it would in another population in which the LD between it and the causal 

variant is lower. Additionally, given the generally higher LD in non-African populations 

(32), a tag SNP ascertained in a non-African group, which could capture the effects of 

multiple causal variants, may have a different effect size compared to the same variant in an 

African population that captures the effect of a single causal variant. One study examined 

correlations of causal effect sizes for shared common variants across populations from 

different continents while accounting for LD; across nine traits the average correlation of 

effect sizes was 0.55 between East Asians and Europeans (33). In functionally important 

regions of the genome (e.g., conserved sites), the trans-ancestry correlation appears to be 

further diminished (34).

Effect size heterogeneity could also stem from interaction effects, such as gene-by-

environment (GxE), gene-by-gene (GxG; i.e., epistasis), and dominance effects. Interaction 

effects could impact PRS transferability due to cross-population differences in environment 

and allele frequencies (or genotype frequencies in the case of dominance effects) at the 

causal variants. Evidence of the importance of GxE in the genetic architecture of complex 

traits has been growing, particularly for some traits such as BMI (35–38), blood pressure 

(39, 40), and psychiatric traits (41). It has also been shown that sample characteristics, such 

as sex and age, of the GWAS and test cohorts can reduce PRS portability across groups even 

of the same genetic ancestry (42). The most consistent GxE signal for BMI, and arguably 

for any complex trait, comes from the FTO locus, but like most genotype–phenotype 

associations we know little about the mechanism underlying this signal. A difference across 

populations in the contribution of direct genetic effects (variants carried by the individual 
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that influence the individual’s phenotype) and indirect genetic effects (variants carried by 

relatives, such as parents, that act indirectly on an individual’s phenotype) can also be a 

consequence of GxE interactions. Marginal GWAS effect sizes include both indirect and 

direct effects, and it is difficult to partition these effects without family data (43).

In contrast, robust evidence for epistasis playing a significant role in the genetic architecture 

of complex traits in human populations is less apparent. It is challenging to evaluate the 

replicability of myriad GxG signals claimed in the literature, especially given the rich 

variety of approaches for detecting epistasis (44).There are, however, some convincing 

examples of GxG effects in humans, such as the APOE ε4 variant, which confers different 

risks for Alzheimer’s disease across ancestry groups (45). To control for environmental 

confounding, several studies have modelled the interaction between risk variants and 

local ancestry background and observed significant interaction effects, which could be 

due to frequency differences in nearby interacting variants present on different ancestry 

backgrounds (46, 47). Whether similar kinds of epistatic effects, but of a smaller magnitude, 

occur broadly remains to be shown. Leveraging local ancestry in GWAS might be helpful for 

discovering GxG effects, and some efforts have been made in this space (48).

Aside from interaction effects (GxG, GxE, and dominance), observed effect size 

heterogeneity can also arise from uncontrolled population stratification in GWAS, which 

biases effect size estimates from one population and, thus, makes them less applicable 

in other populations. This issue has resurfaced in recent years with the advent of very 

large GWAS that rely on meta-analysis of many different cohorts or biobank-scale cohorts. 

In the case of height, it has been demonstrated that typical methods for accounting for 

population structure, such as incorporating principal components from genome-wide data, 

do not fully correct stratification (49–51). For GWAS designs in which cohorts of small size 

are meta-analyzed, the bias introduced by population stratification is possibly exacerbated 

(52). This situation was the case for the height GWAS by the GIANT Consortium, which 

affected downstream analyses that used these summary statistics by, for example, inflating 

signals of selection exhibited by height-associated alleles (53, 54).

Population-specific variants related to a trait of interest could also limit PRS transferability, 

manifested in either heterogeneous effects at the causal variant or highly disparate allele 

frequencies. Allele frequency differences between the PRS test population and the GWAS 

population can either increase or decrease the phenotypic variance explained by GWAS 

SNPs in the test population depending on the minor allele frequencies (MAFs). There 

are some examples of population-specific variants implicated in GWAS—that is, some 

alleles segregate at appreciable frequencies in one population but are rare in others (55–

57). In general, however, only a modest fraction of genetic variants segregate at common 

frequencies in a single population while remaining rare in other populations (58). This 

observation has led to the assumption that causal variants are shared among populations with 

diverse ancestries, motivating the use of multiancestry datasets for GWAS. Multiancestry 

GWAS have grown more common in order to increase genetic diversity and boost overall 

sample sizes, resulting in the detection of associated loci that would not necessarily have 

been discovered just by studying Europeans (59, 60). Furthermore, the inclusion of African 

populations, which have lower levels of LD relative to non-African populations, can help 
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facilitate fine-mapping, a process of narrowing down a set of variants likely to contain the 

causal variant(s) (61, 62).

