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Abstract

The spread of seizures across brain networks is the main impairing factor, often leading to

loss-of-consciousness, in people with epilepsy. Despite advances in recording and model-

ing brain activity, uncovering the nature of seizure spreading dynamics remains an impor-

tant challenge to understanding and treating pharmacologically resistant epilepsy. To

address this challenge, we introduce a new probabilistic model that captures the spreading

dynamics in patient-specific complex networks. Network connectivity and interaction time

delays between brain areas were estimated from white-matter tractography. The model’s

computational tractability allows it to play an important complementary role to more detailed

models of seizure dynamics. We illustrate model fitting and predictive performance in the

context of patient-specific Epileptor networks. We derive the phase diagram of spread size

(order parameter) as a function of brain excitability and global connectivity strength, for dif-

ferent patient-specific networks. Phase diagrams allow the prediction of whether a seizure

will spread depending on excitability and connectivity strength. In addition, model simula-

tions predict the temporal order of seizure spread across network nodes. Furthermore, we

show that the order parameter can exhibit both discontinuous and continuous (critical)

phase transitions as neural excitability and connectivity strength are varied. Existence of a

critical point, where response functions and fluctuations in spread size show power-law

divergence with respect to control parameters, is supported by mean-field approximations

and finite-size scaling analyses. Notably, the critical point separates two distinct regimes of

spreading dynamics characterized by unimodal and bimodal spread-size distributions. Our

study sheds new light on the nature of phase transitions and fluctuations in seizure spread-

ing dynamics. We expect it to play an important role in the development of closed-loop stim-

ulation approaches for preventing seizure spread in pharmacologically resistant epilepsy.

Our findings may also be of interest to related models of spreading dynamics in epidemiol-

ogy, biology, finance, and statistical physics.

Author summary

We introduce a new probabilistic model for understanding and predicting the spreading

dynamics of epileptic seizures in patient-specific brain networks. The model allows the
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prediction of whether a seizure will spread or not based on derived phase diagrams that

take brain excitability and global network connectivity strength as control parameters. In

addition, it also predicts the temporal sequence of spreading across different nodes in

patient-specific networks. Importantly, the model’s tractability allows mean-field and

finite-size scaling analyses to better understand the nature of the seizure spreading

dynamics in large networks, revealing the existence of both discontinuous and continuous

(critical) phase transitions. In addition to furthering the understanding of spreading

dynamics, these findings are fundamental for the development of new closed-loop control

approaches for preventing seizure spread, the main impairing factor leading to loss-of-

consciousness, in people with pharmacologically resistant epilepsy.

Introduction

Epilepsy is one of the most common neurological disorders affecting approximately 65 million

people worldwide [1, 2]. About 30% of the cases are diagnosed as pharmacologically resistant

epilepsy. Main alternative therapeutic approaches consist of surgical resection of identified epi-

leptogenic brain areas [3, 4] or electrical stimulation [5–8]. In the particular case of focal epi-

lepsy, seizures that initiate in a localized brain region may or may not spread across the brain.

While the focal localized seizure onset is commonly not the most impairing aspect, the spread-

ing itself is the main event typically leading to major disruptions in sensorimotor and cognitive

processing, as well as loss-of-consciousness. To address the problem of spreading dynamics in

epileptic seizures, we introduce a new discrete-state probabilistic network model inspired by

continuous-state neural mass Epileptor network models [9]. While complementary to the Epi-

leptor model approach, the probabilistic model allows us here to address fundamental ques-

tions about the spreading dynamics which would be otherwise too analytically challenging or

computationally intensive.

Data-driven patient-specific Epileptor network models have been widely used to study the

dynamics and propagation of focal epileptic seizures [9–12]. In addition to capturing many

dynamical properties of seizures in a small brain area, data-driven Epileptor network models

[13–17] have been used to predict seizure propagation in patient-specific networks where each

node of the network represents a specific brain area. Dynamics of each node is a neural mass

model governed by 6 coupled differential equations (Materials and methods). There are three

time scales in the model: a fast time scale for high frequency oscillations during a seizure, a

slow time scale capturing both interictal and ictal spike-wave discharges, and a very slow time

scale for the variable that captures the dynamics of ionic concentrations and metabolic effects

that are thought to be responsible for initiation and termination of seizures. In addition to the

above three intrinsic time scales, one can consider an additional refractory period after seizure

termination (postictal period).

The connectivity matrices for patient-specific networks are obtained by white-matter brain

tractography (structural connectivity) in patients with pharmacologicaly resistant epilepsy. Sei-

zures in the network initiate in specific nodes known as epileptogenic zones (EZs) with high

intrinsic excitability where seizures can spontaneously initiate. Beyond its dependence on

excitability, seizure initiation in an EZ node depends also on its interactions with non-EZ

nodes through diffusive couplings. As a result seizure initiation in the EZ node can be, in some

cases, inhibited by non-EZ nodes in a non-seizure state. After initiation in the EZ node, a sei-

zure can spread to the other nodes via the network connectivity, thus affecting the very slow

variable of surround target areas through diffusive coupling (Materials and methods).
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Depending on the excitability level and connection strengths, the target node may or may not

be recruited into the seizure dynamics. These dynamics have been shown to capture the quali-

tative features of seizure spread in patients with epilepsy [13, 14].

Analysis of phase diagrams for seizure spread in patient-specific Epileptor networks, as well

as their prediction based on local linear stability analyses, have been examined in [18]. In the

control parameter space of excitability and global network coupling strength, three phases are

observed: a phase in which the EZ node is inhibited such that not even a seizure in the EZ

node is possible (no-seizure), a phase in which a seizure spontaneously initiates in the EZ node

but it does not spread (no-spread), and a phase in which the seizure is initiated in the EZ node

and it does spread partially or fully (spread) to the surrounding network.

Importantly, as we show in this study, large fluctuations in seizure spread are observed near

the transition regions from no-spread to spread phases suggesting critical behavior in the

spreading dynamics. However, due to the small size of available patient-specific networks, dif-

ficulties in obtaining analytical results, as well as the prohibitive computational cost of simulat-

ing very-large Epileptor models on general networks, the nature of these phase transitions and

potential critical properties remains unclear. For instance, it is not clear how the size of fluctu-

ations and network responses behave as a function of network size, perturbations in neural

excitability and global connectivity strength, or external inputs. The hallmark of criticality, i.e.

continuous phase transitions, is the divergence of fluctuation sizes and response functions at

the critical point, as well as power-law scaling near the critical point in both equilibrium and

non-equilibrium systems [19–23].

As stated earlier, the problem is crucial not only to furthering the understanding of the

basic neuroscience of epileptic seizures, but also to the ongoing development of approaches for

prevention and control of pharmacologically resistant seizures, such as closed-loop intracra-

nial electrical stimulation via the NeuroPace RNS system. This application context suggests

also several choices and constraints to our model development. Given the knowledge that a sei-

zure has just started and remains localized, one would like to determine the optimal interven-

tion (spatiotemporal stimulation) in terms of perturbations of network excitability,

connectivity strength, or other related network properties to prevent seizure spreading. Here,

we also focus only on typical seizures that self-terminate, i.e. we do not consider the case of sta-

tus-epilepticus.

To determine the nature of these phase transitions in the above application context, we

introduce here a probabilistic trinary network model for seizure spread. Furthermore, we

show that the model can be easily fitted to time series data and serve as a computationally effi-

cient alternative for predicting seizure spreading dynamics. Regarding the model fitting,

because we find analytic forms for phase diagram boundaries, the model fitting largely reduces

to simple curve fitting. Three dynamical states are considered for each network node: suscepti-
ble to seizure (preictal), active (seizure, ictal) and postical refractory. State dependent condi-

tional probabilities are defined for transitions between these three states. In contrast with the

Epileptor network model, here we are not concerned with the details of the fast dynamics in a

node. Instead, we consider only two slow timescales. A time scale for the duration of seizures

in a node and a refractory (postictal) timescale. While the three states of the model are reminis-

cent of common Susceptible-Infected-Recovered-Susceptible (SIRS) epidemiological models

[24, 25], its dynamics is motivated by that of seizure spread in neuronal networks. In addition,

while commonly used SIRS and related models are Markov, the proposed model includes his-

tory effects and interaction time delays.

In this study, we focus only on the spreading dynamics within a seizure (our main applica-

tion context of spread prevention), followed by a refractory or postictal period without transi-

tioning back into susceptible states as in SIRS models. Nevertheless, the model can also be
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easily adapted to include the inter-seizure dynamics. Because the time intervals between sei-

zures commonly consist of hours if not days, brain areas that have seized will have already

roughly recovered to susceptible states (instead of still remaining in the postictal refractory

state) before the next seizure. As a consequence, every seizure starts anew in our simulations

of the proposed probabilistic model. The initial conditions are always the same: all nodes

start in the normal susceptible state, with the surrounding nodes in a non-pathological excit-

ability level, and the EZ area in a hyperexcitable state. Furthermore, parameters such as

global excitability, EZ excitability, and coupling strength are assumed to be fixed during a

seizure, but are allowed to vary at slower time scales, i.e. across different stochastic seizure

realizations. Similarly to nonequilibrium phase transitions in models of directed percolation

[20], seizure spreading dynamics in the proposed probabilistic model, under the above spe-

cific setup, can have a very large number of absorbing states across different seizure simula-

tions: any spread configuration where a subset of nodes goes into the postictal refractory

period.

We show that despite its simplicity, the proposed probabilistic model not only captures sei-

zure spread dynamics and its three phases but also predicts the temporal order of seizure

recruitment observed in patient-specific Epileptor network models. In addition, the simplicity

and probabilistic nature of the model allow mean-field analysis as well as large-scale computer

simulations. Using mean-field approximations and finite-size scaling analyses, we show that

transitions from the no-spread to the spread phase include both discontinuous and continuous

(critical) non-equilibrium phase transitions, akin to first- and second-order transitions in

equilibrium systems, respectively [19]. Furthermore, we show that both the size of fluctuations

and response functions diverge at a critical point in the thermodynamic limit. Notably, the size

of fluctuations and response functions near the critical point exhibit power-law behavior. At

this critical point, the distribution of seizure spread sizes transitions from unimodal to

bimodal. These results are supported by numerical simulations of the model on large-scale

random networks, and comparisons with Epileptor and proposed probabilistic network mod-

els endowed with patient-specific network connectivity.

Results

The model

We model the dynamics of seizure spread in a network of interacting nodes. In the initial fol-

lowing sections, we focus on patient-specific finite-size networks characterized by patient-spe-

cific connectivity matrices W, the corresponding interaction time delay matrices τ, and a set of

patient-specific epileptogenic and non-epileptogenic zones (EZ and non-EZ nodes) identified

by the clinical team involved in the collection of these data (Materials and Methods, and Fig A

and Table A in S1 Text). Specifically, the interaction from node j to i is specified by the interac-

tion weight w ×Wij� 0, where w is the global connectivity strength, Wij is the normalized con-

nectivity weight from node j to i, and Wii = 0. Due to the fact that we get the W matrix from

white-matter tractography Wij� 0. In addition, we consider time delays τij resulting from axo-

nal conduction delays and synaptic dynamics. Each node i is assigned a dynamical trinary vari-

able xi(t) 2 {−1, +1, 0}, where the three values correspond to the three possible states of being

susceptible to seizure xi = −1, active (seizure, ictal) xi = 1, and the postictal refractory state

xi = 0.

