
royalsocietypublishing.org/journal/rsif
Research
Cite this article: Wong ML, Prabhu A. 2023
Cells as the first data scientists. J. R. Soc.

Interface 20: 20220810.
https://doi.org/10.1098/rsif.2022.0810
Received: 7 November 2022

Accepted: 17 January 2023
Subject Category:
Life Sciences–Physics interface

Subject Areas:
astrobiology, evolution, biocomplexity

Keywords:
information, informatics, data science,

evolution, definitions of life
Authors for correspondence:
Michael L. Wong

e-mail: mwong@carnegiescience.edu

Anirudh Prabhu

e-mail: aprabhu@carnegiescience.edu
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Cells as the first data scientists

Michael L. Wong1,2 and Anirudh Prabhu1

1Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
2NHFP Sagan Fellow, NASA Hubble Fellowship Program, Space Telescope Science Institute, Baltimore,
MD 21218, USA

MLW, 0000-0001-8212-3036; AP, 0000-0002-9921-6084

The concepts that we generally associate with the field of data science are
strikingly descriptive of the way that life, in general, processes information
about its environment. The ‘information life cycle’, which enumerates the
stages of information treatment in data science endeavours, also captures
the steps of data collection and handling in biological systems. Similarly,
the ‘data–information–knowledge ecosystem’, developed to illuminate the
role of informatics in translating raw data into knowledge, can be a frame-
work for understanding how information is constantly being transferred
between life and the environment. By placing the principles of data science
in a broader biological context, we see the activities of data scientists as the
latest development in life’s ongoing journey to better understand and predict
its environment. Finally, we propose that informatics frameworks can be
used to understand the similarities and differences between abiotic complex
evolving systems and life.
1. Introduction
One of the most enigmatic questions in science continues to be what is life? (e.g.
[1–4]). Despite numerous attempts to define life, there is no single agreed upon
characterization of the living state—or even a consensus on whether one is
needed [5–7]. This lack of agreement reveals amajor gap in scientific understand-
ing with implications for the search for life elsewhere and the creation of de novo
life [8]. Few would argue with the idea that information processing is one of the
central pillars of life, but a universal definition of information and how exactly
information creates a distinction between life and non-life is far from settled.

Today, information is so prevalent in our lives that we have created
new domains of science—e.g. data science and informatics—that are centred
upon exploring information’s multifaceted nature and how it can be used to
reveal trends, patterns and truths about our world. The development of infor-
matics has resulted in heuristic methods that elucidate the role of information
in data science endeavours. In this contribution, we illustrate how two of
these concepts—namely, the ‘information life cycle’ and the ‘data–information–
knowledge ecosystem’—can also be used to describe the ways in which
information flows through living systems in general. We propose that an
informatics perspective may be a particularly illuminating lens through which
to understand the differences between living and non-living systems. In our
framework, living systems constitute a subset of complex evolving systems
that perform the full information life cycle and are characterized by a rich
data–information–knowledge ecosystem.
2. The role of information in data science
The advent of data science in recent decades has reshaped science and society
alike [9]. In the physical sciences (e.g. astronomy, geochemistry and mineral-
ogy), life sciences (e.g. agricultural science, genomics and public health) and
social sciences (e.g. economics, linguistics and political science), nearly every
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Figure 1. The information life cycle in (a) informatics, (b) biology and
(c) minerals. Inspired by [10].
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sector of modern life has been affected by the so-called ‘big
data revolution’. Concomitantly, we have witnessed the rise
of informatics—a field that focuses on understanding the
structure, properties and activities of scientific information,
rather than just its content [10]. In the digital age, it is easy
to see how the human world is critically dependent upon
flows of information. But could it be that life has been practi-
cing the principles of data science and informatics ever since
its inception?

Central to data science endeavours is the so-called ‘infor-
mation life cycle’, which describes the steps that stored
information goes through, from its creation to its deletion or
archiving (figure 1a) [10,11]. The first step is acquisition: data
must be gathered, perhaps bydirect observation or experiment,
generated by theory, or rescued from existing but scattered
resources. The second step is curation: after its collection, data
must be cleaned and processed into a state where it is useful;
e.g. disparate pieces of information may be standardized
and ‘datafied’. The third step is preservation: the data must be
retained in usable form so that they can be accessed in the
future, both for their original purpose and for purposes
not yet imagined at the time of collection. The fourth step is
stewardship: the process of maintaining integrity across acqui-
sition, curation and preservation. The fifth and final step is
management: creating the infrastructure that oversees all of the
other processes, ensuring that previously acquired data are
always available to access and use and facilitating further
data collection. The functional use of information drives the
information life cycle: each step advances the goal of making
information more usable, reliable and acquirable.

