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ABSTRACT
Apparent cases of sympatric speciation may actually be due to micro-allopatric or micro-parapatric
speciation. One way to distinguish between these models is to examine the existence and nature of genomic
islands of divergence, wherein divergent DNA segments are interspersed with low-divergence segments.
Such islands should be rare or absent under micro-allopatric speciation but common in cases of speciation
with gene flow. Sympatric divergence of endemic fishes is known from isolated saline, crater, postglacial,
and ancient lakes. Twomorphologically distinct cyprinid fishes,Gymnocypris eckloni scoliostomus (GS) and
G. eckloni eckloni (GE), in a small glacial lake on the Qinghai–Tibet Plateau, Lake Sunmcuo, match the
biogeographic criteria of sympatric speciation. In this study, we examined genome-wide variation in 46
individuals from these two groups.The divergence time between the GS and GE lineages was estimated to
be 20–60 Kya. We identified 54 large genomic islands (≥100 kb) of speciation, which accounted for 89.4%
of the total length of all genomic islands.These islands harboured divergent genes related to olfactory
receptors and olfaction signals that may play important roles in food selection and assortative mating in
fishes. Although the genomic islands clearly indicated speciation with gene flow and rejected
micro-allopatric speciation, they were too large to support the hypothesis of sympatric speciation.
Theoretical and recent empirical studies suggested that continual gene flow in sympatry should give rise to
many small genomic islands (as small as a few kilobases in size).Thus, the observed pattern is consistent
with the extensive evidence on parapatric speciation, in which adjacent habitats facilitate divergent selection
but also permit gene flow during speciation. We suggest that many, if not most, of the reported cases of
sympatric speciation are likely to be micro-parapatric speciation.

Keywords: sympatric speciation, gene flow, genomic islands, micro-parapatric speciation, selection,
olfaction

INTRODUCTION
Allopatric speciation requires geographic barriers
that completely prevent gene flow and allow the
populations to evolve independently, which eventu-
ally leads to reproductive isolation (RI) [1,2]. Sym-
patric speciation, proposed by Darwin [3], is the
evolutionofRIwithout geographicbarriers, inwhich
new species arise from a single ancestral population
[4,5]. Some biogeographic criteria suggested that

sympatric speciation can occur if the two species
overlap in their cruising range [6]. However, this
is merely a case of sympatric coexistence From a
population genetic perspective, any case in which
the spatial structure of progenitor populations af-
fects habitat selection or mating is not consid-
ered pure sympatric speciation [7–9]. In this study,
pure sympatric speciation was considered diver-
gence within a single geographical region where
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Figure 1. Gene flow modes under sympatry, allopatry and parapatry, and geographic locations of two Gymnocypris subspecies. The two horizontal
bars represent the genomes of two diverging populations. (A) Sympatry: Bidirectional gene flow was frequent (+ +), and only a few loci (indicated
by black lines) referred to as small genomic islands (−) are differentially adapted; genes at such loci are not exchanged between populations. Gene
flow continues in the rest of the genome (arrows). Modified with permission from [41,42]. (B) Allopatry: There is no gene flow (−) between the two
populations, and there is genome-wide differentiation. (C) Parapatry: The level of gene flow (+) between populations is lower in sympatry but higher
than in allopatry. In this mode, adjacent habitats can facilitate divergent selection, which contributes to the formation of large genomic islands (+ +).
Gene flow continues in the rest of the genome (arrows). (D) Gymnocypris eckloni scoliostomus and G. eckloni eckloni are morphologically distinct.

the range of one nascent species completely over-
laps the other. These diverging groups are not sep-
arated by any spatial structure barrier in the ances-
tral range. The initial gene exchange rate between
This mode of speciation has been controversial for
over a century, partly because antagonism between
selection and recombination makes this mode of
speciation theoretically difficult [8,10–12].

The key aspect of sympatric speciation is that
incipient species can potentially exchange genes
(genetic recombination) by interbreeding, which
breaks up the correlation between co-adapted gene
groups necessary for species formation [13]. There-
fore, the potential for sympatric speciation may be
greatly restricted unless there is strong disruptive
selection [12,14–18]. This selection will cause the
population to divide into two subpopulations, each
specialized on a different resource. The hybrids be-
tween the subpopulations are poorly adapted to ei-
ther resource and eventually suffer from reduced fit-
ness [14].Disruptive selection contributes to the fix-
ation of locally adaptive alleles that are beneficial in
their ecological niches or mate choice [19,20]. In
this case, sympatric speciation can occur as a result
of habitat isolation or sexual isolation [13].

