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Abstract 

Study Objectives:  Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, 
we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep.

Methods:  We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and 
many other processes, using a manually curated list of 109 sleep genes.

Results:  Our predictions fit with prior knowledge of sleep regulation and identified key genes and pathways to pursue in follow-up 
studies. As an example, we focused on the NF-κB pathway and showed that chronic activation of NF-κB in a genetic mouse model 
impacted the sleep-wake patterns.

Conclusion:  Our study highlights the power of machine learning in integrating prior knowledge and genome-wide data to study 
genetic regulation of complex behaviors such as sleep.
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Statement of Significance

We applied computational approaches to integrate the wealth of publicly available genome-scale data to study the genetics of 
sleep regulation. We built machine learning models to predict clusters of genes based on similarity to known sleep genes. Our mod-
els identify a number of biological pathways involved in sleep and provide novel candidates for future research. We tested one of 
these predictions and showed that chronic activation of the NF-κB pathway alters sleep amount and leads to sleep fragmentation 
in mice. Thus, we present a framework for integrating large-scale genome data to discover genetic entities that underlie sleep and, 
potentially, other complex traits.

Introduction
Genetics impacts sleep. In humans, a handful of alleles are 
known to cause familial sleep disorders [1–8]. However, most of 
these alleles are rare and have not been broadly implicated in 
sleep regulation in human populations. Genome-wide associa-
tion studies (GWAS) identified more sleep-trait-associated genes, 
but SNP-based heritability estimates are small [9–12], and few of 
these genes have been functionally validated. Many key features 
of sleep are conserved from invertebrates to vertebrates [13]. 
Large-scale forward genetics screens in flies [14–18] and mice 
[19, 20] have identified several genes whose alterations impacted 
sleep regulation. The two-process model proposed that both cir-
cadian clocks and sleep homeostasis drive the sleep-wake cycle 
[21]. Multiple genome-wide -omics studies have sought to identify 
key genes and proteins that respond to sleep homeostasis [22–26]. 

These efforts have built rich resources on data-driven research to 
identify genes and pathways that regulate sleep.

Computational approaches such as mathematical modeling 
can identify genes that regulate sleep [27, 28]. However, these 
models require detailed prior knowledge of mechanism and the 
computational cost increased drastically to explore models incor-
porating multiple pathways. Machine learning models, specifically 
discriminative models, have predictive power to classify genes 
based on hidden patterns in large datasets [29–33]. These models 
have been utilized to identify novel risk genes in complex dis-
eases, such as autism and Alzheimer’s disease [34, 35]. Advances 
in “omics” technology have led to increasingly large amounts of 
data generated each year. To date, the wealth of genome-wide 
datasets available in the public database has not been inte-
grated to study the genetic regulation of complex physiology and 
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behavior like sleep. In prior work, we applied machine learning to 
identify novel circadian genes by incorporating five genome-wide 
datasets [36]. In this study, we applied machine learning to thou-
sands of datasets with the goal of identifying genes and pathways 
involved in sleep regulation.

Using a manually curated list of 109 known sleep genes, we 
trained a prediction model on large-scale published datasets, rep-
resenting circadian regulation, immune response, sleep depriva-
tion, and many other processes. Our model predicted a list of top 
candidate sleep genes. Pathway enrichment analysis of these top 
candidates revealed the NF-κB pathway as a key sleep regulator. 
We validated that activation of the NF-κB pathway in neurons 
leads to sleep fragmentation in mice. Further exploration pro-
posed that the NF-κB pathway affects sleep through calcium sig-
naling. In summary, we present an integrative in silico approach 
with the potential to identify novel genetic regulators of complex 
physiology and behavior.

Methods
Data curation and preprocessing
Gene name conversion.
Gene name conversion between species was done using the 
homologene function (v1.5.68) (homologeneData2) [37]. Gene ali-
ases (human and mouse) were converted to official gene sym-
bols according to gene info downloaded from NCBI on 04/01/2020 
(hereafter referred to as “gene_info_04012020”) [38].

Annotated gene sets.
GMT files, representing gene and protein knowledge from anno-
tate gene set collections, were downloaded from MSigDB [39] 
(n = 11) and Harmonizome [40] (n = 7). Protein–protein interaction 
information was downloaded from BioGRID [41, 42] (n = 1). The 
GMT file was created by including interaction types—colocaliza-
tion, direct interaction, and association and physical associations 
from human data. Protein names were matched with the official 
gene name using gene_info_04012020.

Genome-wide profiling data.
Genome-wide profiling data were downloaded from multiple 
public repositories. In total, 7195 data metrics were processed, 
described below.

TISSUE-SPECIFIC TRANSCRIPT ABUNDANCE (n = 595).

Microarray data from human tissues were downloaded from 
BioGPS—GSE1133 [43, 44]. Average values from each tissue were 
transformed with log2 to create data metrics (n = 84). RNA-seq 
quantifications from human tissues were downloaded from 
GTEx [45]. Average TPM from the same tissues were transformed 
with log2 to create tissue-specific transcript abundance data 
metrics (n = 54). Additional RNA-seq data, transcript expression 
summarized at per gene (protein) level, were downloaded from 
Human Protein Atlas (HPA) [46]. Log2 protein-transcripts per 
million (pTPM) were used to create data metrics (n = 43). Brain 
region-specific transcripts quantifications (log2 transformed) 
from Allen Brain Map [47] were downloaded from Harmonizome. 
The mRNA expression data representing brain structures' specific 
transcript abundances were used to create data metrics (n = 414).

TISSUE-SPECIFIC PROTEIN ABUNDANCE (n = 30).

Mass spectrometry-based proteomics data from human adult 
and fetal tissue samples were downloaded from the Human 

Proteome Map [48]. Normalized quantifications from the gene-
level expression matrix were transformed with log2 to create data 
matrices (n = 30).

SIGNIFICANCE OF CIRCADIAN EXPRESSION (n = 25).

Time-series data from mouse tissues were downloaded from 
GSE54652 [49] and rhythmic signals were detected using Meta2D-
JTK in MetaCycle [50]. Transformed significant value, -log2(p-
value), was used to create data metrics (n = 12) that represent the 
significance of circadian expression in mouse tissues. Circadian 
expressions from human populations, ordered by CYCLOPS 
[51], were downloaded [52, 53]. Transformed significance values, 
-log2(p-value) were used to create data metrics (n = 13).

