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Abstract
Aquatic ectotherms are predicted to harbour genomic signals of local adaptation re-
sulting from selective pressures driven by the strong influence of climate conditions on 
body temperature. We investigated local adaptation in redband trout (Oncorhynchus 
mykiss gairdneri) using genome scans for 547 samples from 11 populations across a 
wide range of habitats and thermal gradients in the interior Columbia River. We es-
timated allele frequencies for millions of single nucleotide polymorphism loci (SNPs) 
across populations using low-coverage whole genome resequencing, and used popu-
lation structure outlier analyses to identify genomic regions under divergent selection 
between populations. Twelve genomic regions showed signatures of local adaptation, 
including two regions associated with genes known to influence migration and devel-
opmental timing in salmonids (GREB1L, ROCK1, SIX6). Genotype–environment associ-
ation analyses indicated that diurnal temperature variation was a strong driver of local 
adaptation, with signatures of selection driven primarily by divergence of two popula-
tions in the northern extreme of the subspecies range. We also found evidence for 
adaptive differences between high-elevation desert vs. montane habitats at a smaller 
geographical scale. Finally, we estimated vulnerability of redband trout to future cli-
mate change using ecological niche modelling and genetic offset analyses under two 
climate change scenarios. These analyses predicted substantial habitat loss and strong 
genetic shifts necessary for adaptation to future habitats, with the greatest vulner-
ability predicted for high-elevation desert populations. Our results provide new in-
sight into the complexity of local adaptation in salmonids, and important predictions 
regarding future responses of redband trout to climate change.
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1  |  INTRODUC TION

Understanding the genomic architecture underlying local adapta-
tion is important for predicting future responses of populations 
to climate change and other anthropogenic stressors (Aguirre-
Liguori et al.,  2021; Fitzpatrick & Edelsparre,  2018; Waldvogel 
et al., 2020). For aquatic ectotherms, environmental temperature 
is predicted to be an important driver of local adaptation due 
to their strong dependence of body temperature on water tem-
perature (Schluter,  2000). Because of this dependence, environ-
mental temperature has a major influence on many evolutionarily 
important life history traits, including developmental rate, body 
size, disease resistance, migratory patterns, longevity and survival 
(Martins et al., 2012; Portner & Knust, 2007; Whitney et al., 2014). 
Numerous studies have uncovered genomic evidence for local 
adaptation driven by environmental temperature for these taxa, 
finding that the genomic architecture underlying thermal adap-
tation is polygenic and complex (Everett & Seeb, 2014; Grummer 
et al., 2019; Jackson et al., 1998; Muñoz et al., 2015). Because of 
the prevalence of local adaptation, future climate change could 
lead to substantial changes in the adaptive potential and geograph-
ical distributions of aquatic ectotherms (e.g., Isaak et al.,  2012; 
Muñoz et al., 2015).

Redband trout (Oncorhynchus mykiss gairdneri) are ectotherms 
for which multiple studies have identified local adaptation driven by 
temperature in freshwater ecosystems (Chen & Narum, 2021). This 
subspecies of rainbow trout occurs in the interior Pacific Northwest 
of North America and occupies a wide range of thermal regimes, from 
cold montane forests to high-elevation deserts (Meyer et al., 2010; 
Muhlfeld et al.,  2015). Studies investigating thermal adaptation to 
local habitats in redband trout have used a wide variety of analyt-
ical approaches. Some studies have identified candidate adaptive 
single nucleotide polymorphisms (SNPs) based on allele frequency 
differences between populations in desert vs. montane habitats 
(Chen, Farrell, Matala, & Narum, 2018; Chen & Narum, 2021; Narum 
et al., 2010, 2013). Other studies have used landscape genomic ap-
proaches to identify genetic variation associated with environmen-
tal variation across a wide range of habitats (Collins et al.,  2020; 
Micheletti, Matala, et al.,  2018). In addition, common garden ex-
periments have been used to identify differences in gene expres-
sion in response to thermal stress for redband trout from desert vs. 
montane populations (Chen, Farrell, Matala, & Narum, 2018; Garvin 
et al.,  2015; Narum & Campbell,  2015). Common garden experi-
ments have also been used to identify SNPs associated with differ-
ent phenotypic responses to thermal stress (Chen, Farrell, Matala, 
Hoffman, et al., 2018; Chen, Farrell, Matala, & Narum, 2018; Chen 
& Narum, 2021). Together, these studies have identified many can-
didate genomic regions probably involved in thermal adaptation in 
redband trout.

Investigations on local adaptation of redband trout conducted 
thus far have used a variety of approaches for generating ge-
nomic and transcriptomic data, including amplicon sequencing or 

qPCR (quantitative polymerase chain reaction) of relatively small 
numbers of candidate SNPs, Illumina sequencing of thousands or 
millions of genome-wide SNPs, and Illumina sequencing of total 
RNA. One of the most recent studies (Chen & Narum, 2021) used 
low-coverage whole genome resequencing (lcWGR), a tool which 
has proven to be particularly powerful for exploring the genomic 
architecture of adaptation. This method enables cost–effect sur-
veys of a much larger portion of the genome than many other 
techniques (e.g., up to 75% of the genome in Chen & Narum, 2021) 
by sequencing shotgun libraries at low depth per sample, but 
high depth per population. Unlike standard PoolSeq (Schlötterer 
et al.,  2014), which generates uniquely barcoded libraries for 
pools of genomic DNA from all individuals in a population, lcWGR 
generates a uniquely barcoded library for each individual sample 
(Fuentes-Pardo & Ruzzante, 2017; Lou et al., 2021). This barcod-
ing strategy allows allele frequency estimates to be generated 
that account for variation in read depth across individuals and 
allows flexibility in conducting analyses that group different com-
binations of data subsets, such as grouping by population, sex or 
phenotype.

Thus far, lcWGR has only been used to investigate thermal adap-
tation across three redband trout populations representing different 
ecotypes (Chen & Narum, 2021). Here we build upon previous stud-
ies by performing lcWGR genome scans comparing 11 populations 
across a gradient of habitat types with substantial differences in 
thermal regimes, including cold montane, cool montane and high-
elevation desert habitats. Whereas several of these populations 
have been included in prior studies of thermal adaptation in red-
band trout (e.g., Chen, Farrell, Matala, Hoffman, et al., 2018), earlier 
studies did not account for a wide range of potential environmental 
drivers of local adaptation. To identify genomic regions potentially 
harbouring standing variation that enables local adaptation, we used 
population structure outlier tests to identify regions with strong 
allele frequency differences between three general habitat types. 
We also used genotype–environment association (GEA) analyses to 
identify genomic regions significantly associated with environmen-
tal variation across habitats. We further investigated environmen-
tal variables potentially involved in local adaptation by conducting 
ecological niche modelling (ENM) to identify variables with a strong 
impact on the presence or absence of redband trout across the re-
gion. To assess the susceptibility of our study populations to climate 
change, we used ENM to predict future changes in habitat suitability 
under two climate change scenarios. Finally, we used information 
gained from GEA analyses regarding genomic adaptation, along with 
expected future environmental conditions, to predict the level of ge-
nomic change that would be required for redband trout to adapt to 
future climate scenarios. Our hypotheses predicted that outlier anal-
yses would reveal local adaptation across climate regimes, driven by 
environmental variables related to temperature. We also predicted 
that the level of genomic change required for adaptation to future 
climates would be high for all ecotypes, due to strong local adapta-
tion across ecotypes.



802  |    ANDREWS et al.