With the advent of high-throughput sequencing,
and the development and application of population
genomic approaches, increasing numbers of em-
pirical case studies on sympatric speciation in both
plants and animals have been reassessed [21–38].
However, these approaches have limited ability to
distinguish spatiotemporal overlap because almost
all empirical case studies of sympatric speciation

have some degree of spatiotemporal differentiation
between sister taxa [21–38]. As a result, the most
inclusive definition of sympatric will skew our
understanding of the truth about the speciation
process. For example, consider two sister species
that diverged from a single population and occupied
the same biogeographic range. They are considered
sympatric in terms of their broad-scale biogeog-
raphy. However, if speciation that results from
specialization to different habitats within their range
and genetic exchange is inherently non-random,
it can be also argued that speciation was not truly
sympatric but rather micro-allopatric [39] or
micro-parapatric by fine-scale spatial partitioning.
From a population genetic perspective, it is dubbed
micro-allopatric [40] or micro-parapatric, if no
gene flow or restricted gene flow occurs during
some episodes before the completion of speciation.
Consequently, it is difficult to distinguish sympatric,
micro-allopatric, and micro-parapatric speciation
based solely on geographical considerations.

The main distinctions among the three modes
are uninterrupted gene flow and the intensity of
gene flow during speciation (Fig. 1A–C). In this
genic view of speciation, speciation with gene flow
has been shown to leave footprints in the form
of genomic islands that are non-introgressable
[27,41–45] (Fig. 1A–C). These genomic islands
are frequently composed of highly divergent DNA
regions interspersed with less divergent portions.
In theory, the sizes of the genomic islands should
be negatively correlated with gene flow between
diverging populations. Therefore, sympatric
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speciation is expected to have small genomic islands
owing to frequent bidirectional gene flow, whereas
micro-parapatric speciation should leave footprints
of large genomic islands, as in parapatric speciation,
due to restricted gene flow. Micro-allopatric spe-
ciation will exhibit genome-wide differentiation, as
in allopatric speciation, because geographic barriers
prevented gene flow. In addition, these genomic
islands may contain a small set of ‘speciation genes’
that govern ecological specialization or generate
intrinsic genomic incompatibilities [46].

It has been suggested that the presence of en-
demic sister species in small circumscribed areas
(e.g. isolated lakes or islands [13] or phytophagous
insects) might indicate that these species originated
sympatrically, such as Howea forsteriana and H. bel-
moreanaonLordHowe Island [47,48], cichlid fishes
in crater lakes [22,27], and apple andhawthornmag-
got flies [49–51]. These species are likely to un-
dergo species differentiation in such habitats with-
out apparent physical isolation. A previous study in-
dicated that Lake Sunmcuo was a hydrographically
isolated inland lake that did not flow into the Yellow
River until approximately the Holocene period, and
it is now connected by a torrential mountain stream
[52]. This glacial lake is small (3.8 km2) [53], olig-
otrophic, and homogenous in habitat, all of which
provide an ideal location for testing sympatric spe-
ciation [54].

Gymnocypris eckloni scoliostomus (GS) andG. eck-
loni eckloni (GE), two sister subspecies of G. eck-
loni (Cyprinidae: Schizothoracinae: Gymnocypris),
are sympatrically distributed in Lake Sunmcuo in
the Qinghai–Tibet Plateau, China at an altitude of
4100 m [55,56]. Despite their close relationship,
these two subspecies show significant differences in
morphology (Fig. 1D) and reproductive characteris-
tics.GShas a terminal or superiormouthwith amore
oblique and deeply arched mouth cleft. It prefers to
feed on plankton and spawns in July with salmon-
pink eggs. By contrast, GE has a subterminal mouth
without a horny ridge at the inner margin of the
lower jaw. It feeds on plankton, zoobenthos, algae,
hydrophytes, and small fish, and spawns in April and
May with yellow eggs [52,54,55,57,58]. It is known
that the shape of the fish’s mouth and lower jaw are
tightly linked to the different nutritional types and
river depths of food. GS prefers to feed on the upper
part of the water column or on shoal rich in plank-
ton, whereas GE usually has a wider niche that cor-
responds to a variety of food items [46,59]. All these
characteristics demonstrate that GS and GE satisfy
the biogeographic criteria for sympatric speciation.

