Skip to main content
. 2023 Feb 3;16:435–451. doi: 10.2147/IJGM.S397031

Table 2.

Comparison of Viral Load and CD4 Classification Models Using Accuracy and AUC

Algorithms Comparison Method Viral Load Models CD4 Models
K Nearest Neighbours (KNN) Accuracy (%) 83.0 71.0
AUC 0.92 0.76
Support Vector Machine (SVM) Accuracy (%) 89.0 76.0
AUC 0.95 0.79
Logistic Regression (LR) Accuracy (%) 80.0 75.0
AUC 0.88 0.79
Decision Tree (DT) Accuracy (%) 91.0 65.0
AUC 0.91 0.65
Gaussian Naive Bayes (GNB) Accuracy (%) 78.0 72.0
AUC 0.85 0.75
Random Forest (RF) Accuracy (%) 95.0 77.0
AUC 0.99 0.83
Gradient Boosting (GB) Accuracy (%) 95.0 79.0
AUC 0.98 0.83
eXtreme Gradient Boosting (XGB) Accuracy (%) 96.0 76.0
AUC 0.99 0.81

Abbreviation: AUC, area under curve.