2  |  METHODS

2.1  |  Laboratory work

Tissue samples for this study included 559 redband trout fin clips 
collected from 11 sites across three habitat types representing a gra-
dient of climate regimes in Idaho (high-elevation desert, cool mon-
tane forest and cold montane forest; hereafter referred to as desert, 
cool and cold) (Table 1; Figure 1). Of these 11 sites, nine are located 
among tributaries of the Snake River basin, whereas the remaining 
two sites are located in the Kootenai River drainage that flows into 
the upper Columbia River. Levels of connectivity among collections 
from the Snake River vs. Kootenai River drainages were expected 
to be very low given their extreme separation in the river network 
in this region. Previous studies indicate that hybridization of red-
band trout with cutthroat trout (Oncorhynchus clarkii) or non-native 
rainbow trout (O. mykiss irideus) is low for our study sites (Kozfkay 
et al.,  2011). Samples were collected between 1998 and 2018 
(Table 1). For five of the sites, approximately half the samples were 
collected from two different years, with the length of time between 
collections varying from 2 to 12 years (Table 1). For one site (Mann 
Creek), samples were collected from two geographically proximate 
tributaries within the same year and were expected to demonstrate 
high gene flow at fine scale.

Genomic DNA was extracted from fin clips using Qiagen DNeasy 
kits following the manufacturer's protocol. Prior to performing 
lcWGR, we identified duplicate samples and hybrid individuals for 
removal from the data set using a “Genotyping-in-Thousands by 

Sequencing” (GTseq) panel of 376 SNPs developed for O. mykiss 
(Campbell et al., 2015; Willis et al., 2020). This panel includes neu-
tral genetic markers that can be used to distinguish individuals and 
therefore identify duplicate samples in the data set, as well as mark-
ers that can be used to detect individuals with hybridization between 
rainbow trout and cutthroat trout. Sequencing of the GTseq panel 
was performed using an Illumina NextSeq at the Hagerman Genetics 
Laboratory, and genotyping of sequence data was performed as pre-
viously described (Campbell et al., 2015; Willis et al., 2020). Samples 
identified as duplicates or hybrids were removed from the data set 
prior to lcWGR. Data from the GTseq panel also enhanced several 
aspects of the lcWGR analyses described below. In particular, the 
GTseq panel allowed identification of the sex of each individual in 
the data set, since the panel includes a marker within the sdY re-
gion that is highly predictive of sex (Brunelli et al., 2008). In addi-
tion, the GTseq panel includes markers in two genomic regions that 
were identified as outliers in our lcWGR analyses (described further 
below). These two regions had been included in the GTseq panel due 
to association with developmental timing in redband trout and other 
salmonids (Micheletti, Hess, et al., 2018; Waters et al., 2021; Willis 
et al., 2020). Therefore, the GTseq data allowed comparison of al-
lele frequencies generated using lcWGR vs. amplicon sequencing for 
these two genomic regions (described further below).

Library preparation for lcWGR was performed by preparing 
whole genome shotgun sequencing libraries using Illumina Nextera 
DNA kits at the University of Idaho Genomics and Bioinformatics 
Resources Core, with each sample uniquely barcoded using a com-
bination of two indexes. Libraries were sequenced on two Illumina 

TA B L E  1  Sample collection locations, sample sizes after removing samples with low numbers of raw sequence reads, and collection years

Site Ecotype River basin Year collected n (per replicate) n (total) Latitude Longitude

Little Jacks Creek Desert Snake 2010 33 61 42.72889 −116.105

1998 28 42.72889 −116.105

Big Jacks Creek Desert Snake 2002 37 62 42.56278 −116.043

1998 25 42.56278 −116.043

Duncan Creek Desert Snake 2001 16 51 42.54793 −116.028

2003 35 42.54793 −116.028

Williams Creek Desert Snake 2003 31 31 42.87577 −116.929

Keithley Creek Cool montane Snake 2004 20 55 44.55295 −116.885

2013 35 44.55282 −116.885

Little Weiser Creek Cool montane Snake 2004 35 35 44.51247 −116.339

Dry Creek Cool montane Snake 2012 33 72 43.68899 −116.174

2016 39 43.71776 −116.135

Trail Creek Cool montane Kootenai 2018 35 35 48.56912 −116.388

Fawn Creek Cold montane Snake 2011 33 33 44.38234 −116.059

Mann Creek Cold montane Snake 2004 29 59 44.52606 −116.934

2004 30 44.54770 −116.987

S.F. Callahan Creek Cold montane Kootenai 2006 15 53 48.42030 −116.031

2018 38 48.42030 −116.031

Total 547
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NovaSeq lanes with 2 × 150-bp reads at the University of California 
Berkeley QB3 Vincent J. Coates Genomics Sequencing Laboratory.

2.2  |  Bioinformatic analysis

Sequence reads were demultiplexed by barcode, and read qual-
ity for each sample was evaluated using fastqc version 0.11.8 
(Andrews, 2010) and multiqc version 1.7 (Ewels et al., 2016). Samples 
with low read counts (<1 million raw read pairs) were removed 
from subsequent analyses. The “ppalign” module in poolparty ver-
sion 0.8 (Micheletti & Narum, 2018) was used for sequence quality 
filtering, genome alignment and SNP identification, following the 

parameter settings used in Chen and Narum  (2021). bbmap version 
38.90 (Bushnell, 2016) was used to remove sequencing adapters and 
primer dimers, trim reads using a mean quality threshold of 20, and 
remove reads that were <25 bp long after trimming. Quality-filtered 
reads were then aligned to a rainbow trout reference genome (NCBI 
Accession GCF_013265735.2; Gao et al., 2021) using bwa mem ver-
sion 0.7.17 (Li, 2013). PCR duplicates were removed using samblaster 
version 0.1.26 (Faust & Hall, 2014) and reads were sorted using pic-
ard tools version 2.25.0 (Broad Institute). samtools version 1.12 (Li 
et al., 2009) was used to remove ambiguously mapped reads, una-
ligned reads and reads with mapping quality <20. bcftools version 
1.12 (Li,  2011) was used to identify SNPs and remove SNPs with 
quality <20, depth < 15 for all samples combined, and minor allele 
frequency (MAF) <0.05 across all samples (note that more stringent 
filtering of SNPs by depth and MAF was conducted in subsequent 
analyses, as described below). Next, SNP identification and allele 
frequency estimation were performed using popoolation2 version 
1.201 (Kofler et al.,  2011) as implemented in the poolparty “ppal-
ign” module, using a normalization step to account for variance in 
sequence depth across individuals (Micheletti & Narum, 2018). This 
normalization step restricts the contribution of each individual to 
only two alleles for each SNP for the calculation of population al-
lele frequencies. popoolation2 was also used to remove SNPs within 
15  bp of an indel to account for potential mapping error. The re-
sulting SNP allele frequency data set served as a starting point for 
subsequent analyses using the poolparty “ppanalyze” module for a 
variety of population comparisons with the full sample set and vari-
ous sample subsets (described further below). Each of these analy-
ses used additional filters for depth and MAF.

2.3  |  Genome-wide population structure

Genome-wide population structure across space and time was 
evaluated using the poolparty “ppanalyze” module. These analyses 
were conducted in two different ways: (i) treating each location in-
dependently and (ii) treating each temporal replicate independently. 
For analyses treating each location independently, we used highly 
stringent filtering criteria to remove SNPs with depth <15 for any 
population, depth >250 for any population and MAF <0.05 across 
all populations. For analyses treating each temporal replicate in-
dependently, we used the same filtering criteria except for a lower 
stringency for minimum depth (<12) to retain a sufficient number 
of SNPs. After filtering, principal components analyses (PCAs) were 
conducted using normalized allele frequencies with the “prcomp” 
function in R version 3.6.0 (R Core Team,  2021). To remove the 
potential influence of adaptive genomic variation on genome-wide 
population structure, we also conducted PCA with a set of putatively 
neutral SNPs generated using two different methods: (i) excluding 
all SNPs above the 90th percentile of the distribution of FST values, 
and (ii) excluding all SNPs identified as population structure outliers 
and/or GEA outliers by the methods described below. For the first 
of these two methods, FST values were calculated using the sliding 

F I G U R E  1  Map of study sites and ecological niche model (ENM) 
results for the present day, and for the period 2081–2100 across 
two shared-socioeconomic pathways (SSP245 and SSP585). a) ENM 
values for the present day, with higher ENM values representing 
higher relative probability of presence (a proxy for habitat quality). 
b) Raw ENM value for future time period. c) Change from present 
day ENM values for future time period. “Cold” = cold montane 
forest, “Cool” = cool montane forest, “Desert” = high-elevation 
desert
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window Karlsson-type FST (Karlsson et al., 2007) with popoolation2 
in the “ppanalyze” module of poolparty, with a window size of 5000 
and a step size of 500.