In this study, we constructed a highly contigu-
ous genome assembly of GS, and surveyed genomic
variation of the two species by whole-genome re-

sequencing of 46 samples from Lake Sunmcuo to
investigate the genomic patterns of divergence. We
explored gene flow and identified highly divergent
genome regions.Unexpectedly, we discoveredmany
large genomic islands (≥100 kb) between GS and
GE, even though continual gene flow in sympatry
should give rise to many small genomic islands (a
few kilobases in size).This pattern of genomic diver-
gence is consistent with the extensive evidence on
parapatric speciation, in which adjacent habitats fa-
cilitate divergent selection but also permit gene flow
during speciation. This study will provide more ac-
curate insights into sympatric speciation.

RESULTS
Chromosome-level assembly and
annotation of GS
Using a combination of IlluminaHiSeqX-Ten reads
(90.56×), Nanopore long reads (145.38×), and
Hi-C sequencing (229.16×) technologies (Supple-
mentary Figs. S1, S2; and Supplementary Table S1),
we generated a chromosome-level genome assem-
bly of GS (Supplementary Fig. S3). The assembly
was estimated to be 948 Mb, which was close to the
genome size estimated by 17-mer analysis (Supple-
mentary Fig. S4 and Supplementary Table S2). In
total, 97.60% of contigs were anchored to 25 chro-
mosomes (Supplementary Fig. S3) with a contig
N50 of 2 Mb and scaffold N50 of 37 Mb (Supple-
mentary Table S3). Overall, 52.49% of the genome
was identified as repeat elements (Supplementary
Table S4). Based on the high-quality genome assem-
blies, we identified a total of 24194 protein-coding
genes in GS (Supplementary Table S5).These char-
acteristics of gene structure, including gene length,
exon number/length, coding sequence length, and
intron number/length, were comparedwith those of
five other fish species (Supplementary Fig. S5). Us-
ing BUSCO v3.0.2 [60], we estimated the coverage
of 4584 highly conserved single-copy Actinoptery-
gii genes to be 90% in the assembly (Supplementary
Table S6). Ultimately, we generated a high-quality
reference genome of GS for subsequent population
genomic analysis.

Genetic diversity and divergence
of the two populations
To further investigate the genetic diversity and
divergence of these two fish populations, we
conducted whole genome resequencing of 46
Gymnocypris species, including 23 GS and 23
GE individuals. The mean sequencing coverage
was approximately 19.14× per individual (range:
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Figure 2. Phylogeny and population structure analysis of Gymnocypris species. (A) Neighbour-joining tree based on genome-
wide single-nucleotide polymorphisms. Orange branches indicate Gymnocypris eckloni scoliostomus and green branches
indicate G. eckloni eckloni. The scale bar represents the genetic distance between individuals. (B) Principal component anal-
ysis of 46 Gymnocypris species using whole-genome SNP data. (C) Genetic structure of G. eckloni scoliostomus and G. eckloni
eckloni lineages using the Admixture program. Each accession is represented by a bar, and the length of each coloured seg-
ment in the bar represents the proportion contributed by that ancestral population.

15.75–24.08×, SupplementaryTable S7).Using the
GATK method [61], we identified approximately
12.33 million single-nucleotide polymorphisms
(SNPs) (Supplementary Fig. S6). The GS lineage
showed slightly higher genetic diversity than the GE
lineage (nucleotide diversity [π]: 3.14 × 10−3 vs.
2.87 × 10−3; Tajima’s D: 1.097 vs. 1.056; linkage
disequilibrium [LD] mean r2 : 0.079 vs. 0.086)
(Supplementary Fig. S7 and Supplementary
Table S8). The genome-wide mean population
fixation statistics (Fst) and absolute divergence
(Dxy) were 0.03 (95% CI: 0.0297–0.0303) and
0.26 (95% CI: 0.2634–0.2639), respectively, which
indicated that these two populations were only
weakly structured. The species pairs displayed
typical Fst distributions, with a single large peak
centred close to the median score and a tail that
represented relatively few regions with heightened
divergence (Supplementary Fig. S8).

GS and GE were identified as two distinct Gym-
nocypris species population clusters based on analy-
sis of all SNPs using the neighbour-joining method
(Fig. 2A), principal component analysis (Fig. 2B),
and the maximum likelihood method in Admixture
v1.3 [62] (Fig. 2C and Supplementary Table S9).

