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Abstract
Background  Previous literature showed significant health disparities between Native American population and 
other populations such as Non-Hispanic White. Most existing studies for Native American Health were based on non-
probability samples which suffer with selection bias. In this paper, we are the first to evaluate the effectiveness of data 
integration methods, including calibration and sequential mass imputation, to improve the representativeness of the 
Tribal Behavioral Risk Factor Surveillance System (TBRFSS) in terms of reducing the biases of the raw estimates.

Methods  We evaluated the benefits of our proposed data integration methods, including calibration and sequential 
mass imputation, by using the 2019 TBRFSS and the 2018 and 2019 Behavioral Risk Factor Surveillance System (BRFSS). 
We combined the data from the 2018 and 2019 BRFSS by composite weighting. Demographic variables and general 
health variables were used as predictors for data integration. The following health-related variables were used for 
evaluation in terms of biases: Smoking status, Arthritis status, Cardiovascular Disease status, Chronic Obstructive 
Pulmonary Disease status, Asthma status, Cancer status, Stroke status, Diabetes status, and Health Coverage status.

Results  For most health-related variables, data integration methods showed smaller biases compared with 
unadjusted TBRFSS estimates. After calibration, the demographic and general health variables benchmarked with 
those for the BRFSS.

Conclusion  Data integration procedures, including calibration and sequential mass imputation methods, hold 
promise for improving the representativeness of the TBRFSS.
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Introduction
Prior research revealed significant health and behavioral 
risk factor disparities between American Indians and 
Alaskan Natives (AI/AN) and other racial groups. For 
instance, in 2017–2018, the US age-adjusted prevalence 
of diabetes for AI/AN adults was 14.7%, compared with 
7.5% for non-Hispanic White adults [1]. According to 
the CDC [2], in 2018 the age-adjusted obesity prevalence 
for AI adults was 48.1% compared with 30.0% for Non-
Hispanic Whites. Additionally, AI/AN youth and adults 
have the highest prevalence of cigarette smoking among 
all racial/ethnic groups in the US [3, 4].

However, studying the AI/AN population is challeng-
ing due to the small population size, high heterogeneity, 
geographic spread, and poor representation of the exist-
ing survey data. In 2019, AI/AN represented 1.7% of the 
US population, with 5.7  million AI/AN nationwide [5]. 
AI/AN populations in many states are very small, rang-
ing from 9,006 in Vermont to 772,394 in California [5]. 
In 2021, US tribal populations ranged from about 400 for 
Coachella California to 389,751 for Cherokee Nation in 
Oklahoma.

Recent COVID-19 studies have included AI/AN with 
a sample size of only three [6], while others lumped AI/
AN with other races [7–9]. Still others ignored the popu-
lation altogether [10–17], while some considered AI/AN 
without discussing misclassification [18–20], and others 
focused solely on AI/AN populations [21–25]. In addi-
tion, American Indians and Alaskan Natives are often 
lumped into the same group, but have different histories 
and lifestyles [26]. In fact, most tribes in the US have very 
different histories [27], economic structure (27), political 
structure (27), health care access [28], social vulnerabil-
ity [29], levels of overcrowding, historical trauma [30–32] 
and population mixing [26].

Representative survey data for AI/AN are often lim-
ited [33]. A 2013 review of US population surveys from 
1960 to 2010 for cancer research found only 17 surveys 
with AI/AN work, and many of those had less than 500 
respondents [34]. Due to the sparseness of AI/AN popu-
lations, some surveys, such as National Health Nutrition 
and Examination Survey (NHANES), do not release iden-
tification information for AI/AN. The Oklahoma Tribal 
Epidemiology Center (OKTEC) Tribal BRFSS (TBRFSS) 
provides a unique data source for AI/AN with a sample 
size over 700, providing rich information related to social 
demographics, health, and behavior. Such information 
has been used by OKTEC for designing intervention 
strategy for improving AI/AN health. TBRFSS collected 
high quality data for AI/AN by using a well-developed 
sampling design of a combination of event sampling, 
email sampling, and social media sampling from Kan-
sas, Oklahoma, and Texas. However, it may suffer from 
selection bias since the sampling design for TBRFSS is 

non-probability (e.g. not every unit in AI/AN population 
had non-zero probability of being selected), see Baker 
et al. (2013) for more discussion about issues with non-
probability samples [35].