Another key concept in informatics is the ‘data–infor-
mation–knowledge ecosystem’, which describes how data
are processed, represented and communicated in a meaning-
ful way (figure 2a) [10,11]. Raw data are generally useless to
the majority of people, so informatics methods must be
used to transform data into information, which is a represen-
tation of the raw data that can be understood by the public.
For example, raw data for natural events like hurricanes,
earthquakes or volcanoes may include readings from sensors,
satellite data and even data from social media posts docu-
menting these natural events. When sensor data or satellite
data are plotted into a visualization like a map or a graph,
we can finally see the geographical boundaries for the
affected areas of a particular hurricane or earthquake.

Once consumers are armed with the appropriate infor-
mation, they use that information, in combination with other
experiences, to gain knowledge. For example, meteorologists
are able to track the movement of a hurricane and predict the
path and intensity of that hurricane based on their expertise
and insights they obtained from looking at the information
presented to them from a combination of data sources.
Knowledge, therefore, is not something acquired in solitude;
it is a collective phenomenon reliant on social experiences
and context.

The modus operandi of data science is to amass and pro-
cess large quantities of data in order to draw statistically
robust correlations, find previously undiscovered associ-
ations or make predictions and/or recommendations that
rival or even supersede those of analytical theory. The charac-
terization of complex systems is one arena where data science
shines. It is often challenging to derive analytical laws for
phenomena with many dynamical components that are influ-
enced by forces at a wide range of spatial and temporal
scales. Instead, data science methods can be used to glean
accurate and predictive statistical laws. Although big data
analytics alone may not be able to divine causality, the dis-
coveries that data science makes can be used to motivate
new physical explanations and novel scientific narratives.
For example, mineral occurrence data can be used to form
mineral association rules that give us the ability to predict
previously unknown mineral occurrences and also provide
insights into formational environments of minerals and
their characteristics [12]. For myriad complex phenomena,
data science has helped us reach beyond the limitations of tra-
ditional reductionist theory. Will data science approaches
eventually lead us to an ultimate description of reality that
is superior, in predictive and explanatory power, to compact,
‘physicsy’ descriptions of nature? We leave this question to
the future and a discussion of its implications to a more
philosophical text.
3. Seeing information in life through a data
science lens

Information gathering, processing and transference are
fundamental aspects of life. Biological systems are learning
systems: they record information about their environment
and process that information to enhance their ability to
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Figure 2. (a) The data–information–knowledge ecosystem in data science, highlighting the role of informatics in converting raw data into human knowledge. (b)
The data–information–knowledge ecosystem in biological systems, cataloguing various transformations and feedbacks between the three domains. In both data
science and living systems, information and knowledge are reliant on context. Inspired by [10].
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survive [13]. Life has evolved manifold ways to perceive
its environment, from chemical receptors to vision to
magnetoreception. Our mammalian neurological architecture
allows us to integrate huge amounts of data to compute
our surroundings and make useful predictions about the
world—e.g. if I climb a tree, is that lion less likely to
eat me?—but even the simplest unicellular life forms
(including their ‘dormant’ spores) can perform complex
cognitive tasks, like memory and decision-making [14,15].
Indeed, populations of replicating entities can be under-
stood to perform Bayesian inference, and Darwinian
evolution can be equated to a search algorithm built upon
the basic principles of replication, variation and selection
[16–18]. We propose that life does (and has always done)
data science–analogue activities without necessarily being
‘conscious’ of it.