The evolutionary divergence of the two lineages
was investigated using the multiple sequentially
Markovian coalescent (MSMC2) model [63] and
SMC++ v1.11 [64]. The GS population showed
a higher Ne than the GE population, and the
two subspecies underwent two rounds of popula-
tion decline during or following three intense up-
lift phases, including the Qingzang, Kunhuang, and
Gonghe movements in the third tectonic uplift of
the Qinghai–Tibet Plateau (Fig. 3A, and C). The
split analyses showed that the divergence time of the
two species was approximately 57 Kya (Fig. 3B) or
20 Kya (Fig. 3D).

Gene flow
Previous evidence showed that gene flow commonly
occurs between recently diverged species despite the
existence of barriers to gene flow in their genomes
[65].We used Fastsimcoal v2.6 [66] to simulate and
compare five different hypotheticalmodels (Supple-
mentary Fig. S9). Using the Akaike information cri-
terion (AIC) and maximum likelihood algorithm,
our dataset supported a scenario of different gene
flow matrices in which there was a large amount of
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Figure 3. Inferred demographic history of the Gymnocypris eckloni scoliostomus (GS) and G. eckloni eckloni (GE) lineages. (A) MSMC2-derived demo-
graphic history of the GS and GE lineages from 104 to 107 years ago. Each line represents a run of four haplotypes from two individual accessions.
(B) MSMC2 split analysis of the GS and GE lineages based on relative cross-coalescence rate. (C) Demographic history of GS (n= 23) and GE (n= 23)
from 102 to 108 years ago based on SMC++ analysis. (D) SMC++ split analysis of the GS and GE lineages. (E) Inferred demographic gene flow of
the GS and GE lineages using Fastsimcoal2. Migration rates correspond to 95% CIs obtained from this model. Estimates of gene flow between lin-
eages were provided as migration fraction per generation. (F) Decay patterns of linkage disequilibrium (LD) in GS and GE. Generation time (g) = 11.7
years; neutral mutation rate per generation (μ) = 5.4 × 10−9. The time ranges of the three rounds of intense uplift (Qingzang, Kunhuang, and Gonghe
movements) are highlighted in light blue on pictures A and C.

gene flow in the early stage of interspecific differen-
tiation, but gradually decreased with the progress of
speciation (Fig. 3E; Supplementary Figs. S10, and
S11; and Supplementary Table S10). In the early
stage of interspecific differentiation, gene flow was
estimated to be 1.22 × 10−3 per generation (95%
CI: 0.0008–0.0011) from the GS lineage to the GE
lineage, and 2.75 × 10−3 per generation (95% CI:
0.0021–0.0026) from the GE lineage to the GS lin-
eage. In the late stage of speciation, however, gene
flow was approximately 4.38× 10−4 per generation
(95%CI: 0.0003–0.0004) from theGS lineage to the
GE lineage and 2.04 × 10−6 per generation (95%
CI: 2.05× 10−6–5.54× 10−6) from the GE lineage
to the GS lineage (Fig. 3E).

The pure sympatric speciation model
predicts small islands
To determine the characteristics of genomic is-
lands formed in pure sympatric speciation, we car-

ried out computer simulations based on the recur-
rent selection and backcross (RSB) model [67].
The RSB method, which is based on recurrent se-
lection, and backcross and intercross schemes, was
initially proposed for identifying genes in quantita-
tive trait loci. This is accomplished by continuously
selecting for breed A traits while backcrossing to
breed B. This strategy was also adapted to the
speciation-with-gene-flow model by adjusting pa-
rameter values (strength of selection,migration rate,
recombination rate, and relative fitness of a se-
quence; see Materials andMethods).

Introgression was simulated in 10 Mb diploid
genomes under the conditions of strong selection
(s = −0.5) and high migration rate (m = 0.1 for
each generation). The simulation results for 1000,
5000 and 10000 generations revealed different
degrees of negative selection (Supplementary
Fig. S12). More than 99% of the 10 Mb sequence
was negatively selected after 10000 genera-
tions (Supplementary Fig. S12). The simulation
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Table 1. Number of genomic islands with various lengths from three sets of relative divergence values (ZFst ≥4, ZFst ≥3.5,
ZFst ≥3).