The network system is composed of two types of nodes: EZ and non-EZ nodes. EZ nodes

can undergo spontaneous transitions into seizure states, while non-EZ nodes are stable unless

their interaction with an active EZ node brings them also into a seizure state. This difference

between EZ and non-EZ nodes is reflected in their different neural excitability Ej. We assign
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an Ej to each node j depending whether the node is an EZ or not, specifically

EZ ¼ fj 2 f1; 2; . . . ;NgjEj > 0g ð1Þ

non � EZ ¼ fj 2 f1; 2; . . . ;NgjEj � 0g: ð2Þ

Here we use homogeneous excitability for the non-EZ nodes, i.e. Ej = E for all non-EZ

nodes. Similarly, for the EZ nodes we set Ej = Eez.
In the following, we introduce the stochastic dynamics of the proposed probabilistic net-

work model in discrete time, specified by the corresponding transition rate functions in con-

tinuous time. This choice is motivated by our later use of this discrete-time representation in a

mean-field approximation of the model’s dynamics. Nevertheless, the simulations of the prob-

abilistic network model itself and the direct derivations of its phase diagrams are based on the

continuous-time dynamics given by the rate functions. For a small enough time interval Δ, the

stochastic dynamics are governed by the following conditional transition probabilities

Pðxi ¼ 1 in ðt; t þ D�jxiðtÞ ¼ � 1Þ ¼ f ðziðtÞ þ EiÞDþ oðDÞ ð3Þ

Pðxi ¼ 0 in ðt; t þ D�jxiðtÞ ¼ 1Þ ¼ gðt � tso;i; ~ts;i; qs;iÞDþ oðDÞ ð4Þ

Pðxi ¼ � 1 in ðt; t þ D�jxiðtÞ ¼ 0Þ ¼ gðt � tsf ;i; ~tr;i; qr;iÞDþ oðDÞ; ð5Þ

where f and g are rate functions defined below. In words, Eq 3 is the probability of a node i
transitioning from susceptible to the active (seizure) state in the time interval (t, t + Δ]. Simi-

larly, Eq 4 is the transition probability from the seizure state to the postical refractory state,

and Eq 5 accounts for the transition from the postictal refractory state to the susceptible state.

The rate function f is given by

f ðyÞ ¼ r �

0 y � 0

y 0 � y � 1

1 y � 1;

8
>>><

>>>:

ð6Þ

where r is a parameter (in per second). In Eq 3, the argument of f is the total input zi(t) from

the network to node i plus the excitability Ei of that node. If the input zi(t) to a susceptible

node i with xi = −1 is positive and large enough, then there will be a non-zero probability of

transition from susceptible to seizure state. Specifically,

ziðtÞ ¼ wa
X

j

Wijujðt � tijÞ þ wb
X

j =2 EZ

WijEjvjðt � tijÞ ð7Þ

ujðtÞ ¼

t � tso;j
ts

tso;j < t < tsf ;j

Dj þ tsf ;j � t
ts

tsf ;j < t < Dj þ tsf ;j

0 otherwise

8
>>>>>>><

>>>>>>>:

ð8Þ
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vjðtÞ ¼
1 xjðtÞ ¼ � 1

0 otherwise;

(

ð9Þ

where the term wWijuj(t − τij) accounts for the excitatory input from an active node j to a node

i that is accumulated over the seizure duration with a time scale τs. The term uj(t) is formulated

so that the accumulated input begins to dissipate with the same time scale after seizure termi-

nation. The terms tso, j and tsf, j are respectively the seizure onset and offset times in node j and

Dj = tsf,j − tso,j is the duration of seizure in node j. The effect of a susceptible node j on node i is

conveyed by the term wWijEjvj(t − τij). Recall the excitability Ej is negative for non-EZ nodes

and reflects an inhibitory effect. In this way, this term incorporates the diffusive coupling

effects featured in the Epileptor model (Materials and methods). The parameters a� 0 and

b� 0 account, respectively, for the strength of the two right terms contributing to zi(t) in Eq 7.

In the transition probability from seizure to refractory state, Eq 4, the rate function g is

defined as

gðT; t; qÞ ¼

0 T � t � q

1

qþ t � T
t � q < T < tþ q;

8
><

>:
ð10Þ

where ~ts;i accounts for the time-scale of seizure duration in node i and qs, i specifies the vari-

ability of seizure duration. The form of the function g guarantees that seizure duration Di in a

node i falls in the range ~ts;i � qs;i < Di < ~ts;i þ qs;i. That is because, if the time since seizure ini-

tiation in node i is smaller than ~ts;i � qs;i, the function gðt � tso;i; ~ts;i; qs;iÞ ¼ 0 (the rate of sei-

zure termination is zero). For a node i, this rate is non-zero in the range

~ts;i � qs;i < t � tso;i < ~ts;i þ qs;i and tends to infinity as t � tso;i ! ~ts;i þ qs;i. Therefore, the

duration of a seizure in node i cannot be larger than ~ts;i þ qs;i. Similarly, for the refractory time

Ti in a node i we have ~tr;i � qr;i < Ti < ~tr;i þ qr;i. The variables ~ts;i, qs,i, ~tr;i, qr,i can generally be

functions of the history of the system and interactions. Here, we consider the following forms

for ~ts;i and qs,i.

~ts;i ¼
ts

1 � cw
X

j =2 EZ

WijEjvjðt � tijÞ ð11Þ

qs;i ¼ d~ts;i; ð12Þ

where we assume that the seizure termination probability increases with inhibitory inputs,

reducing the expected duration of seizure. The inhibitory effect (cw
P

j =2 EZ
WijEjvjðt � tijÞ),

which appears in the denominator of ~ts;i, mimics the phenomenon of surround inhibition in

focal seizures which is expected to reduce the seizure duration. This inhibitory effect is

assumed to be proportional to the interaction weights wWij from susceptible nodes which are

not in the seizure state. In addition we assume that the variability in seizure duration in each

node, specified by qs,i, is proportional to seizure duration. The parameters c� 0 and d� 0 and

the function g specify the termination probability of seizures. In Fig O in S1 Text we show that

the above choices are in agreement with the seizure duration statistics in patient-specific Epi-

leptor network models (See also Materials and methods: Fitting the proposed probabilistic

model to patient-specific Epileptor network simulation data).
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As an illustrative example, we show in Fig 1A and 1B that the proposed probabilistic

model qualitatively captures the seizure spread dynamics in a patient-specific Epileptor net-

work. In addition, we show how different dynamical variables xi, ui, vi, transition rates gðt �
tso;i; ~t i; ~qiÞ and f(zi + Ei) evolve before during and after the seizure for an individual node in

the network. (See Figs B and C in S1 Text for more examples in which the seizure spreads

only partially).

In the following sections, we show in more detail that the proposed probabilistic model cap-

tures the qualitative nature of seizure spreading dynamics in patient-specific Epileptor net-

works (Materials and methods). We fit the parameters of the model to capture the same

spreading dynamics and corresponding phase diagrams as obtained for the Epileptor network

model. We also assume the common scenario seen in actual epileptic seizures where there is

no recovery from the refractory state while a seizure is still active in the network. To achieve

that, the refractory time scale ~tr;i ¼ tr is fixed for all the nodes and is much longer than the sei-

zure time scale ~ts;i.

Phase diagram of the probabilistic model

To derive the phase diagram of the proposed probabilistic model, we considered three main

control parameters in the system: the interaction strength w, the excitability of the EZ node Eez
and the excitability of non-EZ nodes E. Thus, the parameters (Eez, E, w) did not depend on the

network dynamics and were set to fixed values when simulating multiple stochastic realiza-

tions corresponding to a given point in the control parameter space for the phase diagrams.

Here we consider a network in which we have a single EZ node ez. The initial condition for

the network is {(8i 2 {1, 2,.., N}), xi(0) = −1} where N is the number of nodes in the network.

Under this condition, because there is no seizure in the system, all ui(t) = 0 and all vi(t) = 1.

Therefore, using Eq 7 we can simply write zez(t) = Ewb∑j Wez,j. Next, using the rate function

for the transition between the susceptible to the seizure state, Eq 6, it is clear that the transition

rate f(zez(t) + Eez) is nonzero if

Eez þ zezðtÞ ¼ Eez þ Ewb
X

j

Wez;j > 0: ð13Þ

Therefore, for the parameter range in the (w, E) space in which this inequality holds, the

probability of seizure initiation in the EZ node is nonzero and a seizure will eventually start at

the EZ. On the other hand, for the parameter range in which the above inequality does not

hold, despite having Eez> 0, the EZ node is inhibited by the susceptible nodes in the network

(surround inhibition) that leads to prevention of spontaneous seizures.

Next, we focus on the probability of seizure spread from EZ to non-EZ susceptible nodes.

Based again on Eq 6 and assuming that the EZ node is in the seizure state xez = 1 and that the

rest of the network is in the susceptible state xi=2EZ = −1, we calculated the transition rate of a

susceptible node i going to seizure as f(zi(t) + E), where

ziðtÞ ¼ uezðtÞWi;ez þ wbE
X

j =2 EZ

Wij: ð14Þ

It is obvious that zi(t) + E> 0 leads to a nonzero probability of excitation for node i. Due to

the piecewise linear nature of f(y), node i with highest value of zi(t) has the largest probability

of excitation. Sitting at the boundary of seizure spread to non-EZ nodes, this node will, most

probably, be the first that goes to seizure after the EZ node. Considering the fact that the term

uez(t) is at its maximum when the seizure is about to end in the EZ node, the spread is expected
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Fig 1. Dynamics of the probabilistic model. An example of seizure spreading dynamics in a patient-specific Epileptor network (subject P1) based on an 84-node

parcellation of brain areas (Desikan-Killiany Atlas; see also Materials and methods) and the corresponding dynamics in the proposed probabilistic model. A Seizure

spread observed in a simulation of a patient-specific Epileptor network model with global coupling strength set to w = 0.45, and excitability levels set to x0 = −2.173 and

x0,ez = −1.8 for the surrounding and epileptogenic nodes, respectively (Materials and methods). The seizure starts at the EZ node (red; node 61; onset time at 0), and

then spreads to all other nodes. A postical refractory period follows after seizure termination in each node. (The “spikes” preceding the seizure onset correspond to

interictal spikes). Pink dots show rescaled seizure onset times obtained by simulating the proposed probabilistic model shown in panel B. B Seizure spread in a
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to happen if

Eþ waWi;ez
Dez

ts
þ wbE

X

j =2 EZ

Wij > 0: ð15Þ

In the above equation Dez is the duration of seizure in the EZ node whose value affects the

phase boundary.

The intersection of conditions in Eqs 13 and 15 specifies the parameter range over which

there is a nonzero probability of seizure initiation in EZ and a nonzero probability of spread

(yellow areas in Fig 2). Additionally, we can specify the parameter range over which there is a

nonzero probability of seizure initiation in the EZ node and zero probability of spread (green

areas in Fig 2). In this parameter range, the condition in Eq 13 is satisfied, but the condition in

Eq 15 is not. Also, there is a parameter range over which the condition in Eq 13 is not satisfied,

and regardless of condition in Eq 15, there is no chance of seizure (blue areas in Fig 2). So, we

identified three phases of seizure activity in the system: spread, no-spread and no-seizure.

Using Eq 13, the boundary between no-seizure and seizure in the EZ node can be evaluated by

finding the points in the (w, E) space bellow which the EZ is inhibited and the probability of

seizure initiation in EZ is zero (Eez + zez(t)� 0), and above which the probability of seizure ini-

tiation in the EZ node is non zero (Eez + zez(t)> 0). That can be found by setting (Eez + zez(t) =

0). Similarly, we can find the boundary between spread and no spread phases using Eq 15. The

simulation of the proposed model. Parameters of the model are a = 0.46, b = 0.0021, c = 1.3, d = 0.05, w = 0.45, E = −0.112, Eez = 0.0026. Seizure onset and offset times

in each node are shown by a circle and a diamond, respectively. Panels C-F show the evolution of different dynamical variables and transition rates of node 73 (shown

in blue in panel B). C Evolution of the state variable xi for i = 73. Before seizure onset xi = −1 (susceptible state); during the seizure xi = 1 (seizure state) and after

seizure termination xi = 0 (refractory state). D Evolution of variables ui and vi defined in Eqs 8 and 9. E Evolution of the fraction of active (seizing) nodes in the system

and zi(t) as defined in Eq 7. F Evolution of transition rates: f(zi + Ei) for transitioning from the susceptible to the seizure state, and gðt � tso; ~ts;i; ~qs;iÞ for transitioning

from the seizure to the refractory state. Blue dashed lines indicate seizure onset and offset times. For examples of a small spread size see Figs B and C in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010852.g001

Fig 2. A comparison of the seizure-spread phase diagrams from patient-specific Epileptor networks and proposed probabilistic model. Each panel shows a phase

diagram in the space of excitability and global interaction weight. Phase diagrams of the Epileptor network models are shown on the top row for 5 different patient-

specific networks. The corresponding diagrams for the probabilistic model are shown on the bottom row. The regions colored as green, yellow, and blue correspond to

the phases no-spread (i.e. the seizure remains localized to the epileptogenic zone), spread, and no-seizure (i.e. even the epileptogenic zone does not go into seizure,

indicating a strong restrain effect of the surrounding nodes). The colorbar indicates the average spread size across stochastic realizations. The yellow region consists

mostly of full spread cases, as illustrated in in Fig 1A and 1B by the time series from both the Epileptor network and probabilistic model network models. Cases of partial

small spread are observed closer to the phase boundaries. Note that, while the horizontal axes of top and bottom panels are the same, we set the vertical axes of top panels

to be centered at x0,b for the phase diagrams of Epileptor model in the top row to be comparable with those of the proposed probabilistic model in the bottom row.

https://doi.org/10.1371/journal.pcbi.1010852.g002
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boundaries of these regions are respectively

E ¼
� Eez

wb
P

jWez;j
ð16Þ

for the boundary of no-seizure phase, and

E ¼
� waWi;ezDez

ts½1þ wb
P

j =2 EZWij�
: ð17Þ

for the boundary between spread and no-spread phases. Note that in the above equation i
must be the node with maximum zi(t) at t = tso,ez + Dez.