TRANSCRIPTIONAL PROFILES UNDER PERTURBATIONS OR 
DIFFERENT PHYSIOLOGICAL/PATHOLOGICAL CONDITIONS 
(n = 6540).

15 datasets from Gene Expression Omnibus (GEO) [54] were 
downloaded and preprocessed manually. Absolute log2 fold-
changes for each tested condition were used to create data 
metrics (n = 46). In addition, 2459 human and mouse-processed 
datasets were downloaded from EBI expression atlas [55]. Data 
metrics (n = 6494) were created using absolute log2 fold-changes 
for each tested condition.

MISCELLANEOUS (n = 5).

Phosphorylation site information was downloaded from qPhos 
[56]. The number of tyrosine, serine/threonine, tyrosine, and ser-
ine/threonine phosphorylation sites in each protein were used 
to create data metrics (n = 3). Vertebrate homology informa-
tion from 10 vertebrates, including human, chimpanzee, rhesus 
macaque, dog, cattle, rat, mouse, chicken, western clawed frog, 
and zebrafish were downloaded from Mouse Genome Informatics 
(MGI) [57]. The number of vertebrates that share a homolog gene 
with humans was used to create a data metric (n = 1) represent-
ing conservation of genes. Transcriptomics profiles from HeLa 
cells enriched for different phases of the cell cycle were down-
loaded from GSE26922 [58]. Rhythmic genes were detected using 
Meta2D-LS in MetaCycle [50]. Transformed significant value, 
-log2(p-value), was used to create data metrics (n = 1) that rep-
resent the significance of cell-cycle rhythmicity in the cell line.

Preparing input for prediction models
Samples.
All human genes (61 527 unique genes) from gene_info_04012020 
were used to create the gene list.

Labels.
Labels (sleep genes) were manually curated by detailed litera-
ture review. The initial set of sleep genes was collected from a 
review paper [59]. Additional sleep genes were searched with the 
keyword “sleep” in title, and “gene” AND “model” in the main text 
from PubMed and Scopus databases. A sleep gene was defined as 
a gene that has been reported to alter sleep traits in at least one 
animal model (flies or mammals) by genetic approaches. Altered 
sleep traits include changes in sleep timing (sleep phase), sleep 
duration, and other measurements of sleep quality from EEG (e.g. 
slow wave activity, NREM/REM ratio, number of sleep bouts, and 
sleep latency). We divided the list into 3 tiers. Tier I include “bona 
fide” sleep genes that harbored a causal mutation in any human 
sleep traits and were validated in animal models. Their roles are 
conserved across species. Tier II genes have evidence from any 
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non-human mammalian model system. Tier III genes were dis-
covered to change sleep traits in Drosophila but not in vertebrates 
yet. All sleep genes from Tier I, II, and III are weighted equally 
in the feature selections and model training process. Sleep genes 
were updated till 8/13/2020 for this analysis.

Features.
Sleep gene-associated functional features are used to represent 
the similarity of a gene to the known sleep gene. We built the 
sleep gene-associated features using two lines of information.

GENE SET COLLECTIONS.

Gene set collections were downloaded and prepared as men-
tioned above. One feature was created from each gene set collec-
tion. In each feature, genes were scored by the level of similarities 
(Jaccard Index, JI) to the list of curated sleep genes under the bio-
logical context. We applied a two-step process to calculate the 
gene-level score.

Jaccard Index (JI)term =
|A∩ B|
|A∪ B|

ScoregeneX =
n∑

i=1

JItermi , genex is an element of termi∈{1,2,3,...n}

We first calculated JI for all terms in a gene set collection. 
Assuming that set A is the curated sleep genes and set B is the 
genes in an assigned term, JI was calculated using the number 
of overlapped genes between A and B divided by the number of 
unique genes in A and B. Next, the JI score for each term is added 
to the genes assigned to this term. To reduce over-contribution 
of redundant terms, we calculated JI and overlap coefficient (OC) 
for all pairs of terms in a gene set collection. Terms with JI > 0.5 
or OC > 0.9 were grouped into a cluster. Only the maximum JI 
from each of these clusters was added to the genes. These two 
steps were repeated for every term in each gene set collection. 
By the end of these calculations, we obtained a numeric vector 
with the sum of JI score for each gene. This created a feature 
representing the overall similarities of a gene with the labeled 
sleep genes, under the biological context of the gene set collec-
tion information.

GENOME-WIDE PROFILING DATASETS.

Genome-wide profiling datasets were prepared as mentioned in 
the Data Curation and Preprocessing section. Evidence factors 
were used to evaluate the degree of sleep genes over-representa-
tion in each of these data metrics. To calculate the evidence fac-
tor, we first split the samples (genes), using the sleep genes to 
form a sleep gene distribution, and the remaining genes to form 
the non-sleep gene distribution. Evidence factors were calculated 
by comparing the proportion of genes in these two distributions, 
within a bin (between D1 and D2). As the distribution of genes was 
sparse, there were chances that a bin was empty. To solve this 
issue, we used binning by minimum percentage of genes. We first 
split the data metrics by 100 equal breakpoints. We repeatedly 
merged the neighboring bins until a bin reaches (1) at least 10% 
sleep genes and at least 1% non-sleep genes, or (2) at least 10% 
non-sleep genes and at least 1% sleep genes. For each (merged) 
bin, we calculated evidence factors by dividing the proportion 
of genes in sleep genes by the proportion of genes in non-sleep 
genes. We used maximum evidence factors (maxEF) from a data-
set as an index to select sleep gene-relevant data. For each data 
metric, we set a cutoff of at least 25% labels that must present 
with a real value to ensure sufficient sleep genes used to form the 

sleep gene distribution; and the range of the data metrics must 
have more than 3 steps to ensure sufficient resolution. Else, we 
skipped the maxEF calculation for this data metric. Data met-
rics that show positive evidence (maxEF>=3) were selected and 
used as features to train the prediction models. To remove fea-
tures that were highly correlated, we ran pairwise correlation 
coefficients of all data pairs. If two data metrics had a correlation 
coefficient higher than 0.8, the data metric with lower evidence 
factors were excluded.