Very large European cohorts could possibly overcome challenges of statistical power in 

GWAS with low MAF variants, but there are still fundamental issues beyond detecting 

an association. For example, the frequency of the derived light skin pigmentation allele 

(rs1426654) of SLC24A5 stands at ~99.9% in the European subset of the UK Biobank due 

to positive selection for the light allele (63). Despite the rarity of the minor allele, the large 

sample size (n = 356,530) and large effect size allow for detection of this SNP in a European 

cohort for a GWAS of skin pigmentation (63). This variant also reaches genome-wide 

significance in a cohort of only 1,570 sub-Saharan Africans, as the small sample size is 

compensated by high cohort MAF and the large effect size (64). Even if sheer sample size 

can overcome the challenges of detecting an association for a low MAF variant, there is still 

the fundamental problem of the transferability of the effect size across populations. Even if 

one could detect all causal variants for a phenotype in a population, the generalizability of 

a model based on these data to different populations is ultimately limited by the extent of 

effect size differences across populations.

The genetic architecture for a trait may differ across ancestry groups due to differences 

in demographic history and selection regimes. In this case, it will be critical to include 

populations of diverse ancestry in GWAS. Furthermore, as demonstrated by the GWAS 

of skin pigmentation in sub-Saharan Africans (64), even GWAS with small sample sizes 

can produce novel insights. In this study, MFSD12 was identified to play a role in skin 

pigmentation, which may have implications for melanoma risk (65). We argue that efforts 

should still be made to include underrepresented populations in human genomics research, 

even if sample sizes are not as large as European samples, as they can still aid in elucidating 

the etiology of disease and biological processes.

ISSUES FOR TRANS-ANCESTRY TRANSFERABILITY OF RARE VARIANTS

There is robust evidence that rare variants (e.g., MAF < 0.1%) contribute substantially to 

complex trait heritability (66–69). However, most analyses and methods to date involving 

polygenic prediction do not include rare variants. The inclusion of rare variants poses 

additional, or a different set of, issues in terms of trans-ancestry transferability compared to 

those posed by common variants.

Discovery and accurate measurement of rare variant associations and their effects are 

generally more prone to issues of population stratification compared to those of common 

variants (50, 70–72), as rare variants are typically newer than common variants and so 

should have a finer-scale population structure than common variants have. As rare, large-

effect variants are often population specific or even singletons (69, 73), currently it is largely 

unclear how robust these associations are, how well they will replicate across ancestries, 

and how much practical utility these variants have for trait prediction, as they may often be 

entirely nonexistent in a cohort in which the prediction is performed.
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Due to difficulties in accurately measuring effects of individual rare variants, association 

tests that aggregate a set of variants below a frequency threshold at a genic region or 

genome-wide (often according to biological significance, e.g., putative loss-of-function or 

missense variants with high predicted deleteriousness) are commonplace (74, 75). One 

popular method for aggregating variants, the burden test, relies on the premise that all 

variants in the set are associated with the phenotype and have the same direction of effect 

(75). Rare variant sets ascertained in one population may be less useful for prediction in 

other populations if some of the variants are absent in other populations or if some of the 

variants in the set are not actually associated with the phenotype.

In the case of true, well-calibrated rare variant associations, however, there are factors that 

facilitate transferability across populations, especially when compared to common variants. 

Rare variants typically have little LD with other variants (at least when measured using 

r2), implying that true associations may be more likely to be causal, and consequently 

that effect sizes may be more similar across ancestries (76–79). It may be more likely 

that rare variant associations in coding regions that have clear functional annotations (e.g., 

loss-of-function) are indeed causal across ancestries, assuming the same functional impact in 

different populations (80, 81).

Nonadditive effects are mentioned as potentially limiting the transferability of genetic 

effects across populations. But for rare variants, differences in effects due to dominance or 

a variety of different epistatic models are likely extremely small even if the true underlying 

effect is nonadditive (82). As the amount of sequencing datasets and individuals used in 

imputation panels increases in size and diversity (83, 84), and as methods that include 

rare variants for use in polygenic prediction improve, practical usage of rare variants may 

increase and performance of polygenic predictions may approach estimates of heritability 

even for ancestrally diverse populations.