Length of genomic islands (kb)

Numbers of
genomic islands

(ZFst ≥4)

Numbers of
genomic islands
(ZFst ≥3.5)

Numbers of
genomic islands

(ZFst ≥3)

20–80 53 72 101
100–200 28 27 26
220–620 19 21 19
640–1000 4 5 1
1160–2020 3 3 8
Total 107 128 155

Number of genomic islands (≥100 kb) 54 (50%) 56 (44%) 54 (35%)
Total length of genomic islands (≥100 kb) 17.91Mb (89.4%) 19.67Mb (87.5%) 23.79Mb (85.9%)

Number of genomic islands (≥220 kb) 26 (24.2%) 29 (22.66%) 28 (18.1%)
Total length of genomic islands (≥220 kb) 13.79Mb (68.89%) 15.86Mb (70.58%) 20.25 (73.1%)

results revealed that, except for the middle re-
gion, the sequences on both sides were eventually
replaced by more frequent bidirectional migrations
in diverging sympatric populations under strong
selection.These results indicated that large genomic
islands (≥100 kb) between sympatric species are
rare, whereas small genomic islands (<100 kb) are
widespread. Moreover, the LD decay distance of
both species was approximately 10 kb (Fig. 3F),
which was consistent with the results of the above
model.

Genomic islands between species
Genomic islands between species pairs were de-
tected by relative divergence (ZFst) values. In total,
744 (merged into 107 nonoverlapping windows)
genomic islands were identified between the two
species; 54 of these 107 genomic islands were
≥100 kb and accounted for 89.4% of total genomic
island length (Table 1). The most significant ge-
nomic islands were on chromosomes 1, 6, 8, 10, 16,
and 25, regardless of the calculated ZFst in 10- or
20-kb nonoverlapping windows (Fig. 4A and Sup-
plementary Figs. S13, and S14). The two lineages
showed significantly elevated Dxy and reduced
population-scaled recombination rate (ρ) in these
genomic islands compared with the rest of the
genome (Mann–Whitney U P < 2.2 × 10−16)
(Fig. 4B, E, and F; Supplementary Figs. S15A, and
15B; and Supplementary Table S11). Intriguingly,
we found strongly increased π in the GS lineage
and strongly reduced π in the GE lineage in these
genomic islands compared with the rest of the
genome (Mann–Whitney U P < 2.2 × 10−16)
(Fig. 4C, and D; Supplementary Fig. S15C–S15F;
and Supplementary Table S11).

In total, we identified 226 genes in these genomic
islands. Gene Ontology (GO) analysis showed that
these genes were significantly enriched for olfactory
receptor activity, voltage-gated potassium channel
related, G-protein coupled receptor signalling path-
way, response to stimulus, cation channel complex,
signal transducer activity, GTPase activity, and pro-
tein phosphorylation and dephosphorylation pro-
cess (Supplementary Tables S12, and S13). Strik-
ingly, these genes were significantly concentrated
in olfactory transduction and its related signalling
pathway (Supplementary Table S14). In addition,
we found significant selection signals in these ge-
nomic islands (see Selection signals in GS and GE
lineages), which indicated that these islands are po-
tential selection regions.

The micro-parapatric speciation model
predicts large genomic islands
The RSB method [67] was also used to determine
the characteristics of genomic islands formed in
micro-parapatric speciation. Introgression was
simulated in 10 Mb diploid genomes under the
conditions of strong selection (s = −0.5) and low
migration rate (m = 0.01 for each generation).
The simulation results for 1000, 5000 and 10000
generations revealed different degrees of negative
selection (Supplementary Fig. S16). These results
suggest that large genomic islands (≥100 kb) occur
disproportionately in micro-parapatric speciation
(Supplementary Fig. S16).

Selection signals in GS and GE lineages
Despite being closely related, GS and GE are mor-
phologically distinct, especially regarding the shape
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Figure 4. Patterns of genome-wide divergence between Gymnocypris eckloni scoliostomus (GS) and G. eckloni eckloni (GE)
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of the mouth and lower jaw [52]. We used a com-
bination of Fst and π between the two lineages to
explore the selection signals of this differentiation
(see Materials and Methods) (Fig. 5A). In total, we
identified 187 genes from 1006 putatively selected
regions in the GE lineage. The selected genes of the
GE lineage were on chromosomes 6, 9, 10, 16 and
25 (Supplementary Fig. S17). Interestingly, no se-
lection signal was found in the GS lineage (Fig. 5A).

Because the selected regions of the top 1% of Fst
values may be too strict, we also identified the win-
dows with the top 5% of Fst values (Fst ≥ 0.137)
as outlier windows. Surprisingly, only 63 windows
including 45 genes were identified in the GS lin-
eage (Supplementary Fig. S18). ComparedwithGS,
these findings indicated that the GE lineage was
likely subjected to stronger divergent selection.This
was also consistent with the strongly reduced π in
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the genomic islands of the GE lineage (Fig. 4C,
and D; Supplementary Fig. S15C–S15F; and Sup-
plementary Table S11). Importantly, 151 selective
sweep genes of the GE lineage (80.2% of selected
genes) were located inside identified genomic is-
lands (Supplementary Fig. S19).