The information life cycle of data science is also a valid
summary of major informational processes in biological
evolution (figure 1b). The acquisition stage describes the gener-
ation of novel genetic sequences, primarily driven by
mutations to the germline, recombination and horizontal
gene transfer. The curation stage is performed by natural
selection, pruning a wide range of possible information-
bearing states to a smaller number of viable ones. The preser-
vation stage is achieved through replication, reproduction and
growth, ensuring that genomic information persists and pro-
liferates through time. (We note that in biological systems,
curation and preservation are intimately linked: natural selec-
tion operates upon reproducing systems. However, it is
useful to keep these stages distinct because non-living systems
can exhibit selection without replication (e.g. mineral para-
genesis) and growth without curation (e.g. wildfire).) The
stewardship stage is performed by error-correctingmechanisms,
such as enzymes that perform kinetic proofreading during
DNA replication (e.g. [19–23]). The management stage involves
a host of mechanisms that control gene expression, such as epi-
genetic markers (e.g. [24]), gene regulatory networks (e.g. [25])
and factors that tune mutation rate and the uptake of new
genes from the environment (e.g. [26,27]).

The modern biological mechanisms responsible for stew-
ardship and management are the result of billions of years of
evolution, and it is likely that near the origin of life, steps four
and five emerged from the first three steps of the information
life cycle. Once evolved, stewardship and management
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cemented themselves in the information life cycle by benefit-
ing preservation and evolvability—a feedback akin to how
stewardship and management in data science facilitate data
sharing and collaboration, which in turn help with the
acquisition and processing of yet more data.

There is also an analogue to the data–information–
knowledge ecosystem present in living systems (figure 2b).
Here, data represent the physical features of the environment—
temperature, salinity, chemical gradients, seasonal cycles,
random fluctuations, etc. By sensing and computing their
environment, biological systems transform data into information
that is relevant to the survival of an organism or a group of
organisms. Examples of the transduction of environmental
data into biological information include: how the retina converts
photons into nerve impulses [28], how cells transform physical
forces into chemical signals [29] and how any number of
stimuli can result in modifications to the biochemical circuitry
of the proteome [30,31].

In our framework, information is distinct from data in
that information contains ‘meaning’ in a given context.
Here we draw inspiration from the field of informatics, in
which the term ‘data’ refers to raw bits in nature, whereas
‘information’ refers to data that have gained meaning
through context or function. In other words, information is
a product of data going through the information life cycle;
it is data in use. For example, a sequence of nucleobases in
a DNA polymer means nothing without the enzymatic
machinery required to transcribe and translate it into a poly-
peptide. In the context of life on Earth, DNA exists within the
biological context of a living cell, so it serves a specific func-
tion and derives its meaning from its role in the so-called
‘central dogma of molecular biology’ [32]. Should a molecule
of DNA exist in some extraterrestrial biosphere whose exobio-
chemistry has no use for it, that DNA strand would not
contain information in our sense of the word; rather, it
would merely be a piece of raw data in the environment.

An individual biological unit of selection is essentially a
proposal from the biosphere to the environment—a predic-
tion put to the test against new data. Via natural selection
over multi-generational time, certain predictions will be
strengthened while others are discarded, and populations
of individual agents will gain lasting knowledge of their
environment—recipes of success written in genetic code.
Hence, knowledge in the biological sense is like knowledge
in the data science sense: it can only be gained through
‘experience’ over time at the communal level.

Biological systems create information from data and
knowledge from information (rightward arrows in
figure 2b), but so too do they create new information from
knowledge and new data from information (leftward
arrows in figure 2b). By existing within the environment
with respect to other organisms, and by influencing the
environment through phenotypic expression and niche con-
struction, life creates more environmental data and alters
the fitness landscape for other life [33–35]. Through recombi-
nation (e.g. exercising the ‘knowledge’ of sexual
reproduction) and horizontal gene transfer, populations stea-
dily produce new individual variations. Thus, the data–
information–knowledge ecosystem is made complete by the
ways in which individual organisms and ecosystems impact
their environment, changing the data that must be gathered
by future generations and compelling the coevolution of life
and planet.
Information processing and preservation is an energeti-
cally costly undertaking; life’s emergence and continual
evolution must be driven by the non-negligible complex-
ity—i.e. the high data content—of its environment [36].
Although the emergence of life is still shrouded in mystery,
information processing was probably a key feature respon-
sible for the transition between non-living and living
systems [37,38]. Numerous proposals have been made for
how abiotic systems could have begun transforming environ-
mental data into meaningful information, including but not
limited to RNA template-driven replication (e.g. [39]), amy-
loidal self-propagation (e.g. [40]), mineral templating (e.g.
[41,42]) and associative learning in chemical systems [43].
Despite the great diversity of environments and materials
proposed to be responsible for the origin of life, in each of
these scenarios, information in a proto-living system pro-
motes that system’s persistence over time, reflecting the
general principle that information processing is a hypoth-
esis-agnostic pillar of life [13].