Building machine learning models to predict 
sleep genes
Input.
Samples and features were prepared as mentioned above. We 
then filtered out samples (genes) with > 50% missing values. One 
of the labels (sleep gene), NPSR1, was removed. In summary, an 
input table with 17 853 rows (genes) and 91 columns (gene-asso-
ciated features), with 108 labels (sleep gene) was used to build the 
prediction models.

Data Preprocessing.
Data preprocessing was done using Python—sklearn.impute and 
sklearn.preprocessing package. Missing values from the input 
were imputed with mean value and rescaled with standard score 
(z-score). Curated labels (sleep genes) were replaced by “1” and 
the remaining samples(genes) were replaced by “0”.

Model Architecture.
Our model had 108 sleep genes (positive labels), but with no 
information or confidence on genes that do not regulate sleep (no 
negative labels). This raised the problem of learning from Positive 
and Unlabeled data (PU learning). We applied a biased learning 
method [60, 61] to solve this problem. To do this, all non-labeled 
genes were treated as negative labels during the training process, 
and prediction results were made based on ensembles of numer-
ous of these weak classifiers. In detail, we first subsampled our 
samples (genes) into a smaller subset, with the same proportion 
of positive, and unlabeled samples in the training and prediction 
sets. Sleep genes were marked as positive labels and all other 
genes in the training sets were marked as negative labels. In this 
case, the negatively labeled samples were expected to contain a 
mixture of true or false negative labels, hence, resulting in weak 
classifiers. We repeated this process 100 times and made the final 
predictions based on average performance from all cycles.

We have only a small number of labels (sleep genes, n = 108) 
in comparison to other samples (non-labeled genes, n = 17 745). 
Yet, these labels were not found completely at random. Most 
sleep genes were identified based on our existing knowledge of 
sleep regulations. Therefore, we expected these genes not to be 
distributed randomly (or equally) in all sleep-relevant pathways. 
As an example, 13 out of 108 sleep genes were parts of the circa-
dian clock pathway. To increase the randomness of subsampling 
labels, as well as maintaining the best performance, we trained 
the machine learning model with different proportions of train-
ing input, ranging from 0.2 to 0.8, with the same parameter. By 
doing this, we increased the combinations of samples used in the 
training and prediction sets, and therefore expected to have more 
robust predictions.

Prediction Models.
Eight supervised classifier algorithms were built to find the 
best-supervised classifier that fits our prediction. The evaluated 
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classifiers included probabilistic models (naive Bayes), linear 
regressions models (logistics and linear SVM), decision trees 
(decision tree, random forests, and adaptive boosting), and neu-
ral networks (neural networks and ensemble neural networks). 
All machine learning models, except neural network and ensem-
ble neural network, were built using scikit-learn (v0.22.2) [62]. 
Neural networks and ensemble neural networks were built using 
Tensorflow (v2.2.0) [63] and Keras (v.2.4.3) (https://github.com/
fchollet/keras).

Default parameters were used, except those mentioned below.

classifier algorithms parameters 

logistic regression max_iter = 1000

decision tree max_leaf_nodes = 12

random forest max_leaf_nodes = 12

adaptive boosting max_leaf_nodes = 4, algorithm=”SAMME”, 
n_estimator = 200

neural networks sequential models, 2 hidden layers (12 & 6 
nodes each, “relu” activation function), final 
output activated by “sigmoid” function.

ensemble neural 
networks

Repeatedly run neural networks 20 times, 
used major voting as cutoff for final output 
(>50%)

Input to train prediction models was prepared as mentioned 
above. For naive Bayes classifiers, we transformed the input with 
principal component analysis to ensure the conditional inde-
pendence between features applied. The ratio of labeled and 
unlabeled samples was skewed. To balance the weights of pos-
itive and negative labels to roughly 1:1, we assumed the total 
number of genes was around 20 000. The weight was calculated 
by using half of the total number of genes (10 000) divided by 
the number of labels. Samples (genes) were randomly split into 
training and testing sets. Model architecture was as described 
above. Training set was used to train the model, whereas the test-
ing set fit into the trained models. The classes predicted by the 
“predict_classes” function were used to calculate the confusion 
matrix.

Model Evaluation.
Models were evaluated with sensitivity (recall, r) and PU-adjusted 
F-measure (F-scorePU, r2

Pr(̂y=1)
). Raw prediction scores from “pre-

dict_proba” function, or the probability of a gene predicted as 
sleep gene, were recorded for genes assigned to the prediction set 
(not including linear SVM, as the raw prediction scores from lin-
ear SVM were discordant with the binary predictions). The aver-
age prediction score from all iterations was calculated and used 
to plot the sensitivity-precision plots.

Random Labels.
To avoid a model that makes predictions based on random noise, 
we removed all existing labels and randomly assigned the same 
number of labels to the remaining samples (only samples that 
were not originally labeled). As features were built based on sleep 
genes labels but not the random labels, the randomly assigned 
labels are not likely to be recalled using these sets of features, 
unless called by random noise. Therefore, we selected models 
that have the lowest sensitivity and F-scorePU with the random 
labels input.

Final Prediction Model.
The final prediction model was built with random forest classifi-
ers using scikit-learn [62] (v0.22.2). Default parameters were used, 
except max_leaf_nodes are set to 12 based on the lowest out-of-
bag (OOB) error and highest sensitivity. As described in the Model 
Evaluation section, the weights of the labels were calculated 
using 10  000 divided by the number of labels. Samples (genes) 
were randomly split into training and prediction sets. Model 
architecture was described above. For each iteration, the raw pre-
diction score was recorded for genes assigned to the prediction 
set. A prediction score of less than 0.1 was set to 0 to reduce noise. 
The average prediction score from all iterations was calculated. 
Given the same maximum leaf node (max_leaf_nodes = 12), fewer 
genes were predicted as sleep genes when smaller training sam-
ples were used. For this reason, we weighted the final ranking of 
candidate sleep genes with the minimum training ratio that leads 
to a positive prediction (min[r]). The final prediction score is cal-
culated as:

final prediction score = 10 ∗min(r) + average prediction score

Exploring sleep traits GWAS data
Summary statistics from 4 self-reported UK Biobank sleep traits 
GWAS (n = 453 379), including chronotype [9], overall sleep dura-
tions [12], daytime sleepiness, [64] and insomnia [11], were down-
loaded from Sleep Disorder Knowledge Portal (SDKP). FUMA’s 
SNP2GENE process [65] is used to run gene annotations. SNPs were 
mapped to genes using the posMap, eqtlMap, and ciMap methods, 
with default parameters. Mapped GWAS genes overlapped with 
the top predicted sleep genes were marked in Dataset S2.