Data integration procedures, by combining informa-
tion from probability samples and non-probability sam-
ples, can be used effectively to reduce selection bias of 
non-probability samples (see [36–38], among others). 
Calibration methods [39, 40] have been used frequently 
in practice by constructing the calibrated weights in non-
probability sample such that the weighted estimates by 
using a non-probability sample will benchmark with the 
estimates from the probability sample. The underlying 
assumption for using calibration methods is that the non-
probability sample and the probability sample should 
have some overlap variables, which will often be satisfied 
in practice. Mass imputation [38, 41, 42] is another set 
of data integration methods that borrow the strength of 
statistical modeling to predict the outcome variables in 
the probability sample after fitting prediction models by 
using the non-probability sample. The power of the mass 
imputation procedure depends on the effectiveness of the 
modeling process.

In this paper, we propose using calibration methods 
and mass imputation by fully conditional specification 
(FCS) [43, 44] to improve the representativeness of the 
TBRFSS. The imputation by fully conditional specifica-
tion (FCS) method has been shown to be very effective 
for handling multivariate missingness in practice [45, 46]. 
To the best of our knowledge, we are the first to consider 
such a method in data integration problems. Previous 
literature did not consider mass imputation with mul-
tiple outcome variables. In addition, we are the first to 
consider using data integration methods to reduce the 
selection bias for AI/AN populations. Our proposed data 
integration methods are important for AI/AN research 
because most samples for AI/AN research are non-prob-
ability samples, which may suffer from serious selection 
bias.

Our paper is organized as follows. In section two, we 
describe the BRFSS and TBRFSS surveys. We discuss 
our proposed data integration methods in section three. 
Results are presented in section four. Final remarks, 
including future research and limitations, are presented 
in section five.

Background for BRFSS and TBRFSS
2018 and 2019 Behavioral Risk Factor Surveillance System 
(BRFSS)
The Behavioral Risk Factor Surveillance System (BRFSS) 
is the nation’s premier system of health-related telephone 
surveys that collect state data about U.S. noninstitution-
alized adults regarding their health-related risk behav-
iors, chronic health conditions, and use of preventive 
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services. It provides large scale (over 840,000 completed 
cases in 2018 and 2019 together) national- and state-
level representative samples (e.g., probability samples) 
that use a stratified sampling design with both landline 
and cell frames. The sampling is done independently 
for each state. Together, the 2018 and 2019 BRFSS col-
lected information for over 11,500 adults (with over 970 
AI/AN adults) in Oklahoma. For more detailed informa-
tion about the sampling and weighting of the BRFSS, see 
https://www.cdc.gov/brfss/annual_data/2019/pdf/over-
view-2019-508.pdf.

2019 tribal Behavioral Risk Factor Surveillance System 
(TBRFSS)
The goal of the 2019 TBRFSS was to survey American 
Indian populations in Kansas, Oklahoma, and Texas to 
determine the extent of behaviors that contribute to or 
protect from adverse health outcomes. Convenience sam-
pling was used to obtain responses to the survey. AI/AN 
representation in surveys and sampling is often small and 
limited. The OKTEC serves as the public health author-
ity for 43 federally recognized tribes in the Southern 
Plains Area (Kansas, Oklahoma, and Texas), which had 
an AI/AN population of approximately 443,734 in 2017. 
The OKTEC and the University of Oklahoma Health Sci-
ences Center Hudson College of Public Health have a 
longstanding relationship and have previously conducted 
projects together. The TBRFSS is a deliberate oversam-
pling to have a better understanding of the health factors 
in American Indian communities. The compiled analyzed 
data will then go back to the tribes to provide informa-
tion for making decisions with programs, applying for 
grants, and to help with other public health outcomes.