GO analysis indicated that the 187 genes were
significantly enriched for olfactory receptor activity,
protein phosphorylation and dephosphorylation
process, voltage-gated potassium channel ac-
tivity, and ion channel activity (Supplementary
Tables S15, and S16). Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis also revealed that
these genes were highly enriched in the signalling
pathway associated with olfactory transduction

(Fig. 5B and Supplementary Table S17). Addition-
ally, π was assessed around the selected olfactory
receptor genes or52k2 and or52k1 on chromosome
6 (Fig. 5C, and D). The or52k2 and or52k1 loci
showed strong reduction in π compared with the
40–60 kb genomic region adjacent to this site. This
indicates that there is substantial selective advantage
of or52k2 and or52k1 and that they are not genetic
hitchhikers.

In addition, cross population composite likeli-
hood ratio (XP-CLR) test [68] was also used to
detect selective sweeps. Using the upper 5% of
normalized xpclr values as a cut-off, we identified
1480 genes and 1485 candidate selected genes in
the GS and GE lineages, respectively. Enrichment
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analysis also showed that the selected genes were
significantly enriched in the olfactory signalling
pathway in GE (Supplementary Tables S18, and
S19).However, little enrichment of the olfactory sig-
nalling pathway was found in GS.This result is simi-
lar to that of the above analysis based on Fst and π .

Those shared selected genes in GE from the
above two approaches were significantly enriched in
biological processes, such as response to chemical,
response to stimulus, signal transduction, and olfac-
tory receptor activity (Supplementary Table S20).
This highlights the selective role of olfaction in GE.

DISCUSSION
GS and GE are sister species that are sympatri-
cally distributed in Lake Sunmcuo, and they have
large differences in morphology (Fig. 1D) and
reproductive characteristics. The divergence time
between theGS andGE lineageswas estimated to be
20–60 Kya (Fig. 3B, and D), which was before Lake
Sunmcuoopened into theYellowRiver [52]; this in-
dicated that speciation occurred entirely within the
lake. It is therefore considered a classic case of sym-
patric speciation from a biogeographic perspective.

Because of the absence of obvious geographi-
cal barriers, bidirectional gene flow was frequent in
the early stages of speciation, and the selection in-
tensity had to be sufficiently high to continue dif-
ferentiation without reversing speciation. The RSB
method was used to simulate the pure sympatric
model of speciation-with-gene-flow, and the results
revealed that small genomic islands (<100 kb) were
widespread in sympatric species and large genomic
islands were rare (Supplementary Fig. S12). Theo-
retically, the genomic island size will also be close
to the LD decay distance, which was approximately
10 kb (Fig. 3F) for GS and GE. Moreover, re-
cent strong empirical evidence on sympatric man-
groves revealed that significant post-speciation gene
flow resulted in a large number of introgression
blocks averaging only about 3–4 kb in size and non-
introgressable genomic islands averaging 1.4 kb in
size [69]. Both theoretical and empirical results in-
dicated that large genomic islands are less likely to
form in sympatric species (Fig. 1A). Thus, we ex-
pected to see numerous different small genomic is-
lands between GS and GE.

In this study, we discovered that genomic islands
were concentrated on chromosomes 1, 6, 8, 10, 16
and 25.The genomic islands showed restricted gene
flow (high Dxy) and low recombination (low ρ)
(Fig. 4B, E, and F). In addition, half of the total num-
ber of genomic islands were ≥100 kb, and these is-
lands accounted for 89.4% of the total length of all

genomic islands (Table 1). This is the opposite of
what we expected. The presence of a high propor-
tion of large genomic islands (≥100 kb) indicated
that gene flow was largely restricted during specia-
tion. Some scholars have suspected that sympatric
speciationmay bemicro-allopatric speciation in dis-
guise [39,40,70,71]. However, in our study, it is easy
to reject micro-allopatric speciation (Fig. 1B) be-
cause both genomic islands and non-islands were
observed between the two populations, which is dif-
ferent from allopatric speciation, inwhich geograph-
ical barriers completely prevent gene flow. Although
the pattern clearly invalidates micro-allopatry, the
large genomic islands (≥100 kb) are not compatible
with the sympatric model either.