Pathway enrichment analysis
The top 495 predicted genes were used for pathway enrich-
ment analyses using DAVID [66]—Reactome pathway database. 
Pathways were then clustered using kappa similarity in DAVID 
(kappa similarity threshold > 0.5). We filtered out pathways with 
less than 5 genes or Bonferroni-adjusted p-value larger than .1.

Model perturbation analysis
Pathway enrichment analysis was run using the 109 known sleep 
genes in DAVID [66]. Five terms were selected, based on their sim-
ilarity to the top predicted pathways of the original models, and 
with the largest number of sleep genes included. New prediction 
model was built for each of these five terms. Each new model was 
trained only with a subset of the sleep genes. Sleep genes enriched 
to the term were removed from labels. For example, the masked-Bi-
oRhythm model was trained using only 91 sleep genes; the 18 
genes enriched to “biological rhythm” were labeled as unknown 
for the input. Changes in prediction scores between the new and 
the original models were calculated. The average changes in the 
prediction score (mean ΔPredScore), for genes in each pathway, 
excluding genes in the masked gene list, were used as the meas-
urement to represent the level of alterations of the pathway.

Animal models
The R26-stopFLIkk2CA transgenic mice (Stock No: 008242) and 
Camk2aCreER transgenic mice (Stock No: 012362) were both 
obtained from The Jackson Laboratory. The Camk2aCreER and 
R26-stopFLIkk2CA mice were crossed and housed under 12h 
light/12h dark (LD) cycle within the University of Florida com-
municore facility and fed and watered ad libitum. Animal care 

https://github.com/fchollet/keras
https://github.com/fchollet/keras
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and experimental procedures were approved by the Institutional 
Animal Care and Use Committee at University of Florida fol-
lowing the Guide for Care and Use of Laboratory Animals of the 
National Institute of Health (IACUC# 202110057).

Tamoxifen Injection
For tamoxifen-inducible Ikk2ca knock-in activation, 
Camk2aCreER::R26-StopFLIkk2ca transgenic mice were generated by 
crossing Camk2aCreER mice with R26-stopFLIkk2CA mice. Tamoxifen 
(TAM) (#T5648; Sigma-Aldrich, St. Louis, MO) was dissolved in 
corn oil (#C8267, Sigma-Aldrich, St. Louis, MO) at a concentration 
of 20mg/mL. 10–12 weeks-old male mice (n = 5 for each group) 
were dosed at 75 mg/kg body weight (TAM or corn oil) intraperi-
toneally once every 24 h for a total of five consecutive days. The 
sleep assay began 4-weeks after tamoxifen injections when con-
stitutively active IKK2 expression was induced in this model.

Western blot
Brain tissue lysate preparation and immunoblotting analysis 
were performed using anti-Flag (65, Sigma-Aldrich, St. Louis, MO) 
antibodies. Briefly, brain tissue was snapped frozen, and lysed in 
the RIPA lysis buffer containing cocktails of proteases inhibitors 
(Roche) and phosphatase inhibitors (Sigma). Western blot was 
performed to determine Flag-tagged Ikk2CA activation.

Sleep assay
The piezoelectric sleep monitoring system (PiezoSleep version 
2.11, Signal Solutions, Lexington, KY), is a highly sensitive, non-
invasive, high throughput, and automated piezoelectric system, 
which detects breathing and gross body movements to character-
ize sleep patterns in unsupervised sleep/wake recordings [67, 68].

For each experiment, 11 tamoxifen or 9 corn-oil-injected 
Camk2aCreER::R26-stopFLIkk2CA mice were individually housed in 
PiezoSleep cages with a sensor inside a temperature, humidity, and 
light-controlled box. The first 3–5 days of recording were considered 
as the acclimation period to the piezo device. The 12h light/12h 
dark (LD) cycle (light on at 07:00 to 19:00; 250 lux) was performed 
for the 15-days LD followed by the next 15-days of 12h dark/12h 
dark (DD) with ad libitum access to food, water, and nesting mate-
rial. Sleep data were analyzed for multiple sleep traits of individual 
mice using sleepstats2p18 (Signal Solutions, Lexington, KY).

Results
Defining sleep gene features
Our goal was to build a machine-learning model to predict 
sleep-regulating genes based on functional features of known 
sleep genes. The hypothesis is that genes with similar functions 
to known sleep genes are more likely to play a role in sleep regu-
lation. As a first step, we manually curated a list of known sleep 
genes (Supplementary Table S1, hereafter referred to as “sleep 
genes”) through literature mining from the PubMed and Scopus 
databases. Sleep genes were defined as genes reported to alter 
sleep traits, including sleep timing, sleep duration, and measure-
ments of sleep quality from EEG, in at least one animal model 
(flies or mammals).

Next, we identified functional features associated with these 
sleep genes. Features in machine learning models are the meas-
urable variables that are useful to discriminate the characterized 
properties, in this case, to classify sleep genes from non-sleep 
genes. The lack of a strong molecular understanding of sleep reg-
ulation makes it difficult to know what information is useful in 

predicting sleep genes. To address this issue, we built sleep-asso-
ciated features based on the sleep genes we have curated, using 
two sources of information. The first source includes gene and 
protein knowledge from annotated gene set collections, includ-
ing canonical pathways, gene ontology, transcription factor target 
genes, and protein–protein interactions. We applied the Jaccard 
index (JI), or the Jaccard similarity coefficient [69], to quantify 
the similarity of a gene to the exemplar sleep genes in the con-
text of a given gene set collection (Figure 1A). Using the JI scoring 
method, we generated 19 features representing the similarity of 
a gene to sleep genes in various biological contexts (Dataset S1).