The survey collection was conducted in three phases 
to try to capture a more complete sample of the AI/AN 
population. Each of the three phases had a drawing for 
incentives, with three larger awards available to be drawn 
from the participants within each phase. The first phase 
was conducted from September to December 2019 
with a mix of convenience sampling by attending tribal 
events in person, over email, and through website avail-
ability. In phase 1, 793 surveys were collected (46 from 
online responses and 747 from physical surveys). The 
second phase was interrupted by the 2020 COVID-19 
pandemic and the original survey collection plans were 
adjusted. Surveys were collected from April 2020 to 
October 2020 through several methods, including using 
convenience sampling with email and website availabil-
ity through social media. An address-based sample from 
census tracts with high percentages of AI/AN people was 
purchased through the Marketing System Group. Poten-
tial respondents were mailed a postcard with a link to an 
online survey. The final method of collection was through 
a telephone survey using a call center with the University 

of Oklahoma Health Sciences Center, the Sooner Survey 
Center. Phone numbers were also purchased through the 
Marketing System Group and the Sooner Call Center. 
Sixty-one surveys were collected through email and web 
availability, 23 were collected through the postcard mail-
ing, and 295 were collected through the telephone col-
lection survey. For evaluation purposes, to eliminate the 
effect of the Covid-19 pandemic, we used only the Phase 
I Oklahoma state sample data in this paper.

The initial target population of the BRFSS for Okla-
homa state is all adults in Oklahoma. This target popu-
lation is different from that of the TBRFSS, for which 
the target population of interest is Oklahoma American 
Indian adults. However, since the BRFSS used a prob-
ability sampling design (dual-frame random digit dialing 
method) for data collection, if we restrict the BRFSS data 
file to only Oklahoma American Indian adults, it is still a 
probability sample for that population, see Sect.  2.12 of 
the well-cited “Sampling techniques” book by Cochran 
(2007) [47]. Therefore, after restriction to Oklahoma 
American Indian adults, the two surveys have the same 
target population of interest.

Methods
To combine the information from the 2018 and 2019 
BRFSS, we stacked the two data files (e.g., 2018 and 2019 
BRFSS) together. Then, we created the composite weight 
variable, which equals the original weight variable in the 
2018 BRFSS (or 2019 BRFSS) divided by 2 if the corre-
sponding participants belong to the 2018 BRFSS (or 2019 
BRFSS). We also treated year and original stratification 
variables together as the new stratification variable after 
combining them. Other researchers [48–50] provided 
detailed discussions on creating composite weights for 
combining information from multiple surveys.

To evaluate the selection bias of the TBRFSS, we first 
compared the BRFSS weighted descriptive statistics 
(e.g., frequency and percentage for categorical vari-
ables, mean and standard deviation for continuous vari-
ables) and TBRFSS unweighted descriptive statistics for 
demographic and general health variables: Age Group, 
Gender, Marital Status, Education Level, Employment 
Status, Income Level, Body Mass Index (BMI), and Gen-
eral Health Status. The Rao-Scott Chi-square test [51, 52] 
was used to compare the distribution difference of cate-
gorical variables between the BRFSS and TBRFSS. Survey 
weighted regression [53] was used to compare differences 
in continuous variables between BRFSS and TBRFSS. 
Stratification and survey weights were incorporated.

The following data integration approaches were per-
formed. First, the calibration approach was used, creat-
ing survey weights for TBRFSS by benchmarking the 
weighted descriptive statistics for variables (Age Group, 
Gender, Marital Status, Education Level, Employment 

https://www.cdc.gov/brfss/annual_data/2019/pdf/overview-2019-508.pdf
https://www.cdc.gov/brfss/annual_data/2019/pdf/overview-2019-508.pdf


Page 4 of 9Chen et al. BMC Public Health          (2023) 23:273 

Status, Income Level, BMI Status, and General Health 
Status) in the TBRFSS with those in the BRFSS. In other 
words, the calibrated weights w̃i  for unit i ∈ sB  where 
sB  denotes the non-probability sample can be obtained 
by minimizing the distance function 