BARRIERS TOWARD EQUITY IN GENOMIC MEDICINE IN AFRICA

Despite technological advances and a drop in the cost of sequencing technology, inequalities 

and deficits in resources for conducting genomics research have limited human genomics 

knowledge from becoming a global public good, particularly in Africa (85). A 2002 World 

Health Organization report recognized this concern as far back as two decades ago (86), 

and there are a variety of issues that drive this disparity. First, while genomic data from 

African populations are increasingly becoming available, in most African countries there is 

a shortage of trained genetics professionals who can assist in unraveling the significance 

of genetic results and translating them in a meaningful way to research participants (87, 

88). Second, there is limited public understanding of concepts in genomics, as evidenced 

during consent processes for genomics studies and in clinical practice (89, 90). Third, 

there is a near absence of empirical data and frameworks for ethical, legal, and social 

implications to support regulation of data governance, such as intellectual property rights 

and commercialization of products associated with African genomic research (91).

Genomics research initiatives have called for the development of ethics and legal 

frameworks on data sharing, data governance, intellectual property, patent regulations, and 
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product commercialization associated with African genomic research. This call has become 

even more urgent in recent years following international controversies on the use of genomic 

and health data from Africa (92) and the creation of private initiatives that aim to use 

African genomic data for both research and commercialization purposes (93). While there 

are emerging data-use legislation and guidelines, such as the San code of research ethics 

(94) and the Protection of Personal Information Act of 2013 in South Africa, their impacts 

on data-driven health and genomics research have still not been fully explored. These 

research and ethics guidelines bear relevance for genomics projects in Africa, such as 

the H3Africa Consortium (19), which is generating vast quantities of genetic data and is 

involved in sharing personal health findings with study participants. Despite some progress 

toward diagnosis and management of monogenic conditions in high-income nations, the lack 

of local expertise in genetics as well as funding issues in sub-Saharan Africa have stymied 

progress in genomic medicine. Furthermore, research topic biases do not always reflect the 

urgent public health needs of the African continent, particularly when driven by investigators 

from Europe and North America (95, 96).

With advances in precision medicine, global health actors are increasingly seeking ways to 

aggregate diverse health data (e.g., clinical, genomic, and behavioral) within populations, 

with the goal of enabling new models for using genomic data to support health research, 

clinical care, and public health programs (97, 98). While the use of genomic data in 

healthcare and innovation offers new opportunities of clinical benefit, it also raises important 

ethical, legal, and social challenges (99).

TECHNICAL CHALLENGES AND FUTURE DIRECTIONS

As we embark on the third decade since the completion of the HGP, there is increasing 

evidence that research studies focused on genetic diversity, especially in African individuals, 

are a scientific imperative (100, 101). Approximately 300 million base pairs, or 10% of 

a pan-genome, generated from 910 individuals of African descent were not found in the 

current human reference genome (101). Recent analyses on whole-genome sequencing data 

of 426 African individuals, comprising 50 ethnolinguistic groups across Africa, uncovered 

more than 3 million previously undescribed variants (102). Moreover, the African continent 

follows a north–south axis, spanning approximately 70° of latitude. This range has a 

role in the enormous diversity of climates and natural environments in Africa, and so 

the selection pressures can vary considerably across the African continent (103–105). 

African genomes can reveal genes and variants that contribute to health and disease 

not found in previous Euro-centric studies, as African ancestry individuals collectively 

have more genetic variation. For example, certain nonsense variants in the gene PCSK9 
are extremely rare in Europeans (<0.1% frequency) but relatively common in African 

Americans (~2% frequency) (106). These PCSK9 variants are correlated with much lower 

levels of low-density lipoprotein cholesterol (106), a finding that has led to a new medication 

(evolocumab) for dyslipidemia, which is associated with heart attack and stroke. A study of 

909 Africans of Xhosa ancestry with schizophrenia and 917 matched African controls found 

many rare mutations that contribute to schizophrenia, along with mechanistic insights (107). 

A 2016 study in a Swedish population identified many of these same mutations but required 

a sample more than four times the size (108).
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High levels of both genetic and phenotypic diversity make African populations particularly 

informative for GWAS. For example, although only 2.4% of participants in large GWAS 

were of African ancestry (as of 2017), 7% of known associations at the time came from 

GWAS conducted in African populations (22). In addition, factors such as high fertility 

rates, high levels of consanguinity, and local genetic bottlenecks for some populations 

in sub-Saharan Africa could lead to the discovery of novel single-gene disease-causing 

variants. Indeed, with only about 25% of human genes found to have disease-associated 

variants to date (109), more disease genes remain to be identified, especially in understudied 

populations. For example, a targeted diagnosis gene panel testing a range of variants 

associated with inherited hearing impairment had much lower yield in African populations 

than it did in European and Asian populations, and the data suggest that novel variants in 

known genes, as well as genes not yet implicated in hearing impairment, are more likely to 

be found in monogenic conditions in African populations (110–113).