The second source of information we used to define sleep 
gene-associated functional features includes genome-wide profil-
ing datasets. We used evidence factors [70, 71] to select genome-
wide datasets most likely to be informative for the prediction 
model. In prior work, we applied evidence factors to identify a 
novel circadian transcriptional repressor in mice [36]. We modified 
the application here to screen for datasets that show evidence of 
sleep genes (Figure 1B). To validate the concept, we tested three 
datasets: (1) a time-series transcriptomics profile of mouse supra-
chiasmatic nucleus (SCN) across a 48h time-span (GSE70392), (2) 
a transcriptomics profile of mouse cortex after sleep deprivation 
(GSE114845), and (3) a time-series transcriptomics profile of HeLa 
cells at different cell-cycle stages (GSE26922). We expected data-
sets (1) and (2) to show positive evidence for sleep genes, as the 
two-process model suggests roles for circadian rhythm (process C) 
and sleep homeostasis (Process S) in sleep regulation [21]. Dataset 
(3) was selected as a negative control because the cell-cycle stage 
is not expected to be predictive of sleep.

For the two time-series datasets, each gene is assigned a sig-
nificance score for rhythmic expression using the published -log2 
transformed p-value. For the sleep deprivation dataset, each gene 
is assigned a differential expressed score using the log2 trans-
formed absolute fold change. For each dataset, we built two dis-
tributions using this score. The 109 known sleep genes are used 
to form a sleep gene distribution. All remaining genes are used 
to form a non-sleep gene distribution. The evidence factors are 
computed by comparing the proportion of genes in these two 
distributions. If the two distributions are similar, the maximum 
evidence factors (maxEF) are close to 1, which would indicate that 
there is no sleep gene over-representation in the dataset. In con-
trast, if the sleep gene distribution is different from the non-sleep 
gene distribution, maxEF would be much greater than 1. Evidence 
factors greater than 3 suggest positive evidence [70]. Therefore, a 
cutoff of maxEF larger than 3 was selected as an indicator of sleep 
gene over-representation. As expected, we found no evidence of 
sleep gene over-representation in the cell-cycle time-series data-
set (maxEF = 1.3). Conversely, genes rhythmically expressed in 
mouse SCN or genes with expression altered after sleep depriva-
tion in mouse cortex are more likely to be sleep genes (maxEFs are 
4.9 and 4.7 respectively), suggesting that circadian expression and 
sleep homeostasis are sleep-gene-associated features and should 
be incorporated in our machine learning model (Figure 1B).

Using this method, we screened through 7195 genome-wide 
datasets and found 94 of them with positive evidence for sleep 
(maxEF > 3) (Supplementary Figure S1, Dataset S1). Datasets 
with the highest maxEF included circadian expression of genes 
in multiple tissues and altered gene expression in several brain 
diseases. Sleep genes were also over-represented in datasets per-
taining to Epstein-Barr viral (EBV) infection, IL17A knockout in 
colon, clozapine (a hypnotic) treatment, sex or age differences, 
and anatomically specific datasets, including testis and human 
brain (Figure 1C).

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
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Despite starting with over 7000 datasets, informative ones 
were limited to less than 100. We were particularly interested in 
the datasets from transcriptional studies that could inform sleep 
(Supplementary Figure S2). These datasets tell us the most about 
sleep-impacting pathways and genes. For example, acute viral 
or bacterial infections are known to cause sleepiness [72, 73]. We 
found datasets associated with EBV, SARS, and Salmonella were all 
enriched with sleep-regulating genes (Supplementary Figure S2). 
Other informative datasets include brain cancer, aging, hypnotic 
drugs, and exercise; which align with prior knowledge of factors 
that impact sleep patterns. These results support that the screening 
method enables us to identify biological factors that impact sleep, 
without making presumptions. Alterations in pathways or genes 
shared by these datasets enable testing their role in sleep regulation.

Selecting a classification algorithm for the 
prediction models
We selected 94 genome-wide datasets that are informative to pre-
dict sleep (maxEF > 3). We did pairwise correlation to filter out 

23 datasets that are highly correlated (Pearson correlation > 0.8) 
(Supplementary Figure S3). The remaining 72 datasets and the 
19 features from the JI scoring method are used to represent the 
sleep gene features. Genes with > 50% missing values from these 
91 features were filtered out. One of the sleep genes, NPSR1, was 
excluded as it had missing values in more than half of the selected 
datasets. With this information, we generated an input table with 
17 853 genes (samples), including 108 sleep genes (labels), and 91 
features for training the machine learning models.

We applied a biased learning method to solve the problem of 
learning from Positive and Unlabeled(PU) data (Supplementary 
Figure S4), given that we have positive labels (sleep genes) but 
with no known negative labels (information or confidence on 
which genes do not regulate sleep) [60, 61]. We evaluated eight 
supervised classifiers seeking a model to maximize PU-adjusted 
F measures (F-scorePU) [61, 74]. The tested classification models 
included probabilistic (naive Bayes), linear regression (logistic and 
linear support vector machines), decision tree-based (decision 
tree, random forests, and adaptive boosting), and neural networks 

Figure 1. Defining sleep gene-associated features. Two lines of information are used to define the sleep gene-associated functional features. (A) 
Gene and protein knowledge from annotated gene set collections. An example of how Jaccard index is used to create a feature that represents the 
similarity of a gene to sleep genes under the biological context of the canonical pathways. (B) Genome-wide datasets. Evidence factors are used to 
screen for datasets that show an over-representation of sleep genes. Three transcriptomics datasets are shown as negative (cell-cycle stages) and 
positive controls (circadian rhythm and sleep deprivation) for this screening method. (C) Genome-wide datasets enriched for sleep genes. The top 
eight datasets with maxEF larger than three in each group (if available) are shown in the figure. Y-axis of the bar plots shows the maximum evidence 
factors for each dataset. Datasets from human and mouse samples are colored in red and blue, respectively.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
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(neural networks and ensemble neural networks). Models were 
built using Python packages scikit-learn [62] and Tensorflow [63].

Random forests had the highest F-scorePU (24.85) and second 
highest AUC (0.9783) in the sleep genes trained model. For pur-
poses of follow-up biological studies, false positives are worse 
than false negatives, as the validation experiments are time-con-
suming and costly. As part of our evaluation, we re-trained all 
models with randomly-shuffled labels as inputs to minimize the 
chance that predictions are made based on noise. In these tests, 
random forests consistently outperformed other classifiers with 
the lowest sensitivity (0) and F-scorePU (0.007), suggesting that 
random forest predictions have the lowest false positive rates 
(Supplementary Figure S5).