∑
i∈sB

1
2

(
w̃i
wi

− 1
)2

 
such that 

∑
i∈sB

w̃ixi =
∑

i∈sA
dixi  where xi  is a vector 

of covariate variables described above, wi  is the initial 
weight in the non-probability sample (in our application, 
we used wi = 1), sA  denotes the probability sample, and 
di  is the design weight in the probability sample for unit 
i . Specifically, an iterative proportional fitting algorithm 
[54, 55] was used to obtain the above calibration weights. 
Second, the sequential mass imputation approach by 
FCS method was used [43, 44]. Variables described in the 
calibration approach as well as the two-way interaction 
terms were used as the predictors in the sequential mass 
imputation model. Logistic regression models were used 
for categorical study variables. Linear regression models 
were used for continuous study variables. For both data 
integration approaches, we considered the following nine 
outcome variables of interest: Smoking status, Arthritis 
status, Cardiovascular Disease status (CVD), Chronic 
Obstructive Pulmonary Disease status (COPD), Asthma 
status, Cancer status, Stroke status, Diabetes status, and 
Health Coverage status. Even though the nine outcome 
variables were observed in both the BRFSS and TBRFSS 
data files, for evaluation purposes, we assumed that 
they were only observed in the TBRFSS for conducting 
the two data integration approaches. For the sequential 
mass imputation approach, we first used a non-proba-
bility sample (e.g., TBRFSS) to fit the imputation model, 
then generated imputed values of the above nine out-
come variables sequentially once for the entire com-
bined BRFSS data file. For simplicity, we only generated 
one imputed data file. Besides the assumption that there 
are overlapping covariate variables in both probability 
sample and non-probability sample, the validity of cali-
bration approach depends on the assumption that there 
is a reasonable linear correlation between the outcome 
variables and covariate variables at the population level. 
The validity of mass imputation approach depends on 
the assumption that the imputation model fitted by using 
non-probability sample is reasonable and holds at the 
population level. If the associations between the covari-
ate variables and outcome variables were small, then 
the data integration methods may not be very effective 
for reducing the selection bias. After data integration, 
we compared the adjusted estimates after data integra-
tion with the true estimates observed in the BRFSS. The 
Rao-Scott Chi-square test [51, 52] has been used to com-
pare the distribution differences in categorical variables 
between different methods. Missing values for the above 
eight covariate variables and night outcome variables in 
both BRFSS and TBRFSS were imputed by using the SAS 

procedure ‘PROC MI’ before data integration. Since the 
missing rates for all variables are less than 5%, we only 
used single imputation. All analyses were conducted 
using SAS 9.4.

Results
After subsetting to only the Oklahoma AI/AN adults, 
there were 635 observations in the 2019 TBRFSS and 
973 observations in the 2018 and 2019 BRFSS combined 
data file. Table  1 presents the comparison between the 
BRFSS weighted descriptive statistics and the TBRFSS 
unweighted descriptive statistics for the variables listed 
in the Methods section. All variables were highly signifi-
cant with p values less than 0.001. The TBRFSS sample 
tended to be older (45.04% vs. 27.42% for 55 plus), female 
(77.95% vs. 51.20%), have fewer married cases (38.11% vs. 
44.31%), have higher education level (60.00% vs. 47.98% 
for above high school graduation), have higher employ-
ment status (62.99% vs. 57.80%), have lower income 
(9.92% vs. 20.73% for above $75,000), have higher BMI 
(55.75% vs. 40.30% for obesity), and have less general 
health (31.50% vs. 42.72% for Very Good and Excellent).

Table  1 also presents the comparison between the 
BRFSS weighted descriptive statistics and the TBRFSS 
weighted descriptive statistics for the variables listed in 
the Methods section after the calibration process. As 
expected, the difference between the two distributions 
was small after calibration, which shows the improve-
ment of the representativeness for the TBRFSS after 
calibration. For example, the weighted percentage of 
Male by using TBRFSS becomes 48.80% after calibra-
tion adjustment and it equals to the BRFSS weighted per-
centage. The weighted percentage of Married people by 
using TBRFSS becomes 44.29% after calibration adjust-
ment and it is close to the BRFSS weighted percentage of 
44.31%.