The probabilistic model captures the coarse spreading dynamics in patient-

specific Epileptor network models

Here we show that, despite its simplicity, the proposed probabilistic model can capture the sei-

zure spread dynamics of patient-specific Epileptor network models. We first fitted the parame-

ters of the model including (a, b, c, d, τs) to time series (summarized as spread size and its

temporal evolution) of simulated Epileptor networks. We simulated the Epileptor network

model (Materials and methods) on 5 different patient-specific networks with two different EZ

nodes per network and two different EZ excitability levels x0, ez2 {−1.8, −1.6}. (See Materials

and methods, and Fig A and Table A in S1 Text for details on patient-specific connectivity

matrices and time delays.) In total, we ran 20 different settings. In addition, for each setting,

we also varied a range of global coupling w and non-EZ excitability x0 with 20 stochastic reali-

zations per point in the (w, x0) grid space (Fig 2, top row).

We emphasize that we fitted just a single model or set of parameters to the data from all of

the simulated patient-specific Epileptor networks and their parameter variations. To fit the

parameters τs, c, d, we examined the seizure duration in the EZ node when there was no seizure

spread (green area in Fig 2). In this region of the phase diagram the inhibitory input to the EZ

node is constant over time, thus ~ts;ez is independent of time. In this case, we can calculate the

probability distribution of seizure duration in the EZ node as a uniform distribution with

mean ~ts;ez and standard deviation qs;ez=
ffiffiffi
3
p

(see Materials and methods for more details). Using

maximum likelihood estimation, we fitted the parameters c ¼ 1:3; ts ¼ 32:22 s; d ¼ 0:05.

To fit the remaining parameters in the model, we obtained two different data sets from the

simulations of Epileptor network models: (a) the boundary of the no-seizure phase (i.e. the

boundary of the blue area in Fig 2), and (b) the boundary between the no-spread and spread

phases. Eqs 16 and 17 refer to (a) and (b) above, respectively, and can be used to fit the parame-

ters to the Epileptor network data.

Before fitting the two curves we have also to specify the relation between excitabilities in the

Epileptor network model (x0, x0,ez) and the model (E, Eez). Considering the excitability level, a

single Epileptor network node exhibits a bifurcation point at x0,b = −2.061. If x0 > x0,b, the

node is an EZ and can undergo spontaneous seizures; if x0 < x0,b, the node is a non-EZ. Our

first choice for the relation between the excitability in the proposed model and Epileptor net-

works is a proportionality (E* x0 − x0,b and Eez* x0, ez − x0,b). Here we assume

E ¼ x0 � x0;b ð18Þ

Eez ¼ ðx0;ez � x0;bÞh; ð19Þ

where h> 0 is a parameter to be fitted. Using least-squares, we first fitted Eq 17 obtaining the
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parameters a = 0.46, b = 0.0021. Finally, we fitted Eq 16 obtaining the parameter h = 0.01 (see

Materials and methods for more details).

Using an adaptation of the time-rescaling theorem for point processes [26, 27], also known

as the temporal Gillespie algorithm [28], we simulated in continuous-time the model with the

fitted different parameter sets. The model was simulated with the same patient-specific net-

works and the same range of parameters (w, E = x0 − x0,b) as for patient-specific Epileptor net-

work simulations. Based on these simulations, we can show that the proposed probabilistic

model captures well the seizure-spread phase diagrams of Epileptor networks for different

patient-specific network connectivity and different EZ spatial locations (Fig 2 and Fig D in

S1 Text).

We note that our simulations of the probabilistic models with the temporal Gillespie

algorithm are several orders of magnitude faster than the simulation of the corresponding

Epileptor network models. This difference is already clear in the amount of calls to random

number generators. While simulation of each realization of an Epileptor network requires two

calls to random number generators per node per time step in the numerical solution of corre-

sponding stochastic differential equations, simulation of the proposed model in continuous

time via the temporal Gillespie algorithm requires only two calls per state transition in the

entire network. For concreteness, the simulation of an 84-node Epileptor network during a

120-second simulation, using a simulation step size of 0.001 s (i.e. M = 120, 000 steps), results

in M × N = 1.008 × 107 calls to random number generators. In contrast, since a realization of

the probabilistic model in continuous time requires only two calls per state transition, the sim-

ulation time depends only on the number of transitions between the three states of the model

and the number of nodes. For a full seizure spread of size N = 84 we have 2 × N transitions,

and thus a much smaller total of 4 × N = 336 calls to random number generators.

Furthermore, the proposed model closely captures the temporal dynamics of seizure spread

in patient-specific Epileptor networks (Fig 3). Seizure onset times in the proposed model are

linearly related to those of Epileptor networks with a proportionality factor that is different for

different points in the phase diagram. As a result of this linear relationship, the order or rank

of seizure recruitment in patient-specific Epileptor networks is also well predicted. In addition,

the temporal evolution of the fraction of active (seizing) nodes in the network agrees well with

the dynamics in the patient-specific Epileptor network models (Fig 4). The above findings gen-

eralized over different patient-specific connectivity networks and EZ locations (Figs E-N in

S1 Text).

Importantly, as for Epileptor networks, large fluctuations in spread size are also observed

for the proposed model near the boundary between no-spread and spread phases (Fig 5).

Studying these fluctuations and their origin is the main goal of the remaining sections of the

manuscript.

High fluctuations of this type can appear in near-criticality regions, i.e. near a critical point

showing a continuous phase transition. The study of this type of phase transition via numerical

simulations is typically computationally very expensive. To overcome this problem, in the next

sections we used mean-field approximations to better understand the properties of the phase

transition from the no-spread to spread phases.

Random networks and mean-field phase diagram

A mean-field approximation is expected to predict well the dynamics of the probabilistic

model on large enough random Erdős-Rényi (ER) networks. In ER networks the connection

probability between any two nodes is p. The interaction weight between two nodes is wWij,

where Wij is a random number obtained by sampling from a uniform distribution with mean
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Fig 3. The proposed probabilistic model captures the spread timing in patient-specific Epileptor network models. The plots show the results for patient-specific

network P1, EZ-61. A A stochastic realization of an Epileptor network simulation in this patient-specific network. The vertical axis specifies the node index in the patient-

specific network while the horizontal axis is time centered at the seizure onset time in the EZ node (node 61). Red diamonds specify the expected seizure onset time

predicted by the model. B Linear relation between mean seizure onset times in Epileptor networks versus the mean onset time in the model for all points in phase space in

which we observe full spread (yellow area in Fig 2). We note that, while a linear relation between the seizure onset times is observed for all points in phase space, the slope

of the line varies depending on w and E. We rescaled all the lines to align with the diagonal. C Seizure-onset ordering in Epileptor networks versus the proposed model for

all points in phase space in which we observe full spread. Red dots specify the 95 percentile of the data.

https://doi.org/10.1371/journal.pcbi.1010852.g003
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μ0/N and standard deviation σ0/N. Division by N is necessary for the total interaction strength

in the system to be consistent across all network sizes. As a result, the average interaction

weight per connection will be wμ0/N and the standard deviation wσ0/N. Further, for conve-

nience, we set the uniform distribution of Wij to be in the range [0.9, 1.1] × (128/N), such that

its mean is 1 for N = 128. Interaction delays are also uniformly distributed in the range [0.75,

1]/60 seconds. In what follows, we set p = 0.2.

We first verify that the mean-field assumption is satisfied for this class of networks in the

thermodynamic limit. To be clearer, assume that we have a fraction � of the network as EZ

Fig 4. Temporal evolution of average spread size and fraction of active (seizing) nodes: Example for patient-specific network P1, EZ = 61. Each curve contains data

from 20 different stochastic realizations. The right vertical axis (red) shows the mean normalized spread size ψ = hs/Ni, where s is the number of nodes in the surround to

which a seizure has spread to. The left panel corresponds to simulations of the patient-specific epileptor network model. The middle panel relates to the simulations of

the proposed probabilistic model with the temporal Gillespie algorithm. The right panel shows simulations based on a derived mean-field dynamics (see below and

Materials and methods, Mean-field dynamics). In this mean-field approximation, derived under the assumption of Erdős-Rényi random network connectivity, we used

an average connectivity weight and an average interaction delay. For this figure, both were computed from the corresponding patient-specific network.

https://doi.org/10.1371/journal.pcbi.1010852.g004

Fig 5. The proposed probabilistic model captures well the size of the fluctuations (standard deviation) in spread size across different stochastic realizations

observed at the transition boundary between no-spread and spread phases. In each panel the gray scale colorbar shows the standard deviation of seizure spread across

30 different realizations. The axis of each panel follows the same convention as for the axis in Fig 2. The top row panels are for patient-specific Epileptor network

simulations and the bottom row for the probabilistic model.

https://doi.org/10.1371/journal.pcbi.1010852.g005
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nodes in the system. The average input weight to a non-EZ node i from all the EZ nodes is

w
X

j2EZ

Wij � wpN�m0=N ¼ wp�m0: ð20Þ

The law of large numbers guarantees that the approximation becomes exact in the thermo-

dynamic limit N!1 for constant p> 0 and � > 0. As N!1, the mean input converges to

a constant value wp�μ0 and its standard deviation converges to zero with� 1=
ffiffiffiffi
N
p

.

To calculate the phase diagrams in the mean-field approximation, we first generalized Eqs

16 and 17, which were derived for the case where there is only one EZ node in the network, to

networks with multiple EZ nodes. For the boundary of no-seizure phase, a generalization of

Eq 16 requires that we consider multiple EZ nodes. Since all the EZ nodes have the same level

of excitability Eez, the only difference between them is the amount of inhibition that they

receive from the susceptible nodes. The EZ node with the smallest inhibitory input is expected

to go to seizure prior to the others. Therefore for the boundary of no-spread phase we get

E ¼
� Eez

wbmin
i
f
X

j =2 EZ

Wi;jji 2 EZg ð21Þ

where min
i f

P

j =2 EZ
Wi;jji 2 EZg reflects the smallest surround inhibition among all the EZ

nodes. Similarly, the boundary between no-spread and spread phases is evaluated under the

assumption that all the EZ nodes are in the seizure state and provide excitatory input to other

nodes. At the same time each node also receives inhibitory input from the surrounding nodes.

Combining both excitatory and inhibitory inputs, the node with largest zi(t) is the one that

specifies the boundary between no-spread and spread. As a result for this boundary we get

E ¼ �

wamax
t
f
X

j2EZ

Wijujðt � ti;jÞg

1þ wb
X

j =2 EZ

Wij

; ð22Þ

where the maximization is with respect to time. In the case of just one EZ node (Eq 17), the

maximum happens at the time of seizure termination in the EZ node, while in the case of mul-

tiple EZ nodes that maximum value can happen at a different time because of different seizure

durations. We emphasise that, similar to Eq 17, the index i in this equation indicates the most

susceptible node, i.e. the non-EZ node with the highest value of zi(t).
Under the assumption that all the EZ nodes go to seizure state simultaneously, it is straight-

forward to write the mean-field approximation of Eqs 21 and 22 as

E ¼
� Eez

wbpm0ð1 � �Þ
ð23Þ

and

E ¼
� wapm0�ð~ts;ez � qs;ez=2Þ

tsð1þ wbpm0ð1 � �ÞÞ
; ð24Þ

respectively. See Materials and methods for detailed derivations.