2.4  |  Genome scans: population structure outliers

The poolparty “ppanalyze” module was also used to identify genomic 
regions under divergent selective pressures by identifying loci with 
strong allele frequency differences between groups. For these 
analyses, we removed SNPs with depth < 15 for any population, 
depth > 250 for any population and MAF <0.05 across all popula-
tions. We then evaluated the significance of pairwise allele fre-
quency differences between groups using Fisher's exact test (FET). 
We first used this approach to compare different habitats (hereafter 
referred to as “between-habitat comparisons”) by combining tem-
poral replicates within each geographical site and then performing 
FETs for each pair of geographical sites that were from different 
habitat types. The resulting p-values were then averaged to pro-
duce the final p-values for each habitat comparison, and p-values 
between populations from the same habitat type were not calcu-
lated or averaged. We used this approach for the following habitat 
comparisons, for a total of five different analyses: (i) one analysis 
comparing all three habitat types; (ii) three analyses comparing each 
pairwise combination of the three habitat types; and (iii) one analysis 
comparing all desert populations vs. all montane populations (i.e., all 
desert populations vs. all cool or cold populations). We performed 
these analyses using the full data set, and also using a data subset 
including only the Snake River populations, to investigate potential 
signals of adaptive divergence within the Snake River that may have 
been obscured by inclusion of the two Kootenai River populations. 
We also compared temporal replicates within populations (hereafter 
referred to as “temporal replicate comparisons”) to identify potential 
signals of adaptive differences over time within populations.

After performing FETs for each of the analyses described above, 
outlier genomic regions were identified with a Local Score analysis 
(Fariello et al., 2017) implemented in poolparty. This method uses a 
score function related to the FET p-value and a window size based 
on the proximity of statistically significant p-values. Genomic re-
gions were considered outliers if p < .001. After identifying outlier 
regions, we evaluated which geographical sites were driving the al-
lele frequency differences for each between-habitat outlier region 
by conducting PCAs using region-specific SNPs, using the “prcomp” 
function in R. To evaluate whether temporal variation in adaptive 
pressures influenced the results of the between-habitat compari-
sons, we also performed PCAs of the between-habitat outlier re-
gions treating each temporal replicate separately.

To identify the genes that were potentially responsible for the 
observed signatures of divergent selection, we first identified all 
genes occurring within the outlier regions using the R packages 
genomicranges version 1.44.0 and genomicfeatures version 1.44.1 
(Lawrence et al.,  2013) and the reference genome annotations in 
the gff file. To narrow this list to the genes most probably under 

divergent selection, we identified the regions with the highest peak 
in Local Score values within each outlier region (regions containing 
SNPs above the 90th percentile of the distribution of Local Score 
values), and then identified the genes within those peak regions, as 
well as the closest gene on either side of the peak regions.

We used genome coordinates to determine if any of the SNPs 
from the GTseq panel occurred within the outlier regions, or within 
100 kb of these regions. We identified a total of 23 GTseq SNPs for 
two outlier regions (described further in the Section  3), and then 
used the GTseq data to calculate allele frequencies across geo-
graphical sites for each of these SNPs. We then plotted these allele 
frequencies for visual comparison with the population structure ob-
served in the lcWGR PCAs for each outlier region.

2.5  |  Genome scans: GEA Outliers

Environmental data for GEA analyses were obtained from the 
WorldClim database (Fick & Hijmans,  2017) and the NorWeST 
stream temperature database from 1993 to 2011 (Isaak et al., 2011). 
After removing highly correlated environmental variables, we re-
tained nine variables for our final GEA analyses (Table 2; Figure S1, 
described further in the Supporting Information). Environmental 
variation across geographical sites for these nine variables was visu-
alized using PCA with the R package factominer version 2.4 (Husson 
et al., 2020).

Three different GEA tests were performed to identify outlier 
SNPs associated with environmental variation: redundancy analysis 
(RDA), partial-redundancy analysis (pRDA), and latent factor mixed-
modelling (LFMM) (Supporting Information). RDA and pRDA use a 
multivariate approach to identify outlier SNPs, whereas LFMM uses 
univariate regression. Both LFMM and pRDA control for population 
structure when identifying outliers; LFMM accomplishes this by 
modelling neutral genetic variation in latent factors, whereas pRDA 
includes neutral genetic variation as a covariable.

RDA and pRDA were conducted using the “rda” function in the 
R package vegan version 2.5-6 (Oksanen et al., 2019). For pRDA, we 
accounted for neutral population structure using the loadings from 
a PCA (generated using “rda”) of putatively neutral SNPs as a co-
variable. The putatively neutral SNPs for the PCA were selected by 
removing SNPs above the 90th percentile of the distribution of FST 
values, as determined from the poolparty “ppanalyze” results. We de-
termined the number of PCA axes to include in the pRDA using the 
broken-stick method (Legendre & Legendre, 1998) implemented with 
the PCAsignificance function in biodiversityr (Kindt & Coe, 2005). For 
both RDA and pRDA, we used the outlier function from the nescent 
RDA tutorial to reduce false positives (Forester et al., 2018), with 3.5 
standard deviations set as the threshold of significance (equivalent 
to a two-tailed p = .0005).

For LFMM, we used the “lfmm2” function in the R package lea 
version 3.7.0 (Gain & Francois,  2021), accounting for population 
structure using K = 9 based on previous analyses of genetic structure 
for these populations (Kozfkay et al., 2011; Supporting Information). 
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To identify outliers, we used a significance threshold of alpha = .05 
after Benjamini–Hochberg (BH) correction with the R package ihw 
version 1.15.0 (Ignatiadis et al., 2016). To avoid loss of power with 
LFMM due to pooled sequencing, we simulated 20 individuals per 
population using the R function “rbeta,” following recommendations 
for pooled sequence data on the LFMM website and personal com-
munication with the authors (http://membr​es-timc.imag.fr/Olivi​er.
Franc​ois/lfmm/faq.htm; O. Francois, personal communication July 
21, 2020).

We performed all GEA analyses (RDA, pRDA, LFMM) using the 
full data set, and we also performed LFMM analyses using only 
the Snake River data subset (excluding the Kootenai River popu-
lations). We did not perform RDA and pRDA for the Snake River 
data subset due to the relatively low explanatory power observed 
for analysis of the full data set using these methods (described 
further below).

2.6  |  Comparing outlier SNPs across methods

To investigate the level of consistency in the identities of outlier 
SNPs detected across analytical methods, we identified outlier 
SNPs that were shared across GEA tests (pRDA, RDA and LFMM). 
We also identified GEA outlier SNPs that occurred within the out-
lier regions identified by the Local Score test. Finally, we investi-
gated whether any of the SNPs identified as outliers in a previous 
landscape genetics study of redband trout (Micheletti, Matala, 
et al., 2018) occurred within the Local Score outlier regions identi-
fied in our study.