Table 2; Fig. 1 present the comparison of two data inte-
gration methods (calibration and mass imputation) with 
the naïve method without any adjustment. In Table  2, 
the frequency (%) for mass imputation was computed 
by using the composite weight variable and the imputed 
outcome variables in the combined BRFSS data file. The 
frequency (%) for the calibration method was calcu-
lated based on the calibration weight for TBRFSS data. 
According to Table  2, both calibration and mass impu-
tation significantly improved the estimates of frequency, 
since their estimates were much closer to the true esti-
mates from the BRFSS (p values less than 0.001). The 
naïve estimates were significantly smaller than the true 
estimates in terms of frequency (p values less than 0.001). 
For percentages, data integration methods outperformed 
the naïve method for most variables, except Arthritis 
status and Asthma status. For example, the estimates of 
percentage of smoking status were 29.54% and 22.31% for 
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the mass imputation and calibration methods, respec-
tively, and they were closer to the true estimate from the 
BRFSS (26.22%) than the naïve estimate (18.90%) from 
the TBRFSS. The estimates of percentage of Diabetes 
status were 23.58% and 19.83% for the mass imputation 
and calibration methods, respectively, and they were 
closer to the true estimate from the BRFSS (16.54%) than 
the naïve estimate (27.24%) from the TBRFSS. The mass 

imputation method was significantly better at estimat-
ing the prevalence of smoking than the naïve estimate 
(p value less than 0.05). The calibration method was sig-
nificantly better at estimating the prevalence of diabetes 
than the naïve estimate (p value less than 0.05). In gen-
eral, the two data integration methods outperform naïve 
method by only using TBRFSS since they took advan-
tage of the associations between covariate variables and 

Table 1  Comparison of BRFSS weighted descriptive statistics, TBRFSS unweighted descriptive statistics, and TBRFSS weighted 
descriptive statistics after calibration process (Significant results with p values less than 0.001 are marked with *)
Variable Value BRFSS weighted Fre-

quency (Percent)
TBRFSS original Fre-
quency (Percent)

TBRFSS 
weighted 
Frequency 
(Percent)

age* 18–24 46,597 (17.07) 37 (5.83) 46,799 (17.15)

25–29 30,027 (11.00) 48 (7.56) 30,027 (11.00)

30–34 32,567 (11.93) 46 (7.24) 32,413 (11.88)

35–39 29,459 (10.79) 49 (7.72) 29,365 (10.76)

40–44 19,838 (7.27) 55 (8.66) 19,351 (7.09)

45–49 17,961 (6.58) 51 (8.03) 17,759 (6.51)

50–54 21,637 (7.93) 63 (9.92) 21,637 (7.93)

55–59 21,303 (7.81) 94 (14.80) 22,338 (8.18)

60–64 16,142 (5.91) 76 (11.97) 16,503 (6.05)

65–79 12,267 (4.49) 59 (9.29) 11,967 (4.38)

70+ 25,129 (9.21) 57 (8.98) 24,768 (9.07)

gender* Male 133,198 (48.80) 140 (22.05) 133,198 (48.80)

Female 139,728 (51.20) 495 (77.95) 139,728 (51.20)

marital* Married 120,946 (44.31) 242 (38.11) 120,875 (44.29)

Divorced/Separated 50,397 (18.47) 142 (22.36) 50,397 (18.47)

Widowed 16,701 (6.12) 60 (9.45) 16,772 (6.15)

Never Married 72,022 (26.39) 114 (17.95) 72,022 (26.39)

Member of unmarried Couple 12,861 (4.71) 77 (12.13) 12,861 (4.71)

education* Less than High School 38,116 (13.97) 63 (9.92) 38,116 (13.97)

High School Graduate 103,878 (38.06) 191 (30.08) 103,878(38.06)

Some college/technical school 89,158 (32.67) 231 (36.38) 89,158 (32.67)

College Graduate 41,774 (15.31) 150 (23.62) 41,774 (15.31)

employ* Employed/Self-employed 157,742 (57.80) 400 (62.99) 157,742 (57.80)