Eqs 23 and 24 are expected to specify the exact boundaries of the phase diagram for random

networks in the thermodynamic limit. While Eq 23 captures well the behavior of finite-size

systems, Eq 24 fails to do so (Fig 6). The failure arises from the fact that finite-size ER random
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networks exhibit, due to variability in degree distribution and also variability in interaction

weights, some degree of heterogeneity. The manifestation of this heterogeneity in the dynam-

ics is higher in small networks with a small number of EZ nodes. As a result, the mean-field

approximation fails for such small systems.

To address this shortcoming, we provide a finite-size correction that improves the predic-

tions of phase diagrams. This finite-size correction was obtained by multiplying the right hand

side of Eq 24 by the correction factor

n ¼ 1þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � �Þ

�pN

s

; ð25Þ

where � denotes the fraction of nodes in the network that belong to the EZ type, p is the ran-

dom network connection probability, and n denotes a number to be specified of standard devi-

ations in the number of input links from the EZ nodes to a non-EZ node (see Materials and

methods for details).

As expected, the correction term approaches one as N!1. In Fig 6, we show that with

n = 2 the finite-size correction captures well the true phase diagrams for different network

sizes of N 2 {210, 212, 213}.

Fig 6. Phase diagrams derived from mean-field approximations. Top row: phase diagrams were obtained from exact continuous time simulations (temporal Gillespie

algorithm) of the proposed probabilistic model on ER networks of different sizes N = 1024, 4096, 8192. Red curves indicate the boundary between no-spread and spread

phases estimated via mean-field finite-size corrected approximations. Black curves denote the boundary separating the no-seizure phase from the other two phases

derived from the mean-field approximations. Bottom row: phase diagrams obtained by the simulation of the mean-field dynamics approximation in discrete-time (Eqs

26, 27 and 28; see also Materials and methods). Red and black curves are the transition boundaries derived from the mean-field approximation without the finite-size

correction. As the network size grows, the agreement between the two (top and bottom) phase diagrams improves as expected.

https://doi.org/10.1371/journal.pcbi.1010852.g006

PLOS COMPUTATIONAL BIOLOGY Criticality in seizure spreading dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010852 February 7, 2023 15 / 41

https://doi.org/10.1371/journal.pcbi.1010852.g006
https://doi.org/10.1371/journal.pcbi.1010852


Criticallity in seizure spreading: Analysis based on mean-field dynamics

In order to examine the nature of phase transitions and fluctuations in the probabilistic model

of seizure spreading, we developed a mean-field approximation of its dynamics. In this mean-

field approach, we worked with a discrete-time approximation. Briefly, we express the network

dynamics in terms of transition probabilities for the number of nodes entering and exiting dif-

ferent states at specific discrete times. (See detailed derivations in the Materials and methods:

Mean-field dynamics section.)

In the following, given small enough time intervals Δ, we define the following conditional

transition probabilities in discrete time for the non-EZ nodes: PðMmþ1jHmÞ, Pðni;mþ1jHmÞ, and

Pðrj;mþ1jHmÞ. Here, the indices m, i, j denote time bins, and the variables themselves are

defined below. The above probabilities can also be similarly defined for the EZ nodes in terms

of the corresponding variables Mez
i , nez

ij and rezij . All these transition probabilities are condi-

tioned on the history of the process up to and including time bin m denoted by

Hm ¼ fMi; nij; rij;Mez
i ; n

ez
ij ; r

ez
ij ji � m and j � ig;

where Mi and Mez
i are respectively the number of non-EZ and the number of EZ nodes that

have gone into the seizure state at time bin i. The variables nij and nez
ij are respectively the

number of non-EZ and the number of EZ nodes that have gone into seizure at time bin i and

have transitioned into the refractory state at time bin j. Similarly, the variables rij and rezij are

respectively the number of non-EZ and the number of EZ nodes that have transitioned into

the refractory state at time bin i and have recovered to susceptible state at time bin j.
Specifically, conditioned on Hm, the probability of having Mm+1 non-EZ nodes transition-

ing to seizure in the time bin m + 1 can be written in terms of a binomial distribution

PðMmþ1jHmÞ ¼
Ns;m

Mmþ1

 !

f zm þ Eð ÞD½ �
Mmþ1

� 1 � f zm þ Eð ÞD½ �
Ns;m � Mmþ1 ;

ð26Þ

where Ns,m = Ns(mΔ) is the number of non-EZ nodes in the susceptible state in the mth time

bin, and zm = z(mΔ) (see Materials and methods for more details).

Similarly, considering Mi non-EZ nodes that have gone into the seizure state at time bin i

and the history up to time bin m ({ni,j|j�m}), we have Mi �
Pm

j¼i
nij out of the Mi nodes that

are still in the seizure state. Thus, the conditional probability of having ni,m+1 non-EZ nodes

(out of the Mi �
Pm

j¼i
nij nodes) transitioning to the refractory state at time bin m + 1 is given

by

Pðni;mþ1jHmÞ ¼

Mi �
Xm

j¼i

nij

ni;mþ1

0

B
@

1

C
A g D m � ið Þ; ~ts;m; qs;m

� �
D

� �ni;mþ1

� 1 � g D m � ið Þ; ~ts;m; qs;m
� �

D
� �Mi �

Pmþ1

j¼i
nij
:

ð27Þ
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In the above,

~ts;m ¼ ts=ð1 � cEw �WNs;mÞ

is the mean-field approximation of Eq 11 at time bin m and qs;m ¼ d~ts;m is related to the vari-

ability of seizure termination times. The term �W denotes the average interaction weight. It is

equal to �W ¼ pm0=N in the case of ER networks as defined above.

Finally, the conditional probability of having rj,m+1 non-EZ nodes (out of all the nodes that

have transitioned to the refractory state in time bin j and are still in refractory state) transition-

ing from the refractory to the susceptible state at time bin m + 1 can be written as

Pðrj;mþ1jHmÞ ¼

Xj

i¼� 1

nij �
Xm

k¼j

rjk
rj;mþ1

0

B
@

1

C
A g m � j½ �D; ~tr;m; qr;m

� �
D

� �rj;mþ1

� 1 � g m � j½ �D; ~tr;m; qr;m
� �

D
� �

Pj

i¼� 1
nij �
Pmþ1

k¼j

rjk
;

ð28Þ

where ~tr;m ¼ tr is the refractory time scale and qr, m = qr specifies the respective variability in

the refractory time. As before, because of our particular setup in this study, rj,m+1 remains zero

throughout the simulations.

As stated above, the above conditional transition probabilities are also similarly defined for

the EZ nodes in terms of the variables Mez
i , nez

ij and rezij .

Details of the numerical simulation of the above mean-field dynamics are given in the

Materials and Methods section. We set D ¼ �t=mt, where �t is the average interaction delay

computed from patient-specific networks and mτ is the number of simulation time steps in the

delay interval �t.

We also derived a correction of the above mean-field dynamics for the case of small net-

works or sparse spread where the number of susceptible nodes is larger than the number of

nodes receiving excitation from the seizing nodes (Materials and methods). That was applied

to the case of the small patient-specific networks simulated in this study. We verified that these

mean-field dynamics capture well the qualitative features of the temporal evolution of seizure

spread size and fraction of active (seizing) nodes as in the probabilistic model and Epileptor

networks instantiated in these patient-specific networks (Fig 4 and Fig N in S1 Text). Also, in

this case of patient-specific networks, the average connectivity weights �W and the average

interaction delays �t, used in the mean-field dynamics approximation (Materials and methods),

were computed directly from the patient-specific networks. Specifically,

�W ¼
P

i;jWi;j

NðN � 1Þ
;

and �t as in Eq 48.

Having derived a mean-field approximation of the spreading dynamics in the proposed

model, we proceeded by examining the nature of its phase transitions based on numerical sim-

ulations of the mean-field dynamics on ER networks. We examined how the order parameter,

i.e. the fraction of spread size s/N behaves as control parameters vary near the boundary

between the no-spread and spread phases in the phase diagram. We simulated many stochastic

realizations of the mean-field dynamics on a network of size N = 215. Interestingly, we found

that the order parameter shows both continuous and discontinuous transitions depending on
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a specific value of the excitability parameter while varying the global connectivity strength

near the phase transition boundary (Fig 7). In particular, there is a clear change of behavior

from a continuous to a discontinuous phase transition, suggesting the existence of a critical

point. These two different continuous and discontinuous regimes are further manifested in

Fig 7. A-1 to H-1: Behavior of the order parameter (normalized spread size) around the point of maximum fluctuations for the mean-field approximation of a

system with N = 215. Each plot was obtained by keeping E fixed and varying w around the point of maximum fluctuations wm which was obtained by numerical

evaluation of the standard deviation of spread sizes. Each point was obtained from the number of nodes recruited to seizure (spread size) in one realization of the mean-

field dynamics. For each w we plot 50 realizations. Two distinct behaviors are observed: (1) a continuous crossover (without a singularity in the derivatives of the order

parameter) for values of E close to zero, and (2) a clear discontinuous transition with a jump for E< −1.5 × 10−6. The shift from continuous to discontinuous behavior is

expected to pass through a critical point of a (critical) phase transition. Panels A-2 to H-2: Transition between unimodal and bimodal probability distributions of

seizure spread size. Probability distributions of normalized spread size, obtained from 300 to 500 stochastic realizations, are shown at the point of maximum

fluctuations wm and different values of the excitability E. A clear transition from unimodal to bimodal distributions is observed. In all simulations N = 215. The locations

of the above continuous and discontinuous, as well as unimodal and bimodal, regimes in the control parameter space (w, E) are shown in Fig 8I and 8J with more detail.

https://doi.org/10.1371/journal.pcbi.1010852.g007
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the unimodal and bimodal distributions of seizure spread sizes (Figs 7 and 8). The existence of

a transition point between continuous and discontinuous regimes allowed us to approximately

locate the critical point.

We examined in more detail the probability distributions of spread sizes via finite-size

scaling analyses. The distribution of similar quantities (e.g. avalanche sizes [22]) can show

power-law scaling in some, but not all, systems at criticality. Therefore, we checked for the

existence of this scaling in the functional form of spread-size distributions near the esti-

mated critical point (Figs 7 and 8). We examined the distributions for increasing network

size N near the estimated critical point and also at two other points on the boundary

between the no-spread and spread phases. Unimodal distributions, found on the upper part

(with respect to the critical point) of the phase boundary, were roughly approximated by

Gaussian distributions. Near the estimated critical point, the distributions became

more and more skewed, but no evidence of power-law behavior was detected (see also

Discussion).

Next, we asked the question of how the size of fluctuations behaves near this critical point.

The size of fluctuations at a continuous (critical) transition is known [19, 20] to diverge in the

thermodynamic limit N!1. We consider the standard deviation of spread sizes σ to assess

the size of fluctuations in our model. We show that σ appears to diverge at the critical point as

a power-law function of excitability and global connectivity strength (Fig 9). The power-law

scaling was different on the two sides of the transitions [29]. For fixed E = Ec, σ exhibits power-

law behavior as a function of w as follows: from above the critical point,

sþ � ðw � wcÞ
� g
;

and from below as

s� � ðwc � wÞ� g
0

:

The corresponding estimated exponents are ĝ ¼ 0:63ð1Þ and ĝ 0 ¼ 1:63ð3Þ, respectively

(Fig 9A–9C).

Similarly, we examined the behavior of σ with respect to E with fixed w = wc. As before,

power-law behavior is also observed for σ according to

sþ ¼ ðE � EcÞ
� a

and

s� ¼ ðEc � EÞ� a
0

;

with estimated exponents â ¼ 0:87ð5Þ and â 0 ¼ 1:4ð1Þ, respectively (Fig 9D–9F). We note

that the observed power-law domain increases as N increases, so that fluctuations at the critical

point scale as σm* N0.66.

Furthermore, the response functions with respect to control parameters are also known to

diverge at the critical point in the thermodynamic limit. Here, we defined the response func-

tions of the system as

ww ¼
@c

@w

and

wE ¼
@c

@E
;

where ψ = hs/Ni.
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Fig 8. A-D): Marginal Probability density functions of normalized spread sizes s/N. Values are shown for different control parameters (E, w) near the critical point.