2.7  |  Climate change assessment

To assess the vulnerability of each population to climate change, we 
conducted ENM and genetic offset analysis for current and future 
climates, using the WorldClim variables from the GEA analysis de-
scribed above. We predicted future environmental conditions using 
two shared-socioeconomic pathways (SSPs) for the years 2081–
2100, including a “low-emission” scenario in which social, economic 
and technological trends continue to follow historical patterns 
(SSP245), and a “high-emission” scenario in which fossil fuels are 
heavily exploited (SSP585) (Riahi et al., 2017).

For ENM, we used the machine learning software maxent ver-
sion 3.4.3 in the R package dismo (Hijmans et al.,  2021) to predict 
the relative probability of future occurrence of redband trout across 
Idaho. maxent is a presence-only ecological niche model software 
(Phillips et al., 2006; Phillips & Dudik, 2008). We obtained 451 res-
ident redband trout presence locations from Idaho Fish and Game 
(Meyer et al.,  2010). To remove points with potential errors (e.g., 
probable missing negative signs, locations in the ocean), we filtered 
to retain only points with a longitude less than −110 and a latitude 
greater than 39. A total of 429 presence points remained after filter-
ing, although if multiple points are present within a single raster cell, 
all but one are automatically removed by maxent. We then clipped 
the WorldClim variables to the minimum and maximum longitude 
points, plus or minus 0.5 decimal degrees using the R package terra 
version 1.4.2.2 (Hijmans, 2022). This was done to reduce the pseu-
doabsence points from occurring well outside probable niche space, 
which can lead to overfitting. To match the resolution of the present-
day layers (30 s) to that of the future layers (2.5 min), we conducted 

TA B L E  2  Descriptions of environmental variables used in GEAs, significance levels (p-values) for each environmental variable in the RDA 
and pRDA models for the full data set analysis, and the number of outlier SNPs identified by LFMM for each environmental variable for the 
full data set and Snake River data subset analyses

Environment variable Source Description RDA: p pRDA: p

LFMM: no. of SNPs

Full data set Snake River

Canopy NorWeST Canopy cover (%): represents stream shade .059 .503 1094 2925

Drainage area NorWeST Cumulative drainage area (km2): represents 
stream size and amount of insolation

.248 .594 4161 5519

Slope NorWeST Stream slope (%): affects flow velocity 
and equilibration time to local heating 
conditions

.01 .101 1402 3426

Temp: Stream NorWeST Mean August stream temp: 19-year average 
from 1993 to 2011

.797 .755 667 1856

Isothermality WorldClim [(Mean diurnal air temp range)/(Air temp 
annual range)](×100)

.671 .672 13,564 1841

Precipitation WorldClim Coefficient of variation of monthly 
precipitation

.312 .426 1123 2233

Temp: Mean Diurnal Range WorldClim Mean of monthly [(Max air temp) − (Min air 
temp)]

.043 .205 21,367 1567

Temp: Min Coldest Month WorldClim Min air temp of coldest month .438 .497 1657 4003

Temp: Annual Range WorldClim [(Max air temp of warmest month) − (Min air 
temp of coldest month)]

.086 .706 1251 3579

http://membres-timc.imag.fr/Olivier.Francois/lfmm/faq.htm
http://membres-timc.imag.fr/Olivier.Francois/lfmm/faq.htm
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bilinear resampling. We then used the R package enmeval version 
2.0.2 (Muscarella et al.,  2014) to select the model features (e.g., 
linear, threshold) and to tune the regularization multiplier to avoid 
over-fitting. Based on Akaike Information Criterion (AIC) weight, the 
best supported model used linear, quadratic and hinge features. We 
selected the second feature set due to higher area under the curve 
(AUC). For our maxent settings, we used 10,000 psuedo-absence 
points, a regularization multiplier of 0.5, jackknife analysis and 10 
replicates with cross-validation to assess fit. After predicting relative 
probability of presence across the landscape, we then extracted the 
change in ENM value for the geographical sites of each of our study 
populations.

Genetic offset was calculated using the “genetic.offset” func-
tion in lea with the full data set (including all Kootenai and Snake 
River populations), and represents the level of mismatch in allele 
frequencies between the current and predicted future genetic com-
position of populations at putatively adaptive loci. For this analysis, 
adaptive loci are identified through GEA analyses under an assump-
tion that selection is potentially weak but highly polygenic (Gain & 
Francois, 2021).

3  |  RESULTS

Analysis of GTseq data identified one hybrid individual and one du-
plicate pair of individuals, which were removed from the data set 
prior to performing lcWGR. For the lcWGR data, a total of nine 
samples had low read counts (<1 million read pairs) and were re-
moved from subsequent analyses. After sample filtering, the final 
data set included 547 samples from 11 sites (four desert sites, four 
cool sites and three cold sites; Table 1). The total sample size per 
site ranged from 31 to 72, the number of raw read pairs per sample 
ranged from 1,338,833 to 28,410,031 (mean  =  10,438,707), and 
the number of reads after quality filtering ranged from 1,267,065 
to 26,677,778 (mean  =  9,831,827) (Tables  S1 and S2). Using the 
GTseq data for the sex-predictive marker, we determined that 257 

individuals were female, 320 were male and seven could not be 
determined due to poor sequencing results for the sex-determining 
marker (Table S1).

3.1  |  Genome-wide population structure

For the genome-wide population structure analysis treating each 
geographical site independently, a total of 4,193,763 SNPs were re-
tained after filtering. The first PCA axis separated the Kootenai River 
populations (Trail Creek and S.F. Callahan) from each other and from 
all other locations, and the second PCA axis separated Little Jacks, 
Dry Creek and Fawn Creek from each other and all other locations 
(Figure 2). For the analysis treating each temporal replicate indepen-
dently, a total of 2,141,860 SNPs were retained after filtering. PCA 
results for this analysis were similar to those for the analysis treating 
each geographical site independently, and temporal replicates from 
the same population generally clustered together (Figure S2). PCA 
results were also similar for analyses conducted using only puta-
tively neutral SNPs (Figure S3).

3.2  |  Genome scans: population structure outliers

For the five different between-habitat outlier analyses with the full 
data set (i.e., all Kootenai and Snake River populations), the number 
of genome-wide SNPs ranged from 4,021,582 to 5,634,494. Local 
Score analysis identified 10 outlier regions across the different pair-
wise comparisons, with each region occurring on a separate chromo-
some (Figure 3, Table 3). Of the 10 regions, six were outliers for the 
comparison of all three ecotypes, two for the desert vs. cool com-
parison, five for the desert vs. cold comparison, four for the desert 
vs. montane comparison, and four for the cool vs. cold comparison 
(Table 3). Only one region was an outlier for all five of these compari-
sons; this was a region on chromosome Omy28. Population struc-
ture varied across the 10 regions (Figure 4a,b; Figure S4). The desert 

F I G U R E  2  Principal components 
analysis of all genome-wide SNPs 
across geographical sites, colour-coded 
by ecotype: “Cold” = cold montane 
forest, “Cool” = cool montane forest, 
“Desert” = high-elevation desert
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populations clustered together in the Omy01 and Omy23 outlier 
region PCAs, but populations did not cluster by habitat type for the 
remaining outlier regions. The two Kootenai River populations (Trail 
Creek, a cool site; and S.F. Callahan Creek, a cold site) plotted sepa-
rately from Snake River populations for most of the outlier regions, 
following the pattern observed in the PCA of genome-wide SNPs 
and neutral SNPs (Figure 4; Figure S4). Dry Creek (a cool site) also 
plotted separately from other populations for the Omy01, Omy06 
and Omy16 outlier regions.