Unemployed/Homemaker/Student 49,507 (18.14) 72 (11.34) 49,507 (18.14)

Retired 31,124 (11.40) 104 (16.38) 31,124 (11.40)

Unable to Work 34,553 (12.66) 59 (9.29) 34,553 (12.66)

income* Less than $10,000 24,554 (9.00) 117 (18.43) 20,620 (7.56)

Less than $15,000 11,586 (4.25) 60 (9.45) 13,248 (4.85)

Less than $20,000 32,404 (11.87) 63 (9.92) 33,385 (12.23)

Less than $25,000 29,114 (10.67) 76 (11.97) 31,622 (11.59)

Less than $35,000 35,740 (13.10) 88 (13.86) 37,572 (13.77)

Less than $50,000 42,416 (15.54) 89 (14.02) 38,790 (14.21)

Less than $75,000 40,524 (14.85) 79 (12.44) 41,062 (15.04)

$75,000 or More 56,587 (20.73) 63 (9.92) 56,628 (20.75)

BMI Cat* Underweight/Healthy weight 64,439 (23.61) 105 (16.54) 64,439 (23.61)

Overweight 98,507 (36.09) 176 (27.72) 98,507 (36.09)

Obese 109,980 (40.30) 354 (55.75) 109,980 (40.30)

general health* Excellent 37,839 (13.86) 56 (8.82) 37,839 (13.86)

Very Good 78,767 (28.86) 144 (22.68) 78,559 (28.78)

Good 85,727 (31.41) 261 (41.10) 86,200 (31.58)

Fair/Poor 70,593 (25.87) 174 (27.40) 70,329 (25.77)
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outcome variables and also the representativeness of the 
probability sample.

Discussion
Non-probability samples (e.g., convenience samples) 
have been used frequently in public health research due 
to the cost-effectiveness, time efficiency, and convenience 
of implementation. For instance, one component in the 
initial stage of the Strong Heart Study was a survey with a 
non-probability sample of American Indian tribal mem-
bers 35–74 years of age residing in the three study areas 

(the community mortality study) to determine cardiovas-
cular disease mortality rates from 1984 to 1994. Another 
well-known example is the Framingham Heart Study, 
which collected a non-probability sample of 5,209 men 
and women between the ages of 30 and 62 from the town 
of Framingham, Massachusetts, who had not yet devel-
oped overt symptoms of cardiovascular disease or suf-
fered a heart attack or stroke. Furthermore, most surveys 
for American Indian health research, such as the TBRFSS 
and the Cherokee Nation Health Survey, used non-prob-
ability samples. Statistical analysis based on a non-prob-
ability sample without proper adjustment may lead to 
biased results due to selection bias. Data integration has 
been regarded as one of the most effective ways to reduce 
the selection bias from non-probability samples.

In this paper, we proposed a novel sequential mass 
imputation approach and applied it together with the 
calibration approach to improve the representativeness 
of the TBRFSS. To the best of our knowledge, we are the 
first to implement data integration approaches to Ameri-
can Indian Health research. Data integration procedures, 
including calibration and sequential mass imputation 
methods, show promising results for improving the rep-
resentativeness of TBRFSS. Our proposed methods can 
be naturally applied to other health studies that use non-
probability samples, such as the Strong Heart Study, the 
Framingham Heart Study, and many others. If selec-
tion biases or measurement errors were consistent over 
a period of time, then the trend analysis might still be 
possible. In addition, we developed user-friendly com-
putational resource for other public health researchers. 
Computational codes can be obtained by sending email 
to the first author of this paper. The approach had limita-
tions. First, we evaluated only the proposed data integra-
tion methods by using the BRFSS and TBRFSS. Further 
evidence must be provided by using other data files. 
Second, we considered only the nine outcome variables 
discussed in previous sections as examples. It might be 
interesting to evaluate other outcome variables. Thirdly, 
we only considered parametric sequential mass impu-
tation approaches in the study. Nonparametric and 
machine learning methods can be used to improve the 
robustness of the methods. Lastly, there might be some 
small degree of misclassification for race variables in both 
BRFSS and TBRFSS. We ignored such effect in our study.