Presented data were obtained from mean-field simulations of the probabilistic model for different system sizes of N = 215, 216, 217, 218. A Unimodal distribution in

agreement with a Gaussian, observed for a point at the upper part (with respect to the critical point location) of the boundary between no-spread and spread phases

(E = 0, w = 5.5 × 10−5). B,C Closer to the critical point (E = −10−6, w = 7.67 × 10−5 in (B) and E = −1.1 × 10−6, w = 7.67 × 10−5 in (C)), the distributions become skewed

with large variance. E The distributions become bimodal near the lower part of the phase boundary (E = −2.00 × 10−6, w = 7.88 × 10−5). (E-H): Joint Probability density

functions of normalized spread sizes s/N and duration of seizures D. Values are plotted as heat maps for control parameters (E, w) near the critical point. The

parameters in panels (E,F,G,H) are respectively the same as in panels (A,B,C,D). Data were obtained from mean-field simulations of the model with system size N = 218. E

Unimodal distribution, which is roughly in agreement with a Gaussian probability density function (but slightly skewed in the duration coordinate), is found on the

upper part (with respect to the critical point location) of boundary between no-spread and spread phases. Duration and size of seizures appear to be uncorrelated. F,G

Near the critical point stronger correlation between spread size and duration of seizures is observed and the distribution exhibits a wider peak and stronger correlation in

the two dimensional space of (D, s/N) in G. H Moving near the boundary lower to the critical point, the joint distribution becomes bimodal with two distinct modes. The

locations of the above unimodal and bimodal regimes in the control parameter space (w, E) are shown in the next panel with more detail. (I-J): Details of the phase
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Fig 10 shows that both response functions appear to diverge with networks of growing size.

The exponents β, β0 at fixed E = Ec were defined here for the behavior of χw. Approaching the

critical point from below leads to

ww� � ðwc � wÞb
0 � 1
;

and to

wwþ � ðw � wcÞ
b� 1

diagram near the critical point. I Parameters are shown in the (w, E) space. Red dots denote the points at which the variability of spread size across realizations is

maximized (wm, E) in Fig 7. Black dots denote the points for which we plotted the probability density functions of normalized spread size (s/N) and the joint probability

density of duration (D) and spread sizes in Fig.8A-H. J The black line indicates the boundary between the no-spread and spread phases of the order parameter. The blue

line indicates the location of points of maximum fluctuations in the order parameter. Between the red dashed lines we observe bimodality in the probability distribution

of the order parameter. The arrow above the critical point indicates a continuous crossover from small spread to large spread sizes. The arrow below the critical point

indicates a transition with a discontinuity in the order parameter, i.e. it is not differentiable at that point. Passing through the critical point results in a continuous

transition that is expected to exhibit a singularity in the derivative of the order parameter in the thermodynamic limit. We investigated this expected property via finite-

size scaling analysis in Figs 9 and 10. Despite the apparent very small region where the above transition from discontinuous to continuous behavior happens, we

emphasize that different choices of parameters and their scaling can constrain the seizure spread activity to this small region. For example, based on Eq 21, we note that a

choice of smaller EZ excitability (Eez) level can constrain the spread phase to a very small region around the critical point.

https://doi.org/10.1371/journal.pcbi.1010852.g008

Fig 9. Power-law divergence of stochastic fluctuations in spread size near the critical point. We used finite-size scaling analysis over four different network sizes of

213, 214, 215, 216. A The standard-deviation σ of the fluctuations as a function of w (fixed E = Ec) near the critical point (wc� 6.7610−5, Ec� 1.0010−6). The inset shows the

power-law divergence of σ at its maximum and the corresponding scaling σm* N0.66(1). B,C Power-law behavior of σ shown on log-scale for w approaching the critical

point from below with corresponding scaling s� � ðwc � wÞ� g
0

and exponent estimated as ĝ 0 ¼ 1:63ð3Þ, and from above with corresponding scaling σ+ * (w − wc)
−γ

and exponent estimated as ĝ ¼ 0:63ð1Þ, respectively. D The standard-deviation σ of the fluctuations as a function of E (fixed w = wc) near the critical point. The inset

shows the power-law divergence of σ at its maximum and the corresponding scaling σm* N0.68(1). G,H Power-law behavior of σ(E) shown on log-scale for E
approaching the critical point from below with corresponding scaling s� � ðEc � EÞ� a

0

and exponent estimated as â 0 ¼ 1:4ð1Þ, and from above with corresponding

scaling σ+ * (E − Ec)−α and exponent estimated as â ¼ 0:87ð5Þ.

https://doi.org/10.1371/journal.pcbi.1010852.g009
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from above. Similarly, we defined the exponents δ, δ0 for the behavior of χE, for fixed w = wc.

The resulting power-law scaling corresponds to

wE� � ðEc � EÞ1=d
0 � 1

for approaching Ec from below, and to

wEþ � ðE � EcÞ
1=d� 1

from above. We defined the exponents so that the behavior of the order parameter ψ around

the critical point can be written as

c� ¼ cc � cðw; E ¼ EcÞ � ðwc � wÞb
0

ð29Þ

cþ ¼ cðw; E ¼ EcÞ � cc � ðw � wcÞ
b ð30Þ

c� ¼ cc � cðE;w ¼ wcÞ � ðEc � EÞ1=d
0

ð31Þ

cþ ¼ cðE;w ¼ wcÞ � cc � ðE � EcÞ
1=d
: ð32Þ

Exponent symbols were chosen in analogy with the standard use in current literature on

criticality. There, the exponent β typically specifies the relation between the order parameter

and control parameters, and the exponent δ the relation between the order parameter and an

external field. In the standard formulation of critical phenomena, due to the fact that the order

Fig 10. Power-law divergence of response functions ww ¼
@c

@w and wE ¼
@c

@E near the critical point. We used finite-size scaling analysis over four different network sizes of

213, 214, 215, 216. A The expected value of the normalized spread size, ψ = hs/Ni, as a function of w (fixed E) near the critical point (wc� 6.76 10−5, Ec� 1.00 10−6). The

inset zooms the view around the critical point. B The response χw plotted as a function of w (for fixed E = Ec). The inset shows the divergence of the maximum response

χw,m as a function of χw,m* N0.16(1). C,D The log-scale plots show the power-law behavior of the response function χw as w approaches the critical point from below with

corresponding scaling χw−* (wc − w)β0−1 and exponent estimated as b̂ 0 ¼ � 0:96ð3Þ, and from above with corresponding scaling χw+ * (w − wc)
β−1 and exponent

estimated as b̂ ¼ 0:43ð5Þ. E The expected value of the normalized spread size, as a function of E near the critical point (for fixed w = wc). F The response χE plotted as a

function of E (for fixed w = wc). The inset shows the divergence of the maximum response χw,m as a function of χw,m* N0.18(1). G,H The log-scale plots show the power-

law behavior of the response χE as E approaches the critical point from below with corresponding scaling χE−* (Ec − E)1/δ0−1 and exponent estimated as d̂ 0 ¼ � 1:6ð5Þ,

and from above with corresponding scaling χE+ * (E − Ec)1/δ−1 and exponent estimated as d̂ ¼ 12ð5Þ.

https://doi.org/10.1371/journal.pcbi.1010852.g010
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parameter is typically zero at the critical point (ψc = 0 and ψ− = 0), the exponents β0 and δ0 are

not defined. However, our analysis suggests that these exponents exist in the proposed proba-

bilistic model, where power-law behavior is observed around a nonzero value of ψ = ψc� 0.14.

In other words, the estimated critical point lies inside the region of the defined spread

phase. This can happen due to finite-size effects in some models, e.g. kinetic Ising models [30]

and epidemic models in the dynamic isotropic percolation universality class [31]. In such

models, the estimated ψc will decrease and approach zero by increasing system size. Neverthe-

less, it seems that this is not the case in the proposed probabilistic model because we observe

that ψc does not decrease by increasing system size. We also note that the bimodal regime

occupies a thin region almost parallel to the phase boundary (Fig 8I and 8J). The unimodal

regime, with the mode consisting of either a small or large spread, is observed everywhere else

inside the spread phase region.

The numeric values of these exponents were estimated as b̂ 0 ¼ � 0:96ð3Þ, b̂ ¼ 0:43ð5Þ,

d̂ 0 ¼ � 1:6ð5Þ, and d̂ ¼ 12ð5Þ. While the exponents b̂ and d̂ are positive and in the expected

range, the estimated value of b̂ 0 and d̂ 0 are negative. This negative exponent leads to a singular-

ity in ψ and that is not acceptable as 0� ψ� 1. We think that these inconsistent exponents

result from what has been referred before as apparent exponents [32]. They appear when the

scaling function exhibits power-law behavior in such a way that masks the actual critical expo-

nent. (See Materials and methods for a formulation of the behavior of ψ− in terms of apparent

exponents.)

All of the above estimated exponents are summarized in Table 1. In sum, to our knowledge,

the proposed probabilistic model does not belong to any of the well known universality classes.

We note, nevertheless, that the estimation of critical points is prone to finite-size effects and

numerical inaccuracy. It is possible that more accurate methods may lead to slightly different

exponents. We hope these estimated exponents will help to shed some light on the spreading

dynamics of epileptic seizures. In particular, the exponents inform about the sensitivity of the

modeled spreading dynamics to perturbations in the control parameters (w, E) and also in

external inputs to the system near the critical point.

As a complementary evidence of criticality, in addition to the above described power-law

behavior of response functions, we also found that the maximum values of response functions

χw,m, χE,m tend to diverge with increasing network size N. Furthermore, these values also fol-

lowed power-law functions of N according to χw,m*N0.16(1) and χE,m* N0.18(1).

Table 1. Estimated exponents. The terms including σ denote the standard deviation (size of fluctuations) of spread

size and their dependence on excitability (E) and connectivity strength (w) in the probabilistic model. The terms

including ψ relate to the order parameter (normalized spread size) and their dependence on excitability and connectiv-

ity strength. The numbers in parentheses after each value represent the error in the last digit, e.g 1.63(3) = 1.63 ± 0.03.

Exponent Equation Estimated value

γ sþjE¼Ec � ðw � wcÞ
� g

ĝ ¼ 0:63ð1Þ

γ0 s� jE¼Ec � ðwc � wÞ� g
0

ĝ 0 ¼ 1:63ð3Þ

α sþjw¼wc
� ðE � EcÞ

� a
â ¼ 0:87ð5Þ

α0 s� jw¼wc
� ðEc � EÞ� a

0
â 0 ¼ 1:4ð1Þ

β cþjE¼Ec � ðw � wcÞ
b

b̂ ¼ 0:43ð5Þ

β0 c� jE¼Ec � ðwc � wÞb
0

b̂ 0 ¼ � 0:96ð3Þ

δ cþjw¼wc
� ðE � EcÞ

1=d
d̂ ¼ 12ð5Þ

δ0 c� jw¼wc
� ðEc � EÞ1=d

0

d̂ 0 ¼ � 1:6ð5Þ

https://doi.org/10.1371/journal.pcbi.1010852.t001
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Discussion

The nature of the spreading dynamics in epileptic seizures remains a challenging problem in

neuroscience, with important implications to the development of new therapeutic approaches,

especially in the case of pharmacologically resistant seizures. Here, we have provided two

novel contributions to address this challenge. First, we have introduced a new probabilistic

network model that can capture the spatiotemporal spreading dynamics of seizures in patient-

specific complex brain networks. We set up the problem in the context of a focal seizure that

has just started and initially remains localized into the epileptogenic zone. The question is then

whether the seizure will spread or not, and how. To answer this question, we started by show-

ing that the model can be fitted to data-driven patient-specific Epileptor networks. Because of

its probabilistic and phenomenological nature, the model can be easily fitted and is fast to sim-

ulate. We then derived the phase diagrams of patient-specific models, where the order parame-

ter was defined as the seizure spread size, and the control parameters were defined as the

neural excitability and global connectivity strength. The phase diagrams allowed us to deter-

mine whether a seizure will spread based on the excitability and global connectivity strength in

the brain. We have also shown that simulations of the model also successfully predicted the

temporal evolution of spread size and the temporal ordering or rank of different network

nodes in the surrounding as they are recruited into seizure. In this way, fast simulations of the

probabilistic model can accurately predict how a seizure spreads.