The underrepresentation of African genomic data in the development of health and genomic 

medical tools, such as sequencing chips and the Affymetrix DMET™ (Drug Metabolism 

Enzymes and Transporters) platform, yields biases against their potential applications to 

African populations and constitutes a potential source of error. In recent years, efforts to 

develop genotype arrays more suited to diverse populations have led to the development of 

the H3Africa and MEGAEX (Expanded Multi-Ethnic Genotyping Array) arrays (19, 114), 

which have a focus on sites that may be common in African ancestry individuals but not 

necessarily in European ancestry individuals. Genotype imputation reference panels have 

continued to increase in size and diversity, with the recent TOPMed release expanding 

public imputation reference panels to 97,256 deeply sequenced individuals of diverse 

ancestries (17, 115), increasing imputation accuracy for increasingly rare variants across 

worldwide populations. As the sizes of exome and whole-genome sequence datasets 

increase, progress will be made on uncovering the impact of rare and private mutations 

on disease. Advances in the past several years on reference graph genome representations 

(116, 117) may serve to increase read mappability, especially for diverged populations and 

regions of the genome that are highly variable but clinically important, such as the region 

coding for the human leukocyte antigen genes.

While there is a scientific imperative for increasing resources for African genomic data, 

there are concerns that this effort might not translate into enhancing sustainable genomic 

medicine in Africa due to overburdened and under-resourced African genomics workforce 

and healthcare systems (88). Initiatives such as H3Africa have laid a foundation for capacity 

development, but this foundation needs to be nurtured with additional efforts from both the 

international community and African governments. We offer three general recommendations 

to facilitate further development in African genomics. First, the construction of an African 

genomics workforce can be achieved most effectively through the development of academic 

and industrial partnerships between high- and low-income countries (which may be between 

African countries themselves) and by providing incentives for the private sector to invest 

in genomics research directed toward neglected diseases of the world’s poorest people. 

Second, African countries must develop a critical mass of expertise in computer science 

and bioinformatics to utilize the vast quantities of genomic data that are being generated 

through initiatives such as H3Africa. Coupled with clinical data, population-scale databases 
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of genomic data will fuel the application of genomic findings for lab-based diagnosis, as 

well as the development of bioinformatics tool sets for better genetic risk prediction. Third, 

African countries need to adopt appropriate national frameworks to consider the ethical 

implications of genomics research and its applications in their own unique social, cultural, 

economic, and religious contexts, and to develop policies and guidelines based on recent 

experience with large-scale genomic research, including datasets from Africa (118, 119).

Finally, for traits with significant GxE effects, focusing only on ancestry diversity in GWAS 

study cohorts may not be enough to promote equity in genomic medicine across worldwide 

populations. For instance, socioeconomic status has been shown to have significant GxE 

interactions for BMI (36, 120) and myriad psychiatric disorders (121). As socioeconomic 

status is often associated with ancestry (at least in the United States) (122), accounting 

for interactions between socioeconomic status and genetics could help address issues in 

PRS transferability, as differences in environment influence marginal effect size estimates. 

Deep phenotyping in large-scale biobanks, as done in the UK Biobank, is instrumental in 

assessing GxE interactions, and efforts in hospital-based biobanks will offer more accurate 

phenotyping compared to data sources that rely mainly on self-reports (123). With evidence 

for genome-wide GxE interactions in health-relevant traits becoming more substantial in 

recent years, it is apparent that diversity in terms of ancestry and environment is important 

for increasing equity in genomic medicine.

CONCLUDING REMARKS

In the past several years, there has rightfully been an increased focus on generating diverse 

ancestry genetic data, as well as on developing methods suited to analyze and utilize these 

data. This movement toward greater inclusion in genomics research should be sustained, 

with resources allocated for data collection and for training individuals to conduct research 

on members of underrepresented ancestry groups. Tracking progress in this endeavor, say, 

in terms of the number of GWAS participants, must be done thoughtfully so that the metric 

for quantifying ancestry diversity accords with the specific question or goal at hand. In 

addition to sampling more widely from populations of diverse ancestries, attention must also 

be paid to differences in environments, as this may generate differences in genetic effects 

due to GxE effects. Proper infrastructure is needed in low- and middle-income countries 

to facilitate research and the utilization of genomic medicine, which could benefit a wide 

segment of society. For monogenic (and often rare) diseases, genomics has led to improved 

diagnoses and even treatments. One hope for genomic medicine is extending such successes 

toward common, polygenic diseases. It is imperative that future tools, such as genetic 

prediction, are effective across ancestry groups to ensure equity in precision medicine.
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Figure 1. 
(a) The cumulative number of European and non-European ancestry studies and participants 

each year from the GWAS Catalog. (b) The percentage per year of participants of European 

ancestry and of studies and publications that used exclusively European ancestry individuals. 