Conclusion
In this paper, we compared two of the most popular data 
integration approaches (calibration and mass imputation) 
for AI/AN health research by combining the information 
from the 2018 and 2019 BRFSS and the 2019 TBRFSS. 
Both data integration approaches improved the represen-
tativeness of the original TBRFSS sample for all outcome 
variables in terms of frequency estimates and for most 

Table 2  Comparison of data integration methods with nine 
outcome variables (Significant results with p values less than 
0.001 are marked with *)
Variable Value BRFSS 

weight-
ed

TBRFSS 
original

Mass 
imputa-
tion

Calibration

Fre-
quency 
(Per-
cent)

Fre-
quency 
(Per-
cent)

Fre-
quency 
(Percent)

Frequency 
(Percent)

smoke Yes 71,571 
(26.22)

120 
(18.90)

80,619* 
(29.54)*

60,895* (22.31)

No 201,354 
(73.78)

515 
(81.10)

192,306* 
(70.46)*

212,031* (77.69)

arthritis Yes 77,919 
(28.55)

149 
(23.46)*

46,883* 
(17.18)

44,322* (16.24)

No 195,007 
(71.45)

486 
(76.54)*

226,042* 
(82.82)

228,604* (83.76)

cvd Yes 11,852 
(4.34)

50 (7.87) 24,342* 
(8.92)

14,968* (5.48)

No 261,073 
(95.66)

585 
(92.13)

248,583* 
(91.08)

257,958* (94.52)

copd Yes 28,198 
(10.33)

52 (8.19) 28,037* 
(10.27)

14,090* (5.16)

No 244,727 
(89.67)

583 
(91.81)

244,888* 
(89.73)

258,835* (94.84)

asthma Yes 53,322 
(19.54)

105 
(16.54)

30,155* 
(11.05)

36,904* (13.52)

No 219,604 
(80.46)

530 
(83.46)

242,770* 
(88.95)

236,022* (86.48)

cancer Yes 18,171 
(6.66)

40 (6.30) 14,190* 
(5.20)

19,628* (7.19)

No 254,755 
(93.34)

595 
(93.70)

258,736* 
(94.80)

253,297* (92.81)

stroke Yes 11,685 
(4.28)

22 (3.46) 11,251* 
(4.12)

9264* (3.39)

No 261,240 
(95.72)

613 
(96.54)

261,674* 
(95.88)

263,661* (96.61)

diabetes Yes 45,144 
(16.54)

173 
(27.24)

64,367* 
(23.58)

54,123* (19.83)*

No 227,781 
(83.46)

462 
(72.76)

208,558* 
(76.42)

218,802*(80.17)*

health 
coverage

Yes 252,860 
(92.65)

500 
(78.74)

215,899* 
(79.11)

217,074* (79.54)

No 20,066 
(7.35)

135 
(21.26)

57,026* 
(20.89)

55,851* (20.46)
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outcome variables in terms of percentage estimates. In 
practice, it can happen that the unweighted estimate from 
non-probability sample is closer to the weighted estimate 
from probability sample compared to the adjusted esti-
mate since we only observe one random sample and the 
performance of the data integration methods depend on 
the underlying model assumptions of outcome variables 
and covariate variables. The approach also had strengths. 
First, we are the first to apply data integration meth-
ods to improve the representativeness of AI/AN survey 
data. Second, we are the first to propose using sequential 
mass imputation for data integration. In future research, 
we will propose and apply machine learning-based data 
integration approaches, including regression tree, ran-
dom forest, XGboosting, and Deep Learning, to further 
improve the representativeness of the TBRFSS, since 
those machine learning approaches can better model 
the complex non-linearity in the data file and may have 
better prediction power. We also plan to apply our pro-
posed data integration approaches to combine informa-
tion from future TBRFSS surveys with the BRFSS and 

American Community Surveys. One can first build an 
imputation model by using the TBRFSS and then impute 
outcome variables of interest in both the BRFSS and 
American Community Surveys.
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