For the between-habitat comparisons of the Snake River data 
subset, the number of genome-wide SNPs for the five analyses 
ranged from 4,225,340 to 6,117,241. Local Score analysis identified 
a total of seven outlier regions for these comparisons, including five 
that overlapped with the outlier regions from the full data set anal-
ysis (regions on Omy03, Omy06, Omy18, Omy23 and Omy28), as 
well as two new outlier regions (on Omy15 and Omy19) (Figure S5, 
Table S3). Thus, in total we identified 12 unique outlier regions for 
between-habitat comparisons of the full data set and the Snake 
River data subset, including five regions unique to the full data set 
analyses, two unique to the Snake River data subset analyses and 
five shared for analyses with both data sets.

Of the seven regions identified by the Snake River data subset 
analyses, one was an outlier for the comparison of all three ecotypes, 

three for the desert vs. cool comparison, two for the desert vs. cold 
comparison, four for the desert vs. montane comparison and two 
for the cool vs. cold comparison (Table S3). For four of these outlier 
regions, PCA separated most desert populations from montane pop-
ulations (regions on Omy03, Omy15, Omy18 and Omy23; Figure S6). 
For the Omy28 region, PCA separated Little Jacks Creek (a desert 
site) from the rest of the populations. For the two remaining regions 
(Omy06 and Omy19), PCA separated Dry Creek (a cool site) from all 
other populations (Figure S6).

For the temporal replicate population structure outlier anal-
yses, the number of genome-wide SNPs ranged from 785,051 to 
4,569,224. Local Score analyses identified a total of eight outlier re-
gions, with all except one population (S.F. Callahan) having at least 
one outlier region (Figure S7, Table S4). None of the outlier regions 
were shared across populations, and only one region overlapped 
with an outlier region identified in the between-habitat comparisons 
(i.e., a region on chromosome Omy03). Local Score values for the 
between-replicate outlier regions were generally much less signifi-
cant than for the between-habitat outlier regions (compare Figure 3 
and Figures S5 and S7). In addition, PCAs of the 12 between-habitat 
outlier regions treating each temporal replicate separately showed 
similar clustering of habitat types as the PCAs that combined tempo-
ral replicates (compare Figures S4, S6 and S8). These results indicate 

F I G U R E  3  Manhattan plots of Local Scores across genome-wide SNPs for pairwise comparisons between habitat types for the full data 
set analyses (including all Snake River and Kootenai River populations). Chromosome numbers are given along the x-axis. Horizontal grey 
lines indicate average chromosome significance = .001 after correction for multiple tests
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that adaptive differences for temporal comparisons were probably 
much weaker than those for between-habitat comparisons, and that 
temporal variation in adaptive pressures probably had minimal influ-
ence on results of the between-habitat comparisons.

A number of genes were associated with the between-habitat 
outlier regions and are candidates for local adaptation. For the 
full data set analysis, 56 genes occurred within the outlier regions 
(Table S5) and 38 genes occurred within or on either side of the peak 
Local Score regions (Figure S9, Table S6). For the Snake River data 
subset, 172 genes occurred within the outlier regions (Table  S7) 
and 47 genes occurred within or on either side of the peak regions 
(Figure  S10, Table  S8). Two of the candidate gene regions, occur-
ring on Omy25 and Omy28, have been previously studied in red-
band trout and other salmonids. The closest gene downstream of 
the Omy25 outlier region, SIX6, is known to be associated with age at 
maturity in rainbow trout and other salmonids (Waters et al., 2021). 
In addition, two of the genes within the Omy28 outlier region, 
GREB1L and ROCK1, are known to be associated with migration tim-
ing in rainbow trout and Chinook Salmon (Alshwairikh et al., 2021; 
Hess et al., 2016; Koch & Narum, 2020; Micheletti, Hess, et al., 2018; 
Thompson et al., 2019; Willis et al., 2020).

By comparing the genome coordinates of the Local Score outlier 
regions and the SNPs present in the GTseq panel, we determined that 
the GTseq panel includes 10 SNPs within 100 kb of the Omy25 Local 
Score outlier region (three within the SIX6 gene, six in the upstream 
promoter region for SIX6 and one in the downstream intergenic 
region), and 13 SNPs within the Omy28 outlier region (six within 
the GREB1L gene, six within the intergenic region and one within 
the ROCK1 gene) (Willis et al., 2020). These 23 SNPs had originally 
been included in the GTseq panel due to known associations of SIX6 
and GREB1L/ROCK1 with developmental timing in salmonids (Hess 
et al., 2016; Micheletti, Hess, et al., 2018; Prince et al., 2017; Waters 
et al., 2021). Furthermore, later studies identified rainbow trout phe-
notypes associated with each allele at these SNPs: alleles in the SIX6 
region have been associated with an earlier (“short”) or later (“long”) 
age at maturity, and alleles in the GREB1L/ROCK1 region have been 
associated with an “early” or “late” arrival time to spawning grounds 
(Micheletti, Hess, et al., 2018; Willis et al., 2020). Most populations in 
our study were dominated by the “long” alleles in the SIX6 region, but 
some populations had fairly high proportions of “short” alleles (Little 
Weser, Big Jacks, Duncan) (Figure 4c; Figure S11a). This pattern was 
consistent across both sexes (Figure S11b,c). However, this pattern 
differed from the population structure observed in our lcWGR PCA 
results for the Omy25 outlier region, for which Trail Creek and 
S.F. Callahan Creek segregated separately from other populations 
(Figure 4a). This discrepancy is probably explained by the fact that 
the GTseq SNPs occur further downstream than the outlier region 
identified in our study, and therefore probably occur in a different 
part of the SIX6 promoter region (Figure S12). This result potentially 
indicates that selection is acting on a different portion of the SIX6 
promoter region in our study than has been observed in previous 
studies; alternatively, this inconsistency may reflect a lack of pre-
cision in the Local Score analysis for identifying the region under TA
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divergent selection. For the GTseq SNPs in the Omy28 outlier re-
gion, allele frequencies from our data indicated a greater proportion 
of “early” alleles in S.F. Callahan, Trail Creek and Little Jacks Creek, 
when compared to the other populations (Figure  4d; Figure  S13). 
This result is consistent with the population structure observed in 
our lcWGR PCA for the Omy28 outlier region (Figure 4b).

3.3  |  GEAs

PCA of environmental variables demonstrated that collections in 
this study represented a gradient of climate regimes, with the first 
axis separating the desert sites from the montane sites (Figure 5a; 
Table S9). In contrast, the cool and cold montane sites overlapped 
substantially, forming two clusters that separated on the second 
axis: one cluster included S.F. Callahan (cold) and Trail Creek (cool), 
and the other cluster included the remaining cool and cold sites 
(Figure 5a). The first PCA axis was driven by stream temperature, 
drainage, canopy and precipitation, and the second PCA axis was 
driven by the WorldClim temperature variables (isothermality, mean 

diurnal temperature range, minimum temperature of coldest month, 
annual temperature range) (Figure 5b).