Inversions may also promote the formation of
genomic islands [72]. Chromosomal inversions can
reduce gene flow through the suppression of recom-
bination, making the accumulation of genetic differ-
encesmore probablewithin such inversions [73,74].
Inversion may play a pre-existing role in speciation.
If an allele causing significant reproductive isolation
is associated with an inversion, the gene flow near
that locus will be restricted [75]. However, if the in-
versions are neutral, their probability of fixation or
loss depends purely on population size and migra-
tion [76].

Species differentiation is usually related to eco-
logical adaptation, which is the result of natural se-
lection. For example, the apple andhawthorn fly taxa
that we previously discussed have resulted, in part,
from the sorting of pre-existing ancestral variation,
followed by the rapid evolution and substitution
of entirely novel host-choice adaptations [73,77].
Thus, this switch onto a novel hostwas the trigger for
speciation [73].The speciation process of apple and
hawthorn flies [78]maynot be pure sympatry. In ad-
dition, if sympatric speciation’s many large genomic
islands were the result of inversions, it would require
numerous inversions to produce them, yet generat-
ing these numerous pre-existing large inversions is
extremely difficult.

A lake is typically an exceedingly complex ecosys-
tem with distinct ecological landscapes depending
on the lake’s vertical water depth.This pattern is con-
sistentwith the extensive evidenceonparapatric spe-
ciation (Fig. 1C): the two subspecies are distributed
and carry out essential life activities in different
parts of the water column, and the adjacent habitats
facilitate divergent selection but also permit gene
flow. This micro-parapatry facilitates the formation
of large genomic islands (≥100 kb) because habitat
preference reduces gene exchange between species,
which may favour continued response to selection
and thus promote species adaptation. As a result, all
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evidence showed that GE andGS do not represent a
simple case of sympatric speciationbut rathermicro-
parapatric speciation. The RSB simulation also re-
vealed that large genomic islands (≥100 kb) occur
disproportionately in micro-parapatric speciation
(Supplementary Fig. S16). Recent empirical stud-
ies on sympatric speciation [21–38] have not carried
out detailed assessments of the relationship between
gene flow and genomic islands, even though specia-
tion processes all involved the selection of different
habitats and restricted gene flow. Similar to our case,
manyof thosepresumed sympatric speciation events
may actually be micro-parapatric speciation events
because most of those studies examined genomic is-
lands and restricted gene flow [21–38].

Speciation always involves sexual isolation
[11,14,79]. Ecological differences may impose
barriers to gene flow, and sexual isolation may occur
when barriers are strong enough to prevent recent
gene flow. Therefore, when assortative mating
depends on an ecological character, speciation is
not hindered by recombination betweenmating and
ecological loci [11]. Consequently, subpopulations
in different habitats may have sufficient intrinsic
premating isolation to promote speciation [80].
However, how does RI arise as a correlate of the
genetic divergence? The most direct way to answer
this question is to identify the differentiated genes.
In this study, GE underwent stronger selection
than GS, which led to a high level of genomic
differentiation (Fig. 4C, and D, and 5A).

Genes related to olfactory receptor activity and
olfactory transduction pathways were also found on
the genomic islands. Olfactory genes may act as
pleiotropic genes that influence habitat and sexual
selection. Animals rely strongly on olfaction to lo-
cate and identify food sources [81]. Compared with
the GS lineage, the GE lineage consumes a wider va-
riety of foods.TheGE lineagewas discovered tohave
extensive olfactory signals, and a particularly strong
selective effect on three olfactory receptors on chro-
mosome6 (Fig. 5C, andD).This allowed theGE lin-
eage to occupy more niches in an oligotrophic lake
in a short period of time by increasing the variety
of food available. However, no significant selected
olfactory signal was detected in GS. For fish, olfac-
tion is also crucial in chemosensory communication,
which has been related to speciation, particularly in
terms of sexual isolation [82–84]. For example, fe-
male preference for conspecific males was shown to
rely predominantly, if not exclusively, on olfactory
cues in Lake Malawi cichlids [85]. Evolution of as-
sortative mating may be the most powerful isolat-
ing barrier between ecologically diverging subpopu-
lations [11,86,87].

CONCLUSION
This study combined theoretical and empirical ev-
idence to provide a new perspective on sympatric
speciation. Large genomic islands occurred between
the examined subspecies, which revealed reliable ev-
idence that this case of presumed sympatric specia-
tion is actually micro-parapatric speciation.