Second, our analyses revealed the nature of the phase transitions in the seizure spreading

dynamics in these probabilistic models. We have demonstrated that the order parameter

spread size can show both discontinuous and continuous (critical) phase transitions as neural

excitability and global connectivity strength are varied. A mean-field approximation of the

dynamics and finite-size scaling analyses provided supporting evidence for the existence of a

critical point near the boundary separating the no-spread and spread phases. Specifically, we

have shown that the standard deviation of fluctuations in spread size diverges with power-law

scaling at numerically estimated critical points as the network size N is increased. Further-

more, we have also shown that the corresponding response functions, namely the partial deriv-

atives of the order parameter with respect to excitability and global connectivity strength, also

diverge at the critical point with increasing N. Importantly, this critical point separates two dis-

tinct regimes in the spreading dynamics for control parameters near the boundary between

no-spread and spread phases. These two regimes are characterized by either unimodal or

bimodal probability distributions of spread size. In the unimodal regime, seizures present

spread sizes that range from very small to large number of network nodes in a continuous fash-

ion. On the other hand, in the bimodal regime, seizure spread sizes are typically either very

small or very large, with few or no observed intermediate sizes. Stochastic fluctuations trigger

either small or these seemingly explosive large spread size events.

We emphasize that currently there is not enough data from recordings in either patients or

animal models, both in terms of the number of recorded seizures per subject and in terms of

recordings with full coverage of brain areas in both hemispheres. The number of recorded sei-

zures per subject tends to be very small, especially in the hospital setting of epilepsy monitoring

units. Available ECoG or SEEG recordings have commonly been restricted to a small subset of

brain areas candidate for resective surgery or device implantation. All of this makes the exami-

nation of distributions of seizure spread sizes and related statistics based on experimental data-

sets currently unfeasible or at least very incomplete. Given these data restrictions, here we have

adopted patient-specific Epileptor networks as our main reference for the development of the

probabilistic model of seizure spreading. As stated earlier, patient-specific Epileptor networks

have been fitted to actual patient data and shown to successfully capture many of the seizure
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dynamics features [13, 14, 17, 33]. In this sense, we think patient-specific Epileptor networks

provide an initial good reference for the study of probabilistic models of spreading dynamics

in epileptic seizures. Nevertheless, we also note that, given the complexity of Epileptor network

models and their costly computational simulations required in finite-size scaling analyses, for

example, more concise probabilistic models as the one proposed here can play a fundamental

complementary role. We should also emphasize that since the proposed model is a coarsened

version of the Epileptor network states, it does not capture all their dynamical features such as

synchronization of oscillatory activity across networks nodes and its potential effects on sei-

zure spread. In this sense, we do not claim our analyses elucidate the nature of the phase transi-

tions in the Epileptor model in its entirety. That remains an open question. The presented

mean-field analysis is a mean-field analysis of the proposed probabilistic model.

As stated above, our focus in this study has been the scenario more immediately relevant to

predicting whether and how a seizure that has just started will spread. In this first treatment,

we have ignored how inter-seizure dynamics and potential history effects of spreading patterns

in a given past seizure might affect the spreading in future seizures. In other words, we

assumed the spreading dynamics in a given seizure to depend only on the within seizure his-

tory related to the events that have happened since the seizure initiation and that are indepen-

dent from spreading events in previous seizures. This might be a reasonable first-order

approximation if seizures are sufficiently far apart in time. In terms of model improvement,

inter-seizure dynamics can be incorporated via the inclusion of appropriate time scales for the

recovery from postictal periods. In addition, recent studies suggest that the temporal dynamics

within sequences of seizures show multiple time scales, from circadian to multiday rhythms

[34]. Furthermore, once these dynamics are incorporated, one would also need to address the

possibility of seizure spread patterns in a given seizure to affect the spreading pattern in future

seizures. This might involve synaptic plasticity and maintenance of pathological networks for

seizure spread.

Given the choice of parameters and existence of fixed epileptogenic areas that start seizures

and drive spreading, and the specific allowed sequences of events to capture typical neural

dynamics during seizure onset and spread, the proposed probabilistic model lacks detailed bal-

ance, the condition for thermodynamic equilibrium. Therefore, our use of phase transition

and related terminology needs to be considered outside the statistical physics of systems in

equilibrium. The concept of phase transitions and critical behavior has over the years been

extended to systems near and far from equilibrium, e.g. [20, 35]. The main related reference to

our study here is the field of directed percolation (DP) and other related models of nonequilib-

rium systems [20, 36–39]. Although the proposed probabilistic model is more complex and

does not belong to the DP universality class, our use of concepts such as phase transitions, crit-

icality, and our power-law scaling analyses are analogous to that commonly performed in the

DP and related fields.

We have demonstrated the existence of signatures of criticality based on divergence of fluc-

tuations in spread size and related response functions at estimated critical points. Further-

more, the exponents for power-law scaling differed between the two sides of the transition

[29]. However, in contrast to many previous studies focused on distributions of avalanche

sizes, our analysis did not find power-law behavior in the functional form of distributions of

spread size at the estimated critical points. Nevertheless, we emphasize that, although this is

expected in many processes, e.g. avalanches in self-organized critical systems [21, 22], power-

law scaling in the probability density of the order parameter (here spread size) can also be

absent in many other systems at criticality. Examples of the latter can be found in Ising models

where the net magnetization can show bimodal distributions with no power-law scaling

[40, 41].
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The estimated critical point inside the spread phase region, where fluctuations and

response functions appear to diverge, is also at the transition between the two regimes of

unimodal and bimodal distributions of spread size in the examined ER random networks.

Two main related issues can be raised. First, this transition suggests a bifurcation from a

single (small spread) to two metastable states (small and large spread) in the spreading

dynamics. One could argue that our finite-size scaling results would be more properly inter-

preted from the perspective of bifurcation analyses in dynamical systems under stochastic

perturbations, rather than from the statistical physics perspective of phase transitions. Nev-

ertheless, these two perspectives are not necessarily mutually exclusive and can be applied

in a complementary manner when approaching some nonequilibrium systems, e.g. [35, 42].

Second, it has been shown that in mean-field analyses of certain stochastic nonlinear sys-

tems, e.g. stochastic Wilson-Cowan dynamics on random networks, metastability vanishes

in the thermodynamic limit N!1, being replaced by multistability in the resulting deter-

ministic system [43]. In addition, the transition rates between metastable states are expected

in this case to decay exponentially with increasing N. We did not observe such behavior in

our simulations. In contrast, bimodality was enhanced with increasing N. Furthermore, we

emphasize that in this bimodal regime where stochastic realizations can result in either

small or large spread, the occurrence of the later always requires the network to approach

first the small spread metastable state. That results, in our setup, from the initial conditions

of the network always being the normal susceptible state, i.e. zero spread size. Exponential

decay of transition rates would imply that the occurrence of large spread sizes should

become less and less likely with increasing N, something that we also did not observe.

Another potential issue that could be raised is that this bimodal regime could somewhat

contribute artifacts to our finite-size power-law scaling analyses. We think that such effects

are unlikely given that our finite-size analyses are performed at the estimated critical point

and for directions including only the unimodal regime. In sum, although these issues

remain open to further investigation, we think that the above arguments support the

approach taken here.

While our initial results relating the probabilistic model to Epileptor networks were

based on patient-specific complex networks, i.e. networks with modular graphs reflecting

the hemispheric and other brain areas organization structures, our mean-field approxima-

tions and results relied on the assumption of Erdős-Rényi random networks. Although

this disparity did not affect significantly the prediction of phase diagrams and the time

evolution of seizure spread size in patient-specific Epileptor networks (Figs 4 and 6, and

Fig N in S1 Text), the extension of our response function and finite-size scaling results

based on the mean-field approximations to these complex networks remains an important

open problem. It also remains to be shown how our results extend to patient-specific net-

works with much finer parcellation of brain areas and more varied epileptogenic zone

locations than those examined in this study. We hope to address these problems in future

studies.

We expect that the type of probabilistic models for spreading dynamics proposed here will

play a fundamental role in closed-loop intracranial stimulation control approaches for pre-

venting seizure spread. For instance, predictions based on these patient-specific probabilistic

models can guide the specification of spatiotemporal stimulation patterns in NeuroPace RNS

devices [7, 44] endowed with the ability to track biomarkers of brain excitability and connec-

tivity strength. Finally, we hope that the continuing development of new human neurophysio-

logical recording strategies and devices will soon allow for the experimental testing of the

many predictions derived by our analysis of seizure spreading dynamics.
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Materials and methods

The Epileptor network model

We follow closely the formulation in [15, 18], keeping the notation for the Epileptor network

model the same as in previous publications so that they can be easily related. Some of the sym-

bols overlap with the notation for the proposed probabilistic model, but the distinction should

be clear from context.

For an N-node patient-specific Epileptor network model, the dynamics at each node i = 1,

2, . . ., N are given by

_x1;i ¼ y1;i � f1ðx1;i; x2;iÞ � zi þ I1 ð33Þ

_y1;i ¼
1

t1

f1 � 5x2

1;i � y1;ig ð34Þ

_zi ¼
1

t0

4ðx1;i � x0;iÞ � zi � w
XN

j¼1

Wij½x1;jðt � tijÞ � x1;iðtÞ�

( )

ð35Þ

_x2;i ¼ � y2;i þ x2;i � x3
2;i þ I2 þ 0:002 gðx1;iÞ � 0:3ðzi � 3:5Þ þ xiðtÞ ð36Þ

_y2;i ¼
1

t2

f� y2;i þ f2ðx2;iÞg þ ZiðtÞ; ð37Þ

where

gðx1;iÞ ¼

Z t

t0

e� gðt� sÞx1;iðsÞ ds; ð38Þ

and

f1ðx1;i; x2;i; ziÞ ¼
x3

1;i � 3x2
1;i if x1;i < 0

ðx2;i � 0:6ðzi � 4Þ
2
Þ x1;i if x1;i � 0

8
<

:

f2ðx2;iÞ ¼

0 if x2;i < � 0:25

6ðx2;i þ 0:25Þ if x2;i � � 0:25:

8
<

:

The terms ξi(t) and ηi(t) correspond to zero mean Gaussian white noise. Also, both ξi(t) and

ηi(t) are independent across nodes. Here, we set the corresponding noise variances to 0.0025.

Effectively, we interpret the above as stochastic differential equations in the Itô calculus sense

and apply the Euler-Heun method in the stochastic simulations. We set I1 = 3.1, I2 = 0.45, γ =

0.01, τ0 = 6667, τ1 = 1, τ2 = 10. For agreement with previously published simulations of Epilep-

tor network models, we list the time related variables in time units of 0.02 seconds, e.g. τ1 =

0.02s.

The coupling weights Wij� 0 were obtained from patient-specific connectivity matrices

derived from white-matter tractography. The terms τij> 0 are the corresponding axonal trans-

mission delays. (For more details, see Structural network connectivity below.) The global con-

nectivity strength is specified by the parameter w. We note that, although the connectivity

matrix and global coupling consist of nonnegative or strictly positive values, network
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interactions can result in suppressive or inhibitory effects via a diffusive coupling between

nodes instantiated as [x1,j(t − τij)−x1,i(t)] in the above equation for the z variable.

Epileptogenic and non-epileptogenic nodes can be instantiated by setting the corre-

sponding node excitability parameter x0,i to specific distinct values. This excitability

parameters control whether a node can go spontaneously into seizure. Its critical value for

an isolated node is x0,b � −2.061. Levels above this value allow for spontaneous seizure

transitions. Here, for an epileptogenic zone (EZ) we set x0,i = {−1.6, −1.8}. For non-epilep-

togenic nodes in the surround network we considered x0 2 [−2.3, −2.09], with 0.0115

steps.

For a detailed motivation of the Epileptor network equations and their dynamics we

refer to [9, 10, 33, 45, 46]. Briefly, three different time scales, reflected in the parameters

τ0� τ2� τ1, allow the network to capture both the slow and fast oscillations typically

observed in epileptic focal seizures. The slowest time scale corresponds to potential ionic,

metabolic and homeostatic dynamical processes leading the network to transition into sei-

zures. This slow dynamics is captured by the “permitivity” variable zi(t), which effectively

works as a bifurcation parameter, leading the network to spontaneously transition in and

out of seizures.

Patient-specific structural network connectivity and interaction delay

matrices based on white-matter tractography

Details about (diffusion MRI) white-matter tractography, brain area parcellation, and plots for

all of the 5-patient network connectivity and time delay matrices used in this study are pro-

vided in Fig A and Table A in S1 Text.