Identify novel genes and pathways relevant to 
sleep regulation
We trained our prediction models using random forests as the 
classification algorithm. All genes were ranked based on the 
final prediction score. In total, 3373 out of 17 853 genes were 
predicted as sleep genes with 95% of the known sleep genes 
being recalled (Figure 2A& Supplementary Figure S6, Dataset 
S2). Overall, sleep genes identified from human samples 
ranked higher in comparison to sleep genes identified from 
other mammals or flies, despite the fact that all sleep genes 

were weighted equally during the feature selection and model 
training steps. This suggested that our models’ predictions can 
detect human sleep genes and provide strong candidates for 
future study.

We intended to build a prediction model to reveal molecular 
mechanisms or pathways that may be involved in the regulation 
of the sleep-wake cycle. For this purpose, we use the optimal cut-
off of selecting the top 495 genes for enrichment analysis (Figure 
2A). The cutoff was determined based on a compromise of the 
highest sensitivity and the least number of novel genes being pre-
dicted as sleep genes. Of these top 495 genes, 86 were known sleep 
genes, and 409 were novel predicted sleep-regulating genes. We 
found 64 out of the 409 novel sleep genes are annotated genes 
from four GWAS studies pertaining to chronotype [9], overall 
sleep duration [12], insomnia, [11] and daytime sleepiness [64]( 
Supplementary Figure S7).

Pathways enrichment analysis was run using DAVID [66] 
(Reactome). We identified 7 pathway clusters with at least 3 
genes overlapping with the GWAS annotated genes (Figure 2B, 
2C& Supplementary Figure S8). The top enriched pathways 
included those related to neuron activity, Phase 0 depolarization, 
ion homeostasis, and Ca2 + signaling. These findings are in line 
with a number of studies that reported the involvement of the 
neuronal synapse in the transition between sleep-wake states 
[23, 75–77].

Figure 2. Predictions of novel sleep genes using random forests model. (A) Prediction result of the random forests model. X-axis shows the number 
of predicted genes. Y-axis shows the proportion of recall sleep genes (sensitivity). Sleep genes with evidence supported by humans are labeled in 
brown; sleep genes with evidence supported by non-human mammals and drosophila are marked by blue (top) and yellow (bottom) rugs, respectively. 
(B) Top enriched pathways with at least three genes overlapping with sleep traits GWAS are shown. (C) Genes in the top enriched pathway. Predicted 
genes overlapped to sleep traits GWAS are colored in orange and those that did not overlap are colored in blue. Sleep genes that train the machine 
learning model are labeled in black and the novel predicted sleep genes are labeled in blue. Within each pathway, genes are ordered by their predicted 
rankings, from left to right.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
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Previous GWAS for sleep traits have reported enrichment 
of circadian rhythm and G-protein-relevant pathways [9, 12]. 
Accordingly, the circadian clock and G alpha signaling (Gi and Gq) 
are among the top enriched pathways from our prediction models. 
Interestingly, OPRD1 and OPRM1 encoding two opioid receptors, 
and PENK encoding an endogenous opioid peptide, are among the 
top candidate genes in Gi signaling. Opioids are well-known seda-
tives. Clinical studies have shown that opioid medication impacts 
sleep architecture in healthy adults [78]. Our predictions suggest 
that among the three opioid receptors, the mu-, and delta- recep-
tors are more likely to play key roles in sleep regulation at the 
molecular level. This is in agreement with an in vivo study using 
opioid receptor agonists in feline models [79].

Validation of a role for NF-κB in sleep regulation
Inflammation has been linked to sleep quality in healthy indi-
viduals without sleep disorders [80]. Our top predictions include 
a group of immune-related genes, and, in particular, the com-
ponents of the NF-κB pathway (Figure 2C). NF-κB transcription 
factors play critical roles in inflammation and immunity, as well 
as cell proliferation, differentiation, and survival [81]. RELA is an 
NF-κB subunit and IKBKB (aka IKKβ and IKK2) is an upstream acti-
vator of NF-κB activation. The direct and indirect triggers of NF-κB 
activation have been reported to cause circadian disruption [82, 
83]. Sleep loss alters immune function, and immune challenges 
alter sleep at least in part through regulation of several endoge-
nous somnogens [84]. Previous studies reported that Nfkb1(p50) 
knockout mice showed increased duration of slow-wave and 
rapid eye movement (REM) sleep [85]. However, little is known 
about the direct effect of NF-κB activation on sleep.

We used Camk2aCreER::R26-stopFLIkk2CA mice to test the effect 
of NF-κB activation on sleep (Supplementary Figure S9). In this 
mouse model, the stopFL cassette prevents expression of the con-
stitutively active Ikk2 (Ikk2CA) [86]. Tamoxifen-inducible neuronal 
specific Camk2aCreER recombinase [87] induces deletion of the 
stopFL and expression of Ikk2CA. IKK2 is a key component of the 
IKK complex that phosphorylates IkBα, leading to IkBα ubiquitina-
tion and proteasomal degradation [88]. Upon degradation of IkBα, 
NF-κB is free to translocate to the nucleus to induce transcription 
of target genes. Therefore, Ikk2CA expression leads to constitutive 
NF-κB activation, and these mice represent a genetic model of 
chronic NF-κB activation. In a recent study, we used this model 
to assess the NF-κB effect on circadian behavioral rhythms [83].

Here, we used the piezoelectric sleep monitoring system 
(piezo) [67, 68] to assess sleep-wake phenotypes in mice with 
chronic NF-κB activation. The gold standard to determine sleep-
wake states is electroencephalogram (EEG) and electromyogram 
(EMG), which are based on the brain and muscle activities. In con-
trast, piezo determines sleep-wake states based on breathing reg-
ularity. Statistical validation of these two techniques (EEG/EMG vs 
piezo) have shown a strong and significant positive correlation in 
measuring distribution and amount of total sleep time. The num-
ber of brief awakenings and short sleep episodes was higher when 
counted with the piezo system. However, measurements between 
the two techniques are positively correlated [68]. Therefore, the 
use of the piezo system to compare short and long sleep bouts 
between the two conditions is a valid, and convenient, initial in 
vivo approach to evaluate the effect of candidate sleep genes.