The total number of SNPs used for GEAs with the full data set 
was 2,971,532. For RDA, the overall model had p = .15, with an ad-
justed R2 value of .316. Two environmental variables were signifi-
cant (slope, p =  .01; mean diurnal temperature range, p =  .04) and 
two had p < .10 (canopy, p = .06; temperature annual range, p = .09) 
(Table 2). The first axis of the model had p  =  .14, and the second 
axis had p = .42. Due to the high p-value of the second axis, we re-
tained only the first axis, which explained 30.7% of the variance and 
identified 3930 outlier SNPs. pRDA revealed results similar to those 
of the RDA, but with lower explanatory power and lower statistical 
significance. We used only the first axis of the neutral SNP PCA as 
a covariable in pRDA, because the broken-stick method indicated 
the percentage of variance explained for this axis was lower than 
the broken-stick percentage, and cumulative percentage was never 
higher than the broken-stick cumulative percentage. The overall 
pRDA model was nonsignificant (p = .451), with an adjusted R2 value 
of .045. None of the environmental variables or axes were signifi-
cant. We retained the first axis (p = .50), but outliers from the pRDA 

F I G U R E  4  Population structure for SNPs occurring within outlier genomic regions identified using Local Score analysis on chromosomes 
Omy25 and Omy28. (a, b) PCA for all SNPs identified by poolparty analysis and occurring within the outlier regions (n = 128 SNPs for Omy 
25 region, n = 454 SNPs for Omy28 region); red = high-elevation desert populations; green = cool montane forest populations; blue = cold 
montane forest populations. (c, d) Allele proportions for one GTseq SNP occurring within 100 kb of each outlier region (Locus L01 for 
Omy25, Locus L02 for Omy28); allele proportions for the remaining GTseq SNPs within these regions show similar results due to strong 
linkage, and are reported in Figures S11 and S13. Previous studies have identified Oncorhynchus mykiss phenotypes associated with each 
GTseq SNP allele: an earlier (“Short”) or later (“Long”) age at maturity for the Omy25 region, and an “Early” or “Late” migration timing for the 
Omy28 region (Willis et al., 2020). “No Data” indicates the proportion of samples that failed to produce genotype data
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should be interpreted with caution due to the lack of significance for 
the model and axes. The first axis explained 25.7% of the variance 
and identified 3284 outlier SNPs.

LFMM analyses for the full data set indicated that a total of 
35,198 SNPs were significantly associated with at least one environ-
mental variable. Of these, 10,317 SNPs were significantly associated 
with two or more environmental variables. The number of significant 

associations was highest for mean diurnal temperature (21,367 SNPs) 
and isothermality (13,564 SNPs), and lowest for stream temperature 
(667 SNPs) and canopy cover (1094 SNPs) (Table 2, Figure 6a). A sim-
ilar pattern was observed for the 847 LFMM outlier SNPs that oc-
curred within the Local Score outlier regions, for which the number 
of significant associations was consistently highest for mean diurnal 
temperature and isothermality (Figure 6b–d; Figure S14).

F I G U R E  5  Principal components analysis of environmental data. (a) Populations colour coded by ecotype, and with distribution ellipses 
around 95% confidence intervals. “Blue” = cold montane forest, “green” = cool montane forest, “red” = high-elevation desert. “Mann Creek 
(a)” and “Mann Creek (b)” represent two geographically proximate tributaries. (b) Contributions of environmental variables to the principal 
components

F I G U R E  6  Proportions of 
environmental associations for LFMM 
outlier SNPs for full data set analyses 
(including both Snake River and Kootenai 
River populations). Each environmental 
association is treated independently, 
and therefore SNPs associated with 
more than one environmental variable 
are represented more than once. (a) All 
LFMM outlier SNPs (35,198 SNPs), (b) only 
LFMM outlier SNPs occurring in the 10 
Local Scores population structure outlier 
regions (847 SNPs), (c) only LFMM outlier 
SNPs within the Omy25 outlier region (33 
SNPs), and (d) only LFMM outlier SNPs 
within the Omy28 outlier region (165 
SNPs)

(c) Omy25 Region (d) Omy28 Region

(a) Genome−wide (b) Local Scores Regions

Canopy
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Slope
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LFMM analysis of the Snake River data subset used a total of 
3,057,141 SNPs, of which 20,279 SNPs were significantly associ-
ated with at least one environmental variable, including 4543 SNPs 
associated with two or more environmental variables. The number 
of associations was highest for drainage area (5519 SNPs) and min-
imum temperature of the coldest month (4003 SNPs), and lowest 
for mean diurnal temperature range (1567 SNPs) and isothermality 
(1841 SNPs) (Table  2). Similarly, the LFMM outlier SNPs that oc-
curred within the Local Score outlier regions had the greatest num-
ber of associations for drainage area and minimum temperature of 
the coldest month, although other environmental variables also had 
relatively large numbers of associations for some outlier regions 
(Figure S15).

3.4  |  Overlap of outlier SNPs across methods

For the full data set analyses, the greatest overlap in outliers across 
GEA tests occurred between LFMM and RDA (Figure 7a). Few outli-
ers were shared between RDA and pRDA, although higher percent-
ages of shared outliers occurred within the outlier regions identified 
by the Local Score test (Figure 7b; Figure S16). Within these outlier 
regions, 309 SNPs were RDA outliers (9.31% of total SNPs within the 
regions), 287 were pRDA outliers (8.65%), and 847 were outliers for 
one or more LFMM tests (25.5%). However, these percentages var-
ied across outlier regions; for example, the Omy23 region had only 
one SNP that was an outlier for a GEA test, whereas ≥50% of SNPs 
were outliers for one or more GEA tests in the Omy18, Omy25, 
Omy28 and Omy29 regions (Figure 7c,d; Figure S10). For the Snake 

River data subset analyses, the percentages of SNPs within the Local 
Score outlier regions that were LFMM outliers ranged from 1.3% to 
10.8% across the seven regions (Table S3). Of the outlier SNPs iden-
tified in the study by Micheletti, Matala, et al. (2018), a total of 52 
occurred within the 12 Local Score population structure outlier re-
gions: six in the Omy03 region, 12 in Omy06, seven in Omy15, one 
in Omy16, one in Omy18, eight in Omy19 and 17 in Omy28 (includ-
ing the 13 SNPs in the GTseq panel). An additional 22 outlier SNPs 
from that study occurred within 100 kb of the outlier regions: four in 
Omy01, two in Omy15, one in Omy18, 11 in Omy25 (including the 
10 SNPs in the GTseq panel), one in Omy28 and three in Omy29.

3.5  |  Climate change assessment

For the ENM analyses, overall ecological model fit was moderate 
(AUC  =  0.783, Figure  1; Figure  S17). The environmental variables 
with the highest permutation importance were isothermality, annual 
temperature range and mean diurnal temperature range (Table S10). 
Permutation importance represents the contribution to the relative 
probability of presence score across the landscape during permuta-
tions of the variables, and is different from the variable contribu-
tion value, which may be biased toward the order the variables are 
fitted. Redband trout habitat decreased substantially across Idaho 
for both SSP scenarios, and especially for the high-emission scenario 
(Figure 1). The greatest probability of presence for both SSP scenar-
ios occurred in high-elevation areas, with the exception of the de-
sert sites. This result indicates the potential for elevation, which was 
correlated with climate in our study, to influence the distribution of 

F I G U R E  7  Overlap of outlier SNPs 
across detection methods for the full data 
set analyses (including all Snake River and 
Kootenai River populations). (a) Genome-
wide outlier SNPs from all GEA methods 
(RDA, pRDA, LFMM), (b) SNPs found 
within all 10 outlier regions identified by 
the Local Score (LocScore) population 
structure outlier analysis, (c) SNPs found 
within the Omy25 outlier region, and (d) 
SNPs found within the Omy28 outlier 
region. SNPs that were outliers for more 
than one environmental variable were 
counted only once
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climate refugia in future climate scenarios. For our study sites, model 
predictions with the low-emission scenario indicated about half the 
populations had positive or near zero ENM-change values, poten-
tially indicating that populations could be sustained or even improve 
as temperatures move closer to the optimal growth temperatures 
(Bear et al., 2007; Hahlbeck et al., 2021) (Table 4). In contrast, ENM-
change values were negative for all study sites for the high-emission 
scenario (Table 4).

Genetic offset was very high for all populations, indicating all 
populations would experience strong selective pressures under both 
SSPs (Table 4; Figure S18). Thus, even if environmental conditions 
move toward a species optimum for some populations, those pop-
ulations may still perform poorly in future conditions due to local 
adaptation to previous conditions.