Fitting the proposed probabilistic model to patient-specific Epileptor

network simulation data

The proposed model has in total 6 parameters {a, b, c, d, τs, h}, which need to be estimated. To

fit these parameters to data from patient-specific Epileptor network models, we simulated Epi-

leptor networks instantiated on 5 different patient-specific networks. For each network, we

considered two different cases of EZ node location. For each network, we also considered two

different EZ excitability levels set at x0,ez = {−1.6, −1.8}. In total we had 20 different networks.

In addition, we varied the control parameters (w, x0), i.e. the excitability and global connectiv-

ity strength, respectively, on a grid space. For each point on these grid spaces and for each net-

work, we simulated 20 stochastic realizations and computed the corresponding phase-

diagrams as shown in Fig 2.

As stated earlier, we emphasize that we fitted just a single model to all of the simulated

patient-specific Epileptor networks, choices of EZ node location, and variations in excitability

and global connectivity strength. First, to fit the parameters {τs, c, d}, which specify the dura-

tion of seizures and their variability, we considered the seizure duration in the EZ node Dez in

the no-spread phase region of the (w, E) space. In that region, the seizure starts in the EZ node

but does not spread (green area in Fig 2). Furthermore, in this region of the phase diagram, the

input to the EZ node is constant over time

IezðtÞ ¼ Iez ¼ wE
X

i

Wez;i:

Thus, we can simply calculate the probability distribution function of Dez during this phase

of the network using Eqs 5, 10, 11 and 12 by considering y = t − tso,ez as the time elapsed since
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the seizure initiation, the relation between the duration of seizure and rate of termination is

pðDezÞ ¼ gðDez; ~ts;ez; qs;ezÞexpð�
R Dez

0
gðy; ~ts;ez; qs;ezÞdyÞ:

Because in this parameter range ~ts;ez and qs,ez are independent of time, direct calculation

leads to a uniform distribution of Dez in the range ½~ts;ez � qs;ez; ~ts;ez þ qs;ezÞ with mean ~ts;ez and

standard deviation

sDez
¼

qs;ez
ffiffiffi
3
p :

Next, we examined the behavior of Dez as a function of the input to the EZ node (Fig O

panel A in S1 Text). Furthermore, the expected value conditioned on Iez and standard devia-

tion of Dez are both in agreement with the functional form of Eqs 11 and 12 (Fig O panels B

and C in S1 Text). By fitting the functions directly to the data, we estimated τs = 32.22s, c = 1.3

and d = 0.05.

Having determined τs, to fit the parameters a, b we extracted the phase transition boundary

(the boundary between green and yellow in Fig 2) from all of the phase diagrams constructed

for all patient-specific networks and corresponding EZ nodes from the Epileptor simulations.

For each phase diagram, the data were constructed as the set of pairs {(Ek,r, wk,r)}, where the

indexes k and r indicate different points on the given transition boundary and different sto-

chastic realizations, respectively. We used least-squares to fit parameters a and b. Specifically,

we used Eq 17 in the following quadratic cost function to be minimized with respect to a and b

Lða; bÞ ¼
X

P

X

EZ

X

k

X

r

Ek;r þ
wk;raWi;ez~ts

ts½1þ wk;rb
P

j =2 EZWij�

 !2

;

leading to a = 0.46 and b = 0.0021. We note that the index i in the above cost function specifies

the most susceptible node, which is identified by finding the node with maximum input from

the EZ node. In the above equation the first and second summations are with respect to

patients and EZ nodes, respectively.

In order to fit the remaining parameter h, we extracted the “inhibitory” boundary (i.e.

boundary of the blue region in Fig 2) from each of phase diagrams obtained from the Epileptor

network simulations. For each case, the data were constructed as the set of pairs of {(wj,r, Ej,r)}
where the indexes j and r indicate different points on the phase boundary and different sto-

chastic realizations, respectively. Using Eq 16 and setting

Eez ¼ ðx0;ez � x0;bÞh;

we minimized the following quadratic cost function

LðhÞ ¼
X

P

X

EZ

X

j

X

r

Ej;r þ
ðx0;ez � x0;bÞh
wj;rb

P
iWez;i

 !2

;

resulting in h = 0.01.

Numerical simulations: Temporal Gillespie algorithm

To simulate in continuous-time the exact dynamics of the probabilistic model we used an algo-

rithm based on an extension of the time-rescaling theorem [26, 27], also known as the tempo-

ral Gillespie algorithm [28]. Consider first just a single-node (i.e. N = 1) with a corresponding

set O of possible state transitions including seizure initiation, termination (transition to
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refractory or postictal) and recovery. Any realization of the process consists of a sequence of

transition times

ft1; t2; t3; . . .g;

which can be represented as a realization from a stochastic point process with conditional

intensity

LðtjHðtÞÞ ¼
X

o2O

loðtjHðtÞÞ;

where HðtÞ is the history of the process, and loðtjHðtÞÞ is the conditional intensity for each of

the possible ω 2 O transition types. The loðtjHðtÞÞ are specified by the corresponding rate

functions f and g, i.e. Eqs 6 and 10, with appropriate input arguments.

By the time-rescaling theorem, the rescaled (waiting) time intervals between transitions

uk ¼

Z tkþ1

tk

LðtjHðtÞÞ dt ð39Þ

are independent and exponentially distributed with mean 1, i.e. the rescaled-time point pro-

cess corresponds to a homogeneous Poisson process with unit rate. Thus, to simulate the origi-

nal process, one can simply start by sampling a sequence of waiting time intervals {υk} from

this unit mean exponential distribution, and for each one of them, use Eq 39 to solve for the

transition times. Concretely, given a transition time t1 and a new sampled waiting time υ1, one

solves Eq 39 for the next transition time t2. Next, the type of the transition itself, indicated by

ω, is sampled according to the probabilities

Po ¼
loðt2jHðt2ÞÞ
Lðt2jHðt2ÞÞ

:

The simulation continues from one transition to the other by repeating the above steps.

The above can be easily extended to networks, by setting

LðtjHðtÞÞ ¼
X

o2O

XN

j¼1

lj;oðtjHðtÞÞ;

where λj,ω corresponds to the intensity at node j, and using again Eq 39 to solve for the transi-

tion times. Finally, both the node and the type of the transition are sampled with probabilities

Pj;o ¼
lj;oðtkjHðtkÞÞ
LðtkjHðtkÞÞ

;

where tk is the currently sampled transition time under consideration. The simulation pro-

ceeds following the above steps.

We emphasize that the seizure always starts in the EZ nodes. Furthermore, when applying

the algorithm to ER random networks (as opposed the patient-specific networks), we enforce a

seizure to start simultaneously in all of the Nez = �N EZ nodes.

Calculation of the spread to no-spread boundary in the mean-field

approximations

To evaluate the boundary between seizure spread and no-spread, we start with the case where

the EZ nodes are in the seizure state. We want to find the points in the parameter space (E, w)

at which the probability of spread is zero. We refer to the boundary of this region as the no-
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spread to spread boundary. Assuming that the EZ nodes are in the seizure state, following the

same steps as in deriving Eq 17, and considering the node with largest zi(t), we can write the

equation for this boundary as

E ¼

� wamax
t
f
X

j2EZ

Wijujðt � tijÞg

½1þ wb
X

j =2 EZ

Wij�
: ð40Þ

While the above equation is written for the node with largest zi(t), in the mean-field approx-

imation all the surrounding nodes receive equal input from the EZ nodes. Therefore we are

not concerned with the maximization with respect to i. To derive the mean-field approxima-

tion of the boundary between no-spread and spread phases, we replace Wij with its average

value �W and replace the interaction delays τij with their average value �t. Additionally, since

the the summation in the denominator of the above equation does not include the EZ nodes, it

can be evaluated as
P

j =2 EZ
Wij ¼

�WðN � NezÞ. Thus

E ¼

� w �WaNez max
t
f
X

j2EZ

ujðt � �tÞ=Nezg

1þ wb �WðN � NezÞ
:

ð41Þ

Next, to get the final form of this boundary we need to find the maximum of

UðtÞ ¼
X

j2EZ

ujðtÞ=Nez: ð42Þ

with respect to time. Note that as the translation in time with �t does not change the maximum

value of this function, for convenience we do not consider it in the following calculations. In

our setup, we consider the case that all the EZ nodes go to seizure simultaneously at time zero.

(This reflects the observation that the time scale for seizure spread within the EZ region is

much faster than the time scale for seizure spread in the large-scale network.) In addition, in

the no-spread phase, the duration of seizures in the EZ nodes is a random variable uniformly

distributed in the range ð~ts;ez � qs;ez; ~ts;ez þ qs;ezÞ. Based on the above, we can evaluate an

approximation of U(t) that is exact in the Nez!1 limit. To achieve that, we divide the time

axis into 4 intervals, and for each interval we calculate the function U(t). See Fig P in S1 Text

for visualization and a summary of the following results. The intervals and related calculations

are:

1. Time interval 0 � t < ~ts;ez � qs;ez: All the EZ nodes are in the seizure state and all have the

same ui(t) value. Therefore,

UðtÞ ¼
t � tso;ez
ts

¼
t
ts

2. Time interval ~ts;ez � qs;ez � t < ~ts;ez þ qs;ez: The uniformly-distributed (for large Nez) seizure

termination times for EZ nodes can be approximated as homogeneous termination times,

which are proportional to the time passed since ~ts;ez � qs;ez. In other words if �ðtÞ ¼
t � ð~ts;ez � qs;ezÞ and F = 2qs,ez, then the ratio of EZ nodes that have undergone seizure ter-

mination up to time t is equal to
�ðtÞ
F

, and the ratio of nodes that are still in the seizure phase
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is 1 �
�ðtÞ
F

. In this time interval, the contribution of the nodes that are still in the seizure state

to U(t) is t
ts

1 �
�ðtÞ
F

� �
. Using the fact that for the rest of the nodes the {ui(t)} are in their linear

decreasing phase, and also the uniform termination times, the average contribution of these

nodes is equal to
�ðtÞ
F
ð~ts;ez � qs;ezÞ. Therefore,

UðtÞ ¼
1

ts
½ð1 �

�ðtÞ
F
Þt þ

�ðtÞ
F
ð~ts;ez � qs;ezÞ�:

Since for t > ~ts;ez þ qs;ez all fuiðtÞji 2 EZg are in their decreasing phase, the maximum

point of U(t) is expected to be in the above intervals. In addition, the maximum point is not

in the first interval because UðtÞ < Uð~ts;ez � qs;ezÞ for any t < ~ts;ez � qs;ez. Therefore, the

maximum point must be in the second interval. By calculating the root of the time deriva-

tive of U(t), which is a quadratic function with a unique extremum point in the interval, we

can show that the maximum point happens at t ¼ ~ts;ez. Thus

Umax ¼
~ts;ez � qs;ez=2

ts
:

For completeness, to show the calculation of U(t) at all times, we also evaluate it here in the

following two intervals.

3. Time interval ~ts;ez þ qs;ez � t < 2ð~ts;ez � qs;ezÞ: The {ui(t)} for all the nodes are in their

decreasing phase, and due to the uniform distribution of the termination times, their aver-

age is equal to

UðtÞ ¼
2~ts;ez � t

ts

4. Time interval 2ð~ts;ez � qs;ezÞ � t < 2ð~ts;ez þ qs;ezÞ: The {ui(t)} of some of the nodes are in

their linearly decreasing phase and ui(t) = 0 for the rest of the nodes. The ratio of the nodes

for which ui(t) = 0, during times in this interval, is proportional to the time that has passed

since 2ð~ts;ez � qs;ezÞ, i.e.
t� 2ð~ts;ez � qs;ezÞ

2D
. The ratio of the nodes that are in the decreasing phase is

1 �
t� 2ð~t s;ez � qs;ezÞ

2D
. Therefore, the average ui(t) of these nodes is equal to

UðtÞ ¼ ð1 �
t � 2ð~ts;ez � qs;ezÞ

2F
Þ

2ð~ts;ez þ qs;ezÞ � t
2ts

:

Outside of the union of these four intervals, ui(t) = 0 for all the EZ nodes and obviously

U(t) = 0.