We show that, compared to control mice, Ikk2CA mice had a 
reduced total sleep duration (Figure 3A). The reduction of sleep 
duration was only observed in the light (sleeping) phase but not 
in the dark (activity) phase. Sleep bout duration has been used 

as an indicator of sleep consolidation versus fragmentation [89]. 
Compared to controls, Ikk2CA mice displayed increased sleep at 
shorter bout lengths and decreased sleep at longer bout lengths 
(Figure 3B), indicative of sleep fragmentation. Taken together, 
constitutive NF-κB pathway activation led to increased sleep frag-
mentation during the sleep phase.

Network of sleep regulation pathways
Our models predicted seven pathways enriched for sleep regu-
lation, including the circadian clock, NF-κB, G-protein signaling, 
and multiple pathways involving neuronal activities (Phase 0—
depolarization, ion homeostasis, and Ca2 + pathway) (Figure 2B). 
Sleep-wake transition is known to be achieved at the neuronal 
level. It is not clear how pathways not directly regulating neu-
ronal activity (eg. NF-κB) impact sleep. We would like to explore 
if and how these pathways function in a network to regulate 
sleep through in-silico perturbation. The rationale here is that if 
pathway A has strong interaction with pathway B, sleep genes in 
pathway A will strongly influence the prediction of genes in path-
way B. By this reasoning, when sleep genes in pathway A were 
removed from positive labels during the model training process, 
we would expect to observe large changes in the prediction score 
for genes in pathway B. Similar mask learning approach is estab-
lished in explaining black box models, for example, to find the 
part of an image most responsible for a classifier decision [90, 91]. 
We implement the concept here to explain the relatedness of the 
top enriched pathways by sequentially removing them from the 
model, and evaluating the effects of these have on the detection 
effects of the other categories.

To do this, we first ran an enrichment analysis using the 
109 known sleep genes and selected 5 terms, including genes 
enriched for the keywords “transport” (Transport), “biological 
rhythms” (BioRhythm), “G-protein coupled receptor” (GPCR), “cal-
cium signaling pathway” (Calcium), and “inflammatory response” 
(Inflammation) (Supplementary Figure S10). These five terms 
were selected based on their similarity to the predicted pathways 
in Figure 2B and having the largest number of known sleep genes 
included. We built new prediction models for each of these five 
terms, using only sleep genes (positive labels) excluding the repre-
senting genes enriched to that term. For example, the masked-Bi-
oRhythm model was trained using only 91 sleep genes; the 18 
genes enriched to “biological rhythm” (Supplementary Figure S10) 
were removed. Finally, we calculated the changes in prediction 
scores between the new and the initial models. Average changes 
in the prediction score (mean ΔPredScore) were used as the meas-
urement to represent the level of alterations of a pathway.

Our approach revealed previously unappreciated relationships 
between the clock and NF-κB and Ca2 + signaling. Likewise, there is 
a strong relationship between the NF-κB and Ca2 + pathways. Not 
surprisingly, strong relationships between G-protein, Phase 0—
depolarization, and ion channel signaling were observed. Ca2 + sig-
naling was found as the key node connecting the circadian clock 
and NF-κB to these neuronal-related pathways (Figure 4A).

We further evaluated the interactions of the circadian clock, 
Ca2 + and NF-κB pathways at the gene level (Figure 4B). Among 
the top predicted genes in the NF-κB pathways, RELA showed 
the largest alteration in the masked-BioRhythm model, sug-
gesting RELA as the key point of the interaction between the 
NF-κB and the clock pathways. This prediction aligns with 
the recent finding that RELA directly binds to BMAL1 at the 
CRY1 binding site and results in E-box transcriptional repres-
sion [83]. Among the top predicted genes in the Ca2 + pathways, 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
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LEF1, TCF7L2, and PLCB1 are found as the top altered genes in 
the masked-BioRhythm model, whereas TCF7L2, MAP3K7, and 
WNT5A are the top altered genes in the masked-Inflammation 
model. Interestingly, these five genes were annotated to the 
Wnt/Ca2 + signaling pathway. TCF7L2 is the gene with alteration 

observed in both masked-BioRhythm and masked-Inflamma-
tion models, suggesting that it might play a network-level con-
nection to both the clock and inflammation pathways, making 
it a particularly attractive candidate gene for follow-up func-
tional studies.

Figure 3. Sleep phenotyping in Ikk2CA mice and control using PiezoSleep system. (A) Sleep amount phenotype. Percentages of total sleep (top), 
light phase sleep (middle), and dark phase sleep (bottom) between Ikk2CA and control mice, recorded in LD 12:12, are shown in the figure. (B) Sleep 
fragmentation phenotype. Percentage of total sleep (top), light phase sleep (middle), and dark phase sleep (bottom) for different sleep bout length 
intervals, between Ikk2CA and control mice, are shown in the figure. n = 9 for control and n = 11 for Ikk2CA mice. All results are shown as mean ± SEM. 
P-value *<.05, **<.01, ***<.001, ns—not significant (Student’s t-test).
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Links between the circadian clock and sleep
Circadian rhythms are known to play a major role in sleep regu-
lation. We applied the masked-BioRhythm model to explore how 
well-established circadian rhythm-related genes impact overall 
predictions at the genome-wide level (Supplementary Figure S11). 
As expected, most core-clock genes (e.g. ARNTL, CLOCK, NPAS2, 
CRY1, CRY2, and PER3) were absent in the masked-BioRhythm 
model (prediction score = 0). PER1 and PER2 are exceptions, which 
were still predicted at the 90-95% sensitivity range, suggesting 
that PERs play direct roles in regulating sleep.

TWIST1 is one of the non-clock genes shown to have a 
large alteration of prediction score in the masked-BioRhythm 
model, suggesting strong functional relationship to the clock 
(Supplementary Figure S11). TWIST1 is a member of the basic 
helix-loop-helix (bHLH) transcription factor family that forms 
homo- or hetero-dimers and binds the same E-box target sites that 
BMAL1/CLOCK binds [92]. In mice, Twist1 and Twist2 are induced 
by TNFα through the canonical IKKβ-dependent NF-κB signaling 
pathway [93, 94]. Conversely, TWIST proteins inhibit cytokine 

genes through physical interactions with the RELA subunit of 
NF-κB complex at the transactivation domain [95, 96]. Twist1, but 
not Twist2, is found to mediate the TNF-induced repression of Per 
and Dbp genes in vitro through competing for E-box binding of 
BMAL1/CLOCK [97]. The impact of TWIST1 on sleep has not been 
reported. However, Twist1 activation was observed in mouse mod-
els of Huntington’s Diseases and found functionally important 
for mutant Huntingtin-induced neurotoxicity [98]. Common sleep 
disorders are reported in Huntington’s disease patients, includ-
ing insomnia, increased sleep onset latency, decrease in total 
sleep time, and frequent nocturnal arousals [99]. Taken together, 
TWIST1 may play a role in regulating sleep by acting downstream 
of TNFα-induced NF-κB activation and possibly through regula-
tion of the circadian clock. This indicates Twist1 may act similarly 
to Dec2, a known sleep regulator, in humans [4, 100].

