Table 2.
Comparison of Viral Load and CD4 Classification Models Using Accuracy and AUC
| Algorithms | Comparison Method | Viral Load Models | CD4 Models |
|---|---|---|---|
| K Nearest Neighbours (KNN) | Accuracy (%) | 83.0 | 71.0 |
| AUC | 0.92 | 0.76 | |
| Support Vector Machine (SVM) | Accuracy (%) | 89.0 | 76.0 |
| AUC | 0.95 | 0.79 | |
| Logistic Regression (LR) | Accuracy (%) | 80.0 | 75.0 |
| AUC | 0.88 | 0.79 | |
| Decision Tree (DT) | Accuracy (%) | 91.0 | 65.0 |
| AUC | 0.91 | 0.65 | |
| Gaussian Naive Bayes (GNB) | Accuracy (%) | 78.0 | 72.0 |
| AUC | 0.85 | 0.75 | |
| Random Forest (RF) | Accuracy (%) | 95.0 | 77.0 |
| AUC | 0.99 | 0.83 | |
| Gradient Boosting (GB) | Accuracy (%) | 95.0 | 79.0 |
| AUC | 0.98 | 0.83 | |
| eXtreme Gradient Boosting (XGB) | Accuracy (%) | 96.0 | 76.0 |
| AUC | 0.99 | 0.81 |
Abbreviation: AUC, area under curve.