4  |  DISCUSSION

Genome scans of 11 redband trout populations across a wide range 
of thermal regimes identified 12 genomic regions that provided evi-
dence for local adaptation in this species across highly heterogene-
ous landscapes. Results suggest that a combination of evolutionary 
forces including drift in relatively isolated populations, along with 
selection (e.g., Buffalo & Coop,  2020) have contributed to signals 
of genetic variation that influence adaptive potential (Seaborn 
et al.,  2021). The strongest adaptive differences observed in this 
study were found in the two most northern populations, which are 
geographically distant from all others and occur in a separate river 
drainage (i.e., S.F. Callahan and Trail Creek, which are found in the 
Kootenai River drainage, whereas all other populations occur in the 
Snake River drainage). Historical gene flow between the Kootenai 
River populations and those in the Snake River is expected to have 
been very rare given the large migration distance that would need 

to be travelled for successful immigration (~1000+ of river km). 
Furthermore, contemporary gene flow is expected to be essentially 
nonexistent because all populations in this study occur above dif-
ferent hydropower dams, without upstream fish passage. Within 
the Snake River drainage, we also identified adaptive differences 
between desert and montane populations. This result is consistent 
with previous studies of redband trout that have found evidence for 
local adaption to these distinct habitats (e.g., Chen, Farrell, Matala, 
Hoffman, et al., 2018; Narum et al., 2010). Under scenarios of climate 
change, desert populations were at the greatest risk of extirpation 
as conditions may become unsuitable for these isolated populations 
with limited migration opportunities to thermal refugia.

The two Kootenai River populations with strong adaptive dif-
ferences in our study do not occur in the same habitat type (S.F. 
Callahan is a cold site, Trail Creek a cool site), but are highly divergent 
from other populations for environmental variables including mean 
diurnal temperature range, isothermality, annual temperature range 
and minimum temperature of the coldest month (Figure 5b). Two of 
these variables, mean diurnal temperature range and isothermality, 
also had the largest number of significant genetic associations for 
LFMM analyses. Furthermore, mean diurnal temperature range was 
one of only two significant variables in the RDA model, and ENM 
across the region indicated that mean diurnal temperature range 
and isothermality are strong predictors of redband trout presence. 
Together these results provide evidence that these two environ-
mental variables are strong drivers of divergent selection in redband 
trout. Both variables are related to the magnitude of fluctuation in 
environmental temperatures, with mean diurnal temperature de-
scribing the daily fluctuation, and isothermality describing the rela-
tionship between daily and annual fluctuation. Given that redband 
trout are aquatic ectotherms and therefore have body temperatures 
that are strongly influenced by environmental temperature, it is rea-
sonable that habitats with large temporal variation in temperature 

TA B L E  4  Genetic offset values, and ecological niche model (ENM) change in relative probability of presence, for the period 2081–
2100 under two shared-socioeconomic pathways (SSPs). “Mann Creek (a)” and “Mann Creek (b)” represent two geographically proximate 
tributaries

Population Ecotype

SSP245 SSP585

Genetic offset ENM value change Genetic offset ENM value change

Little Jacks Creek Desert 1 −0.08 1 −0.28

Big Jacks Creek Desert 0.78 −0.06 0.86 −0.87

Duncan Creek Desert 0.78 0.18 0.86 −0.71

Williams Creek Desert 0.85 −0.49 0.9 −0.82

Keithley Creek Cool montane 0.83 0.09 0.9 −0.31

Little Weiser Creek Cool montane 0.87 −0.31 0.93 −0.6

Dry Creek Cool montane 0.85 0.17 0.91 −0.73

Trail Creek Cool montane 1 −0.44 1 −0.72

Fawn Creek Cold montane 0.85 0.07 0.91 −0.57

Mann Creek (a) Cold montane 1 −0.11 1 −0.45

Mann Creek (b) Cold montane 1 −0.32 1 −0.51

S.F. Callahan Creek Cold montane 1 −0.04 1 −0.39
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could exert unique selective forces and promote local adaptation. 
Large temperature variation could affect physiology and growth 
rates at higher temperatures (e.g., Colinet et al., 2015; Oligny-Hebert 
et al., 2015) and could promote the evolution of enhanced adfluvial 
migratory capabilities to access thermal refugia in nearby lakes and 
reservoirs that would be expected to improve growth and survival 
(Hahlbeck et al., 2021). For example, one of the Kootenai River pop-
ulations (Trail Creek) appears to be adfluvial, migrating as yearlings 
and returning as adults. However, the two Kootenai River popula-
tions in our study had lower mean diurnal temperature and isother-
mality compared to the other populations, indicating that thermal 
stability at these two sites may drive divergent selective pressures 
compared to many other populations across the subspecies range 
(diurnal temperature range was 12.0–12.4°C for the Kootenai River 
populations, compared to 15.1–16.3°C for other populations; iso-
thermality was 35.2–36.0, compared to 39.6–41.8 for other pop-
ulations). Alternatively, the genomic associations identified here 
could be driven by unmeasured environmental variables that are 
correlated with variables included in our study, or by environmental 
variables that were removed from our analyses due to correlation.

Two of the 12 outlier regions identified in this study were as-
sociated with genes known to be involved in developmental timing 
in salmonids. One of these regions is on chromosome Omy25 and 
was an outlier for the full data set comparison, but not the Snake 
River data subset comparison. This region is associated with SIX6, a 
gene involved in age-at-maturity in salmonids (Barson et al., 2015; 
Sinclair-Waters et al., 2020; Waters et al., 2021; Willis et al., 2020). 
Age-at-maturity is a life history trait that has evolutionary trade-offs, 
because delaying maturity results in a greater body size at reproduc-
tion and a corresponding increase in fecundity, but also results in 
a greater chance of mortality prior to reproduction. Although the 
geographical distribution of genetic variation at this outlier region 
has not been reported for redband trout, a study of anadromous 
Oncorhynchus mykiss found that variation in this genomic region was 
significantly associated with age-at-maturity (Willis et al., 2020). In 
our study, genetic variation in this outlier region was driven by di-
vergence of the two Kootenai River populations from all other pop-
ulations, indicating these two populations may experience distinct 
selective pressures for age-at-maturity, potentially related to adflu-
vial life histories or compressed growing seasons.

The second outlier region associated with developmental timing 
occurs on chromosome Omy28 and is known to have a large effect 
on adult migration timing in O. mykiss (Hess et al., 2016; Micheletti, 
Hess, et al., 2018; Prince et al., 2017; Willis et al., 2020). This region 
was an outlier for both the full data set analysis and the Snake River 
data subset analysis, and includes the genes GREB1L and ROCK1, 
which are associated with maturation state at the time of entry into 
spawning grounds for anadromous redband trout. Fish that have 
“early” alleles in this region enter freshwater and arrive at spawning 
grounds early, whereas fish that have “late” alleles enter freshwa-
ter later or hold in tributaries for several months before arriving at 
spawning grounds (Hess et al., 2016; Micheletti, Hess, et al., 2018; 
Waples et al., 2022). A previous study found that most populations 

of O. mykiss have higher frequencies of late alleles, whereas early al-
leles are much more rare and only occur in specific drainages (Collins 
et al., 2020). We found similar results, with most of our study pop-
ulations being predominated by late alleles, with the exception of 
three populations that had predominantly early alleles, including 
one population from each habitat type (cold: S.F. Callahan; cool: Trail 
Creek; desert: Little Jacks). Our results are also concordant with 
those of a previous lcWGR study comparing redband trout from 
Little Jacks, Keithley and Fawn, which found significant allele fre-
quency divergence for Little Jacks at this outlier region, along with 
a genetic association with thermal tolerance phenotypes for this re-
gion (Chen & Narum, 2021).