Discussion
The immune system has a known role in sleep regulation. Sleep 
changes in response to infection, and inflammatory mediators 
such as IL-1, TNF, and prostaglandins have sleep-regulatory 
properties [101]. Recent findings from mouse models suggested 
mutual regulation between NF-κB and circadian rhythm path-
ways [83]. Our machine learning model suggested that the NF-κB 
activation, specifically through the phosphorylation of the IkBα 
complex, is a key regulator of sleep. We validated one of the pre-
dicted genes (Ikbkb) using a neuron-specific, constitutively acti-
vated IKK2 (Ikk2CA) mouse model and found that Ikk2CA mice have 
reduced sleep duration and more fragmented sleep compared to 
controls. The decrease in bout length and reduced sleep duration 
during the inactivity (sleep) phase suggests disruption in sleep 
consolidation and increased sleep fragmentation. Sleep perturba-
tions including fragmented sleep with frequent nighttime awak-
enings and excessive daytime sleepiness are common in humans, 
especially those with neurodegenerative diseases or cancer, and 
these sleep disruptions are a comorbidity for many sleep disor-
ders [102, 103].

Machine learning has been widely applied to integrate biologi-
cal data in recent years. Multiple studies reported the use of gene 
prioritization tools [33, 34, 104], but most are built on the hypoth-
esis that causal variants or driver genes and pathways exist and 
thus may not be ideal for the understanding genetic regulation 
in complex traits. We sought to identify candidate sleep genes 
that share similar functional features to our defined set of known 
sleep genes. The carefully selected features are well-representing 
sleep genes, and therefore, these features are useful to identify 
genes that are similar to the sleep genes. In addition to our valida-
tion of the NF-κB pathway, a few of the top candidate genes, Mef2c 
[105], GRM1 [106], and Tac1 [107] were recently independently 
validated.

A key to our approach is the ability to define a comprehen-
sive yet predictive set of features. In addition to the annota-
tion resources (e.g. GO terms, MSigDB, and GWAS catalog), 
which are commonly used in other gene prioritization tools 
[30, 33], we applied a modified probabilistic regression method 
to screen and select sleep-relevant features. This step allowed 
us to include only a small but informative set of features from 
thousands of genome-scale studies, with the ability to identify 
unappreciated factors that might impact sleep. Although the 
model was initially built on a common understanding of known 
sleep genes, it also incorporates “hidden” information about 
these sleep genes that we didn’t necessarily know a priori. As an 
example, of the 7000 + datasets, we found several sleep-related 

Figure 4. Perturbation analysis to identify sleep regulatory networks. 
(A) Heatmap represents the relatedness between top enriched 
pathways. X-axis represents the newly trained models by masking the 
genes linked to relevant terms from positive labels. Y-axis represents 
the enriched pathways from top predicted genes in Figure 2B. Mean 
ΔPredScore is the average change of the prediction scores between the 
original and the newly trained model, using only the novel predicted 
genes in each enriched pathway. (B) Gene-level changes of prediction 
score for Ca2 + (left), NF-κB (middle), and circadian clock (right) pathways. 
X-axis shows the newly trained models by masking the genes linked to 
relevant terms from positive labels. Y-axis shows the novel predicted 
genes for each pathway. Changes in prediction score for each gene 
between the original and newly trained model are shown in the 
heatmap.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac279#supplementary-data
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factors we expected (e.g. EBV infection, clozapine), and dozens 
we didn’t previously appreciate were related to sleep (e.g. pol-
ycystic ovary syndrome, suberoylanilide hydroxamic acid). A 
similar framework is applicable for integrating large amounts of 
genome-scale data to predict genetic regulators of many other 
complex traits.

Model evaluation results indicated that incorporated ensemble 
neural networks (F-scorePU = 24.71) perform much better than the 
single-run neural network (F-scorePU = 12.36). This suggested that 
bootstrap aggregation (bagging) methods significantly reduced 
false positive predictions. We have chosen random forests based 
on their performance and high efficiency, however, ensemble 
neural networks have higher sensitivity and might be useful to 
extend the candidate gene list.

We applied perturbation approaches, similar to the concept 
of a masked learning, to explore relatedness between top pre-
dicted sleep-regulating genes and pathways. The set of genes 
being masked in each model was chosen based on biological 
knowledge (pathway), but not permutation, for computational 
efficiency. Strategies to systematically mask or add gene(s) to the 
model, without prior assumptions, would likely help to infer an 
under-appreciated connection between genes involved in sleep 
regulation. Nonetheless, we would like to emphasize that our 
proposed method is able to reveal relatedness of pathways, or 
to prioritize possible genes as a key nodes between pathways. 
However, we note that these results provide no information about 
causal-response relationships.

Predictions of this machine learning model are limited to the 
availability and quality of the training labels (e.g. sleep genes), the 
relevance of features to labels, and the amount of information 
available per sample (e.g. genes). Missing information reduces 
performance of the models. For example, the expression of NPSR1 
is low or unmeasurable in most genome-wide studies. Therefore, 
despite evidence from human studies that NPSR1 is a sleep gene, 
it is not likely to be identified by our prediction model nor useful 
to improve model predictions. New information, whenever avail-
able, will improve performance of the models.

This model is built on existing knowledge regarding the 
genetics of sleep. Therefore, other suitable uses of this approach 
include complex diseases and behaviors that have sufficient 
genetic knowledge but lack system-level understanding. To 
facilitate the use of these approaches, we have made the code 
available on GitHub https://github.com/yyenglee/ml-sleep. All 
necessary inputs are available on figshare https://doi.org/10.6084/
m9.figshare.20517951.

Supplementary Material
Supplementary material is available at SLEEP online.
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