Having derived the maximum value of U(t) we continue the calculation of the boundary of

spread to no-spread. By plugging Umax ¼ max
t
f
P

j2EZ
ujðtÞ=Nezg ¼ ð~ts;ez � qs;ez=2Þ=ts into Eq 41,

we get the boundary of no-spread to spread as

E ¼
� w �WaNezð~ts;ez � qs;ez=2Þ

ts½1þ wbðN � NezÞ
�W �

: ð43Þ

Based on the mean-field approximation for large random networks with connection proba-

bility p, with a fraction of EZ nodes � = Nez/N and connectivity weights sampled from a distri-

bution with average μ0/N, we get �W ¼ pm0=N. Plugging �W into the above equation, we can
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rewrite the boundary equation as

E ¼
� wapm0�ð~ts;ez � qs;ez=2Þ

tsð1þ wbpm0ð1 � �ÞÞ
: ð44Þ

Finite-size correction for mean-field derived phase diagrams

We present the detailed derivation of the finite-size correction Eq 25 for the mean-field predic-

tion of phase diagrams for the proposed model. Having a fraction � of all the nodes in a ran-

dom network, with connection probability p, as EZ nodes, the total number of edges from all

the EZ nodes to a node in the surrounding is distributed according to a binomial distribution

with mean

�K EZ ¼ �pN

and standard deviation

sKEZ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pN �ð1 � �Þ

p
:

Multiplying the total number of edges by the average connection weight per edge (μ0/N),

we get the average and standard deviation of the input from EZ nodes to a random node in the

network as

�WEZ ¼ wp�m0

and

sWEZ
¼ wm0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�ð1 � �Þ=N

p
;

respectively.

For finite N there is variability in the inputs from the EZ node to surrounding nodes, and

there is a probability of having non-EZ nodes that receive inputs larger than �WEZ. A finite-size

correction to Eq 23 can thus be obtained by considering such nodes as the most susceptible

nodes with inputs up to n standard deviations larger than the mean input, leading to

w
X

j2EZ

Wij � wp�m0 þ nwm0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�ð1 � �Þ=N

p

¼ wp�m0ð1þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � �Þ

�pN

s

Þ:

ð45Þ

Therefore the finite-size correction is obtained by multiplying the right hand side of Eq 24

by the correction factor

n ¼ 1þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � �Þ

�pN

s

:
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Mean-field dynamics

Mean-field analysis is based on the assumption that the effective input to a node from others at

a given time is the same for all the nodes in the system. In other words, if we define

�Wi ¼
1

N

XN

j¼1

Wij; ð46Þ

then under the mean-field assumption �Wi ¼
�Wj for all pairs of the nodes. Therefore, we drop

the index of this mean value and use �W . Now, we can write the mean-field expression for zi(t)
as

ziðtÞ ¼ zðtÞ ¼ �Wwa
XN

j¼1

ujðt � �tÞ þ �WwbE
XN

j¼1 =2 EZ

vjðt � �tÞ; ð47Þ

where �t is the average interaction delay over all pairs of nodes defined as

�t ¼

P
i;jtij

P
i;jAij

; ð48Þ

where Aij are binary elements of the adjacency matrix (i.e. Aij = 1 if there is a connection form

j to i, and zero otherwise). Using the above equation and Eqs 3–5, we derive the mean-field

equations for evolution of the number of nodes in each of the three possible states of the

model.

To do that, we make a discrete-time approximation and study the evolution of the system

over small time intervals of size D ¼ �t=mt, where mτ is the number of time steps in the delay

time interval. We define the number of non-EZ nodes that transition to the seizure state at

each time bin i as Mi, the number of non-EZ nodes that enter the seizure state at time bin i and

exit this state at time bin j (seizure ending) as nij, and the number of non-EZ nodes that exit

the seizure state in time bin i and recover from refractory state in time bin j as rij. Similarly, we

define the same variables for the EZ nodes as Mez
i , nez

ij and rezij .

Next, using Eqs 8 and 9, we can write zm = z(mΔ) in terms of the above variables as

zm ¼
�WwaD
ts

Xm� mt

i¼� 1

fðm � iÞ½Mi þMez
i �

Xm

j¼i

ðnij þ nez
ij Þ�

þ
Xm

j¼i

Hð2j � i � mÞðnij þ nez
ij Þg þ

�WwbENs;m;

ð49Þ

where Ns,m = Ns(mΔ) is the number of non-EZ nodes in the susceptible state in the mth time

bin. The term

Mi þMez
i �

Xm

j¼i

ðnij þ nez
ij Þ

in Eq 49 gives the number of nodes that have entered the seizure state at the time bin i and are

still in this state at time bin m. It accounts for the linear increase of the output from these
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nodes to the neighbor nodes before seizure termination. On the other hand, the term

Xm

j¼i

Hð2j � i � mÞðnij þ nez
ij Þ

accounts for the linear decrease in the accumulated input after seizure termination (see Eq 8).

The function

HðxÞ ¼
x x � 0

0 x < 0

(

ð50Þ

guarantees that this linear decrease stops at zero.

By denoting the history of the system up to and including time bin m as

Hm ¼ fMi; nij; rij;Mez
i ; n

ez
ij ; r

ez
ij ji � m and j � ig;

we can write the probability of having Mm+1 non-EZ nodes transitioning to seizure in time bin

m + 1 in terms of a binomial distribution

PðMmþ1jHmÞ ¼
Ns;m

Mmþ1

� �

½f ðzm þ EÞD�Mmþ1

�½1 � f ðzm þ EÞD�Ns;m � Mmþ1 :

ð51Þ

We write the above probability function based on the fact that there are Ns, m susceptible

nodes at time bin m, out of which Mm+1 nodes are chosen to transition to the seizure state at

time bin m + 1 where each transition takes place with probability f(zm + E)Δ.

Similarly, we can write the probability of having ni, m+1 non-EZ nodes, from the Mi nodes

that have gone to the seizure state in the time bin i and are still in the seizure state, transition-

ing to the refractory state at time bin m + 1 as

Pðni;mþ1jHmÞ ¼

Mi �
Xm

j¼i

nij

ni;mþ1

0

B
@

1

C
A½gðDðm � iÞ; ~ts;m; qs;mÞD�

ni;mþ1

�½1 � gðDðm � iÞ; ~ts;m; qs;mÞD�
Mi �

Xmþ1

j¼i

nij

;

ð52Þ

where

~ts;m ¼ ts=ð1 � cEw �WNs;mÞ

is the mean-field approximation of Eq 11 at time bin m and qs;m ¼ d~ts;m is related to the vari-

ability of seizure termination times. In the above equation �W is the average interaction weight.

Finally, the probability of having rj, m+1 non-EZ nodes, out of all the nodes that have transi-

tioned to the refractory state in time bin j and have not recovered yet, transitioning from the
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refractory to the susceptible state at time bin m + 1 can be written as

Pðrj;mþ1jHmÞ ¼

Xj

i¼� 1

nij �
Xm

k¼j

rjk

rj;mþ1

0

B
@

1

C
A½gð½m � j�D; ~tr;m; qr;mÞD�

rj;mþ1

�½1 � gð½m � j�D; ~tr;m; qr;mÞD�

Xj

i¼� 1

nij �
Xmþ1

k¼j

rjk
:

ð53Þ

where ~tr;m ¼ tr is the refractory time scale and qr,m = qr specifies the respective variability in

the refractory time.

At a time bin m we can evaluate the number of nodes in seizure Ne,m, susceptible Ns,m and

refractory states Nr,m as

Ne;m ¼
Xm

i¼� 1

Mi �
Xm

j¼i

nij

 !

ð54Þ

Nr;m ¼
Xm

j¼� 1

Xj

i¼� 1

nij �
Xm

k¼j

rjk

 !

ð55Þ

and

Ns;m ¼ N � Nez � Nr;m � Ne;m; ð56Þ

respectively.

Eqs 51–53 can be similarly written for the EZ nodes represented by the variables Mez
i , nez

ij

and rezij defined above.

Sparse-seizure correction to mean-field dynamics

We developed a correction to Eqs 26 and 49 that is valid in the regime of spreading dynamics

where there is a small number of output edges from seizing nodes to susceptible nodes com-

pared with the total number of susceptible nodes in the network. Examples of this regime

are the early time of spread dynamics on networks with small number of EZ nodes, e.g.

patient-specific networks examined here, and sparse random networks with small average

degree.

For a random network with connectivity probability p, the spread dynamics at time bin m
is determined by the number of seizing nodes Ne,m and the number of susceptible nodes Ns,m.

The expected number of output links projecting from the Ne,m active nodes to Ns,m susceptible

nodes can be written as Kse,m = pNe,mNs,m, where the subscript se indicates the links or edges

from excited to susceptible nodes. If Ns,m> Kse,m, then the output from the active nodes does

not evenly distribute among all the Ns nodes; instead it can at most affect Kse,m of the Ns,m sus-

ceptible nodes. Therefore, we can make a correction to Eq 26 where instead of
Ns;m

Mmþ1

 !

we

use
Kse;m

Mmþ1

 !

.
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In addition, we can also make a correction to Eq 49. Based on the above argument, the

excitatory output from the Ne,m nodes can at most excite Kse,M nodes. As a consequence, we

can rescale the excitatory part of zm in Eq 49, which is evaluated to distribute among all suscep-

tible nodes by a factor of

Ns;m

Kse;M
:

Obviously, the above corrections are valid only if Ns,m> Kse,m. Otherwise, the dynamics fol-

lows the originally derived mean-field dynamics. We used mean-field simulations with the

above corrections to approximate the spreading dynamics in patient-specific networks as

shown in Fig 4C.

Simulation of mean-field dynamics

To simulate the mean-field dynamics, one can start from any initial condition and sample the

binomial distributions in Eqs 26–28 together with the corresponding equations for the EZ

nodes (overall 6 equations), over small time steps of size D ¼ �t=mt. Here, we used computer

simulations to study the spread dynamics conditioned on seizure initiation at the EZ nodes at

time t = 0. In addition, because of the separation of time-scales in the model, i.e. ~tr;i � ~ts;i, we

considered different seizure spread events, separated by a long refractory period, as indepen-

dent. Therefore, each realization starts with seizure initiation at the EZ nodes if EZ nodes are

not inhibited (i.e. f(z0 + Eez)>0), and the dynamics goes on until there is no seizure in the

system.

Behavior of ψ− (apparent exponents)

For the behavior of ψ− (Eqs 29 and 31), the estimated exponents b̂ 0 and d̂ 0 were negative. Nega-

tive values lead to a singularity in the function for ψ. Obviously, this type of singularity is not

allowed. We present below a consistent formulation of the behavior of the order parameter

spread size below the critical point w< wc where negative exponents were estimated. We fol-

low the concept of apparent exponents as described in [32] in the context of estimating power-

law probability density functions.

Letting x = wc − w, then we must have ψ(x = 0) = ψc which in our model corresponds to a

positive finite value. In addition, the response function

ww ¼
@c

@w
¼ �

@c

@x

is expected to diverge at the critical point. Therefore, it follows that

cðx ¼ 0Þ ¼ cc ð57Þ

lim
x!0þ

ww ¼ þ1: ð58Þ

Based on the above conditions, consider next the following functional form for the order

parameter:

cðxÞ ¼ cc 1 � xb̂ 0G
x
xc

� �y
 !" #

: ð59Þ
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The function G must be in agreement with conditions 57 and 58. It is necessary that

Gð0Þ ¼ 0

G0ð0Þ ¼ A;
ð60Þ

for finite positive A. In addition, it is necessary that yþ b̂ 0 > 0, which guarantees condition in

Equation Eq 57. Using Eq 59, it is straightforward to show that the actual exponent governing

the behavior of ψ near the critical point x≳ 0 is b
0
¼ yþ b̂ 0.

c� � xb0 ¼ xyþb̂ 0 : ð62Þ

The parameter xc in the above is a positive number that specifies the scale of x such that for

x> xc, the function G approaches a constant value, thus leading to the observation of the

apparent exponent b̂ 0. For small x< xc near x = 0, the function G scales as xθ, thus adding the

value of θ to the apparent exponent b̂ 0.

From Eq 59 we can also calculate the response function whose behavior near the critical

point x≳ 0 is

ww� � xyþb̂ � 1; ð63Þ

which diverges at the critical point if yþ b̂ < 1. Therefore, the intersection of conditions in

Eqs 57 and 58 dictates

0 < yþ b̂ < 1: ð64Þ

The above argumentation can be similarly applied to the d̂ 0 exponent.
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