For both of the outlier regions associated with migration and 
developmental timing, about 50% of SNPs within the regions were 
also significantly associated with environmental variation for the 
full data set analyses, with the largest number of associations for 
mean diurnal temperature range and isothermality. These results are 
concordant with previous landscape genetics studies of O. mykiss in 
the Columbia River Basin, which identified significant associations 
with temperature for SNPs in these two outlier regions (Collins 
et al., 2020; Micheletti, Matala, et al., 2018). These results suggest 
that temperature is an important driver of evolution for developmen-
tal timing traits for our study populations. Developmental timing is 
well known to be influenced by water temperature in salmonids. For 
example, warmer water usually causes faster developmental rates 
and fry emergence (e.g., Bromage et al.,  1992), and temperature 
along with flow can trigger spawning (e.g., Muhlfeld et al.,  2009). 
However, less is known about the influence of daily and annual tem-
perature variation on migration timing and age at maturity.

Although the association of Omy25 and Omy28 outlier regions 
and developmental timing have been well established in multiple 
salmonid species, our study populations have different life history 
traits from populations in previous studies, and therefore could 
have different selective mechanisms. Whereas previous studies 
of SIX6 on Omy25 and GREB1L/ROCK1 on Omy28 have focused 
on anadromous fish, the populations in our study were all resi-
dent redband trout, although some or all populations may have 
had anadromous migrations before the construction of anthropo-
genic barriers (multiple dams) which blocked access to the sea in 
the mid-1900s (e.g., Mann Creek; Holecek et al.,  2012). Due to 
the focus on anadromous fish in previous studies, the life history 
traits associated with these genes have been defined in rela-
tion to migratory timing and migratory life stages. For example, 
the age-at-maturity trait associated with SIX6 has been defined 
in relation to the length of time that anadromous fish spend at 
sea before returning to spawning grounds, resulting in a strong 
relationship between age-at-maturity and body size due to a high 
growth rate at sea (Willis et al., 2020). In addition, the migration 
timing trait associated with GREB1L and ROCK1 has been defined 
as the maturation state at which fish enter freshwater and arrive at 
spawning grounds after migrating from the sea (Micheletti, Hess, 
et al., 2018; Willis et al., 2020). Since our study populations are no 
longer anadromous, variation at these two genomic regions may 
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represent present-day selective pressures related to processes of 
developmental timing that occur entirely in freshwater. For exam-
ple, spawn timing in trout appears to be under strong selection to 
avoid fry emergence during winter and spring high-flow events, 
when eggs can wash away (e.g., Wenger et al., 2011), or may be 
related to differences among locations in productivity and growth 
rate. In addition, resident redband trout in freshwater often ex-
hibit fluvial or adfluvial migration throughout a drainage but re-
turn to spawning areas with variable timing and age-at-maturity 
(e.g., Meyer & Schill,  2021; Schill et al.,  2010). Alternatively, the 
signature of divergent selection we observed for these outlier re-
gions could result from selective pressures that operated in the 
past, when anadromous fish may have been present in these pop-
ulations prior to the construction of dams. Because these dams 
were constructed relatively recently in the last century, genetic 
drift and background selection may not have had sufficient time to 
erode signatures of selection that formed in the past.

The remaining 10 outlier regions identified in our study were 
associated with a number of genes with roles that have not been 
well characterized in salmonids and represent intriguing candidate 
regions for local adaptation. For example, genes associated with 
these outlier regions have been implicated in regulating early de-
velopment, spawn timing, immune function, muscle mass, lipid 
metabolism and atrophy resistance in fishes (Belghit et al.,  2014; 
Goldsmith et al.,  2003; Leder et al.,  2006; Panserat et al.,  2009; 
Wang et al.,  2011). While the potential evolutionary mechanisms 
underlying local adaptation driven by these genes remain unknown 
for redband trout, five of these outlier regions contained SNPs that 
were also significantly associated with environmental variation in a 
previous landscape genomics study (Micheletti, Matala, et al., 2018). 
These candidate regions were significantly associated with envi-
ronmental drivers such as precipitation, temperature and migratory 
distance. However, many of the genes implicated in local adapta-
tion in the current study were not shared with those identified in 
previous studies of local adaptation in redband trout (e.g., Chen & 
Narum, 2021). Lack of overlap in candidate adaptive loci between 
studies could result from a number of factors. In some cases, lack of 
overlap probably results from differences in the numbers and types 
of genetic markers used, along with the inclusion of different pop-
ulations across studies. Most previous studies used a much smaller 
number of genetic loci compared to our study, and therefore sur-
veyed a much smaller proportion of the genome. For example, the 
landscape genetics study by Micheletti, Matala, et al.  (2018) used 
24,526 SNPs generated by RADseq, whereas our analyses used mil-
lions of SNPs from lcWGR. Furthermore, outlier detection is strongly 
influenced by the composition of populations included in the study, 
because even if some populations are shared between studies, the 
strongest signal of selection could be driven by populations that are 
not shared. Additionally, different experimental designs and analyti-
cal approaches are expected to identify different loci (e.g., Whitlock 
& Lotterhos, 2015). For example, common garden studies identify-
ing genetic associations with specific thermal tolerance phenotypes 
are more likely to identify SNPs that are variable within populations 

than outlier analyses, which are more likely to identify SNPs that 
vary between, but not within, populations (Chen & Narum, 2021). 
Overall, the relatively large numbers of candidate genes identified 
in our study and other studies of local adaptation in redband trout 
indicate that the genomic architecture of local adaptation across 
heterogeneous landscapes in this species is polygenic and complex.

4.1  |  Susceptibility to climate change

Evidence for temperature-driven local adaptation for redband trout 
raises concerns regarding the potential for this subspecies to adapt 
to a warming climate without human-assisted gene flow (e.g., Chen 
et al., 2022). Although ENM indicates that habitats in about half our 
study populations would remain viable in a low-emission future cli-
mate change scenario, genetic offset analyses indicate that all our 
study populations would require substantial evolution to adapt to 
the new habitats in that scenario. Furthermore, ENM predicts the 
loss of a large proportion of redband trout habitat across the re-
gion under this low-emission scenario. Under a high-emission sce-
nario, ENM shows an even greater reduction in viable redband trout 
habitat, including all our study populations. As in the low-emission 
scenario, genetic offset analyses indicate that all our study popula-
tions would require substantial evolution to adapt to new habitats 
in the high-emission scenario. Elevation and climate were strongly 
correlated across our study region, and ENM predicted that high-
elevation areas would act as climate refugia or a climate shield (Isaak 
et al., 2018, 2015), with the exception of the high-elevation desert 
habitats found in southern Idaho. These results raise questions as 
to whether redband trout currently living in desert habitats would 
have the physiological capabilities or evolutionary capacity to adapt 
as the climate changes, a finding consistent with a previous study 
(Chen, Farrell, Matala, Hoffman, et al., 2018).

5  |  CONCLUSIONS

Here we present the most comprehensive study thus far on local ad-
aptation in redband trout, utilizing 11 populations across a wide hab-
itat range and millions of SNPs generated using lcWGR. We found 
evidence for polygenic local adaptation that is primarily associated 
with diurnal temperature variation and isothermality, and driven by 
two populations in the northern extreme of the subspecies range 
that have not been included in previous studies. We also found evi-
dence for polygenic local adaptation driven by differences between 
desert and montane habitat types on a smaller geographical scale 
within a river drainage. Genetic offset analyses predicted substantial 
genetic changes would be required for all populations to adapt to 
future climates, indicating that local adaptation is prevalent across 
the habitat range for redband trout. For some populations, such as 
high-elevation desert populations, adaptation will probably be im-
possible, as ENM indicates these populations are probably living at 
the extreme edge of the habitat range in relatively isolated systems.
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