MATERIALS AND METHODS
Sampling and genome sequencing,
assembly and variant calling
Fish were collected from Lake Sunmcuo in Jiuzhi,
Qinghai, China (101◦11′E, 33◦38′N) using gill nets
and cast nets. GS andGE individuals were identified
based on the taxonomic description by Chen and
Cao [56]. Genomic DNA was extracted from mus-
cle and liver tissues (frozen in liquid nitrogen) us-
ing a DNeasy Blood & Tissue Kit (Qiagen, 69506)
in accordance with the manufacturer’s protocol. Il-
lumina, Nanopore, and Hi-C libraries were gener-
ated using the HiSeq X-Ten platform and GridION
X5DNA sequencers. To assist with genome annota-
tion,RNAwas extracted fromtheheart, liver, kidney,
muscle, gill, brain, and gonad tissues (frozen in liq-
uid nitrogen) using an HP Total RNA Kit (Omega
Bio-Tek, R6812-00).We annotated the genomes us-
ing a combination of ab initio, homologous-based
gene predictions and RNA-seq [88]. For compara-
tive population genomics analysis, we re-sequenced
46 individuals, including 23GS and 23GE individu-
als, using theHiSeq X-Ten platform (Illumina).The
detailed methods of sequencing, assembly, annota-
tion, and SNP calling are provided in the Supple-
mentary Methods.

Population structure analysis and
demographic history estimation
Population structures were investigated using three
approaches, including a neighbour-joining phylo-
genetic tree, a nonparametric principal component
analysis, and a full maximum likelihood approach.
Species demographic history and divergence time
were estimatedbyMSMC2[63] andSMC++ [64].
The detailed methods are provided in the Supple-
mentary Methods.

Gene flow model estimate and genome
patterns of genetic divergence
We tested five gene flow models (Supplementary
Fig. S8) and used Fastsimcoal v2.6 [66] to infer the
dynamic history of gene flow. The AIC was used to
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identify the best of the fivemodels.The detailed sim-
ulation methods are provided in the Supplementary
Methods.

Population genomic differentiation was mea-
sured by ZFst and Dxy. Genomic regions with
ZFst ≥4 were considered genomic islands. Signif-
icance of Dxy, π , and ρ were assessed for genomic
islands. The detailed estimation methods of ZFst,
Dxy, π , and ρ are provided in the Supplementary
Methods.

Population genetic simulations under
migration, selection, and recombination
To investigate the influences ofmigration, selection,
and recombination on genomic sequences, we car-
ried out computer simulations based on the RSB
model [67]. Pure sympatric speciation and micro-
parapatric speciation models were simulated. The
difference between the two models is the migra-
tion rate in speciation. We set a high level of mi-
gration (m = 0.1 per generation) in the pure sym-
patric speciation model because there was frequent
bidirectional gene flow between species. A low level
of migration (m = 0.01 per generation) was set in
micro-parapatric speciation model. Population size
was set to 5000 and the recombination rate (r) was
set to 10−8 per generation between adjacent base
pairs. The length of simulated sequences was 10Mb
(100 kb is the basic unit that cannot be separated by
recombination). The recombination probability for
a 10 Mb sequence was 0.1. Because population size
was 5000, there was an average of 500 individuals
with recombination in each generation. The relative
fitness of the sequenceof ahybrid is 0.5.At thebegin-
ning of the simulations, the sequences were in their
original state (Supplementary Fig. S12A). After sev-
eral generations of migration, selection, and recom-
bination, the sequences were shuffled.

Identification of selected genomic
regions
For SNPs, we performed a test for selective sweeps
in the GS and GE lineages to identify candidate re-
gions using a cross ofπ andFst approaches;π andFst
were calculated using VCFtools v1.13 [89] in a 100-
kb sliding windowwith a step size of 10 kb.We iden-
tified the window with the top 1% or 5% of Fst val-
ues (Fst >0.26 and Fst >0.137, respectively) as the
outlier windows. On this basis, π ratio values were
used (ratio of π values: π [GS]/π [GE]>2.07, top
5%; π [GS]/π [GE] <0.88, bottom 5%) to iden-
tify selected genomic regions in the GE and GS lin-
eages. XP-CLR test [66] was also used to detect
selective sweeps using the upper 5% of normalized

xpclr values as a cut-off.These protein-coding genes
were annotated with GO [90] using the InterPro
[91] and eggNOG [92] databases. KEGG annota-
tion [93] usedKASS [94] to identify the function of
selected genes.
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