Table 2.
Species | Strain | Growth rate pure|co [mm d-1] |
Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fungal coefficient | Bacterial coefficient | adj.R2 | Bacterial coefficient | adj.R2 | #VOCs | Fungal coefficient | adj.R2 | #VOCs | |||
L. exigua | HFSF103 | 8.1 > 7.3* | 1.8 ± 0.16** | 0.20 ± 0.023** | 0.739 | 0.29 ± 0.029** | 0.797 | 27 | 1.4 ± 0.30** | 0.205 | 34 |
L. exigua | HFSF26 | ns | 0.7 ± 0.20** | 0.29 ± 0.019** | 0.723 | 0.23 ± 0.039** | 0.539 | 30 | 1.01 ± 0.052** | 0.292 | 33 |
L. exigua | Ks2_4 | 8.9 < 9.8* | 0.3 ± 0.17 | 0.29 ± 0.023** | 0.699 | 0.14 ± 0.028** | 0.472 | 28 | 0.8 ± 0.28* | 0.287 | 39 |
L. exigua | Pats4_2 | ns | 1.1 ± 0.18** | 0.27 ± 0.024** | 0.757 | 0.33 ± 0.011** | 0.981 | 18 | 0.9 ± 0.11** | 0.271 | 55 |
L. exigua | Pr2s22 | ns | 0.66 ± 0.077** | 0.059 ± 0.0086** | 0.633 | 0.08 ± 0.019** | 0.365 | 31 | 0.55 ± 0.06** | 0.06 | 37 |
L. gamsii | Ks2_13 | 7.7 < 8.0* | 0.25 ± 0.094* | 0.20 ± 0.014** | 0.75 | 0.11 ± 0.023** | 0.447 | 25 | 0.50 ± 0.030** | 0.204 | 30 |
L. gamsii | M10 | ns | 0.19 ± 0.108 | 0.20 ± 0.014** | 0.71 | 0.16 ± 0.023** | 0.647 | 29 | 0.51 ± 0.039** | 0.202 | 27 |
L. gamsii | M42 | ns | 0.02 ± 0.133 | 0.27 ± 0.015** | 0.769 | 0.27 ± 0.024** | 0.833 | 26 | − 0.03 ± 0.087 | 0.273 | 29 |
L. gamsii | Pats3_1 | 7.9 < 9.0* | 0.3 ± 0.16* | 0.22 ± 0.018** | 0.664 | 0.28 ± 0.047** | 0.524 | 31 | − 0.17 ± 0.134 | 0.219 | 26 |
L. gamsii | Pr2s1 | ns | 0.34 ± 0.066** | 0.18 ± 0.016** | 0.688 | 0.14 ± 0.031** | 0.45 | 26 | 0.21 ± 0.017** | 0.179 | 35 |
L. hyalina | Ks1_7 | 8.6 > 8.4* | 0.45 ± 0.098** | 0.18 ± 0.015** | 0.679 | 0.37 ± 0.043** | 0.692 | 33 | 0.09 ± 0.086 | 0.182 | 31 |
L. hyalina | Ks2_11 | ns | 0.59 ± 0.086** | 0.17 ± 0.014** | 0.699 | 0.21 ± 0.033** | 0.561 | 32 | 0.63 ± 0.068** | 0.173 | 29 |
L. hyalina | Ks2_12 | ns | 0.6 ± 0.11** | 0.24 ± 0.015** | 0.762 | 0.29 ± 0.047** | 0.52 | 35 | 0.36 ± 0.041** | 0.237 | 28 |
L. hyalina | Patw2_7 | 6.3 < 8.5* | 0.14 ± 0.035** | 0.22 ± 0.012** | 0.781 | 0.13 ± 0.019** | 0.63 | 30 | 0.3 ± 0.11* | 0.224 | 29 |
L. sclerotiella | HFSF81 | 7.7 > 7.2* | 0.89 ± 0.036** | 0.01 ± 0.036 | 0.877 | − 0.01 ± 0.011 | − 0.054 | 10 | 0.91 ± 0.020** | 0.012 | 80 |
L. sclerotiella | HFSF83 | 7.4 < 8.5* | 0.2 ± 0.14 | 0.31 ± 0.019** | 0.771 | 0.4 ± 0.059** | 0.639 | 26 | − 0.13 ± 0.097 | 0.312 | 40 |
L. sclerotiella | HFSF85 | 8.3 > 7.5* | 0.5 ± 0.13** | 0.27 ± 0.019** | 0.751 | 0.2 ± 0.058** | 0.457 | 25 | 0.46 ± 0.048** | 0.272 | 41 |
L. solitaria | OAS3 | ns | 0.96 ± 0.037** | 0.022 ± 0.0042** | 0.911 | 0.03 ± 0.021 | 0.045 | 29 | 0.86 ± 0.030** | 0.022 | 38 |
L. solitaria | OAS4 | ns | 0.93 ± 0.076** | 0.040 ± 0.0089** | 0.727 | 0.08 ± 0.028* | 0.217 | 30 | 0.11 ± 0.060 | 0.038 | 37 |
L. solitaria | OAS5 | ns | 0.4 ± 0.22** | 0.22 ± 0.022** | 0.583 | 0.23 ± 0.055** | 0.33 | 35 | 0.2 ± 0.11 | 0.218 | 28 |
E. galaxiae | M1 | 7.4 > 6.9* | − 0.2 ± 0.29 | 0.55 ± 0.035** | 0.718 | 0.59 ± 0.082** | 0.668 | 26 | − 0.17 ± 0.138 | 0.552 | 29 |
E. galaxiae | M22 | ns | − 0.1 ± 0.22 | 0.60 ± 0.025** | 0.855 | 0.56 ± 0.042** | 0.885 | 24 | − 0.9 ± 0.11** | 0.598 | 30 |
E. galaxiae | Pfs28 | 6.6 < 6.8* | 1.00 ± 0.024** | 0.01 ± 0.003 | 0.95 | − 0.01 ± 0.002** | 0.388 | 33 | 1.18 ± 0.035*** | 0.007 | 29 |
E. galaxiae | Pr1s18 | 6.9 < 7.3* | 0.6 ± 0.30 | 0.57 ± 0.035** | 0.787 | 0.53 ± 0.092** | 0.539 | 29 | 0.6 ± 0.16*** | 0.572 | 40 |
E. galaxiae | Prw1_1 | 8.9 > 8.4* | − 0.01 ± 0.186 | 0.61 ± 0.029** | 0.833 | 0.63 ± 0.073** | 0.718 | 30 | − 0.01 ± 0.188 | 0.609 | 28 |
Three models were calculated: (1) Co-culture volatilome predicted from both, fungal and bacterial pure cultures. All volatile organic compounds (VOCs) detected were used for prediction. (2) Co-culture predicted from pure P. helmanticensis cultures. The model considers only VOCs never produced/consumed in the respective fungal pure culture, but produced in P. helmanticensis pure cultures. (3) Bacterial contribution to the volatilome was predicted from model (1) and subtracted from the measured concentrations in the co-cultures. From this predicted volatilome, the fungal contribution to the co-culture volatilome was modelled. In none of the three models calculated, the intercept differed from zero. The coefficient of the equation can be considered as a proxy for the bacterial and fungal contribution to the co-culture volatilome, respectively, and indirectly for growth. Coefficient ± standard error. #VOCs = number of VOCs considered in the model. Significances: ns = not significant; * = p < 0.05; ** = p < 0.001.