The estimates of numbers of individuals here were calculated without accounting for 

repeated sampling.
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Figure 2. 
(a) The number of participants in individual height GWAS over time. Points are colored 

by whether the participants in the study were of European ancestry and assigned a shape 

based on whether the data are from a major cohort or consortium. (b) The proportion of 

all participants of height GWAS that are of European and non-European ancestry based 

on (top) a naïve (i.e., not accounting for repeated sampling of individuals) estimate from 

the GWAS Catalog and (bottom) an estimate after removing repeatedly sampled individuals 

across height studies. (c) Proportion of all unique participants from height GWAS for each 

GWAS Catalog ancestry category other than European. Abbreviations: BBJ, BioBank Japan; 

GIANT, Genetic Investigation of Anthropometric Traits; GWAS, genome-wide association 

study; UKB, UK Biobank.
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Figure 3. 
World map of cohorts with genetic and phenotypic data that are part of the International 

HundredK+ Cohorts Consortium (IHCC). Countries with cohorts are highlighted and 

individual cohorts are sized according to the number of individuals enrolled. For cohorts 

with ongoing enrollment, empty circles are drawn according to the target number of 

individuals. Abbreviations: AHRI, Africa Health Research Institute Population Cohort; 

AMORIS, Apolipoprotein Mortality Risk Study; BBJ, BioBank Japan; BioVU, Biobank 

Vanderbilt University; CanPath, Canadian Partnership for Tomorrow’s Health; CHOP, 

Children’s Hospital of Philadelphia Biorepository; CKB, China Kadoorie Biobank; CPS-

II, Cancer Prevention Study II; CPS-II Nutr., CPS-II Nutrition Cohort; CTS, California 

Teachers Study; DNBC, Danish National Birth Cohort; ECHO, Environmental Influences 

on Child Health Outcomes Cohort; EGP, Estonian Genome Project; ELGH, East London 

Genes and Health; ELSA, Estudo Longitudinal de Saúde do Adulto; EPIC, European 

Prospective Investigation into Cancer, Chronic Diseases, Nutrition and Lifestyle; Geisinger, 

Geisinger MyCode Community Health Initiative; GenEngland, Genomics England/100,000 

Genomes Project; GS, Generations Study; HN, Healthy Nevada; HUNT, Trøndelag Health 

Study; IsraelGen, Israel Genome Project; JPHC, Japan Public Health Center–Based 

Prospective Study; KBP, Korea Biobank Project; KCPS-II, Korean Cancer Prevention Study; 

KoGES, Korean Genome and Epidemiology Study; KPRB, Kaiser Permanente Research 

Bank; LIFEPATH, Lifecourse Biological Pathways Underlying Social Differences in 

Healthy Aging Study; MAUCO, Maule Cohort; MC, Malaysian Cohort; MEC, Multiethnic 

Cohort Study; MoBa, Norwegian Mother and Child Cohort Study; MVP, Million Veteran 

Program; NFLC, Norwegian Family-Based Life Course Study; NHS, Nurses’ Health Study; 

NHSII, Nurses’ Health Study II; NICCC, National Israeli Cancer Control Center; NLGP, 

Newfoundland 100K Genome Project; NSHDS, Northern Sweden Health and Disease 

Study; NTR, Netherlands Twin Registry; PLCO, Prostate, Lung, Colorectal and Ovarian 

Cancer Screening Trial; QB, Qatar Biobank; SE-NETWORK, South(east) Asian Cohorts 

NETWORK; SNPMP, Singapore National Precision Medicine Program; TWB, Taiwan 

Biobank; UKB, UK Biobank; UKBDC, UK Blood Donor Cohorts; WHI, Women’s Health 

Initiative.
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Figure 4. 
The sample sizes of the largest GWAS, at the time of writing, for (a) Alzheimer’s 

disease, (b) asthma, (c) BMI, (d) coronary artery disease, (e) systolic blood pressure, (f) 
schizophrenia, and (g) type 2 diabetes, across ancestry categories based on the GWAS 

Catalog ancestry ontology. Abbreviations: AA, African American or Afro-Caribbean; AMR, 

Native American; BMI, body mass index; EAS, East Asian; EUR, European; GME, 

Greater Middle Eastern; GWAS, genome-wide association studies; HLA, Hispanic or Latin 

American; OC, Oceanian; SA, South Asian; SEA, Southeast Asian; SSA, sub-Saharan 

African.
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