Life is a data collection and information-processing
system built from organic chemistry, powered by free
energy gradients and streamlined via natural selection. In
our view, life has been honing the core activities of data
science for over 3.5 billion years. Over deep time, biology
has created genetic knowledge of nearly every kind of
environment on Earth (and is now experimenting with
living beyond it). As life spread and gained influence
over its surroundings, it created new environments and
learned how to survive in those too. But life doesn’t
merely learn; it learns to learn better (e.g. [44–49]). Through
a series of evolutionary innovations and major transi-
tions, biology has enhanced its data-gathering and
information-processing abilities [50], invented minds that
can infer causality [51], produced the dataome [52],
expanded its cognitive horizon by orders of magnitude
from the microscopic to the planetary [53] and may poten-
tially begin to consciously influence its own evolutionary
trajectory [54–56].

Strikingly, many artificial intelligence techniques and com-
puter algorithms are inspired by natural systems [57,58]
including: artificial neural networks [59,60], evolutionary
algorithms (e.g. genetic algorithms) [61,62], swarm intelligence
[63,64], artificial immune systems [65,66], communication
networks [67] and even a slime mould-inspired algorithm for
mapping the distribution of dark matter across the uni-
verse [68]. Just as new discoveries in biology will be enabled
by innovations in data science, data science will continue
to benefit from a deeper understanding of how biological
systems organize and process information and learn from
their surroundings.

In this light, the difference between the informatics activi-
ties of data scientists and the rest of the living world can
be viewed as one not of kind but of degree. Combining the
evolutionary gifts of neurological cognition with the techno-
logical powers and mathematical techniques of today, human
informaticians are engaging in data acquisition, curation,
preservation, stewardship and management at unprece-
dented scale and velocity to wield predictions about nearly
every aspect of the known universe with extraordinary pre-
cision. But this is hardly a unique endeavour—we humans
are just the first to notice the unity of informatics principles
at play across the tree of life. The principles of data science
are expressed across the expanse of biology, from nanoscopic
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virions to the largest clonal tree to your friendly AI engineer.
To think, it all started with a cell!
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4. Leveraging an informatics perspective in the
quest for a theory of life

Through the lens presented here, the essence of informatics is
fundamental to what life is (or, perhaps better put, what life
does). We propose that atoms, molecules, stars, planets, min-
erals, hurricanes and other prebiotic or non-living systems
do not display the same kind of information life cycle or
data–information–knowledge ecosystem as biological sys-
tems. Thus, the way that life assimilates data and uses it to
enhance its own persistence could be a defining distinction
between abiotic and biotic systems. Furthermore, although
we take Darwinian evolution as an exemplar of biological
information processing over deep time on Earth, the abstract
principles of informatics and learning may be more universal
frameworks for understanding extraterrestrial life, which
may not necessarily use Darwinian evolution to update its
knowledge about its surroundings [13,69].

The act of transforming data into a state that increases a
system’s survivability generates functional [70] or semantic
[71] information. Take, for example, a bacterial gene that pro-
duces an enzyme that metabolizes a certain nutrient in the
environment. This gene is the result of mutations and/or
recombinations that explored the vast combinatorial space
of nucleobase strings (acquisition) and was selected for by
differential reproductive success (curation and preservation).
If this gene can be turned on and off depending on the con-
centration of the nutrient in the environment, the cell will be
spared the expense of producing a needless enzyme when the
nutrient is scarce, further enhancing survivability (manage-
ment). Via the information life cycle, raw data, in the form
of fluctuating concentrations of nutrients, have been turned
into various layers of functional information, in the form of
the genetic, epigenetic and enzymatic apparati that help the
cell persist and proliferate.

Life represents a subset of all known complex evolving
systems, which are broadly defined as systems where (i) a
large number of interacting components results in
a potentially large combinatorial space, (ii) one or more
mechanisms exist to generate numerous configurations
within that combinatorial space, and (iii) a selection mechan-
ism favours certain configurations over others (e.g. [72–78]).
While non-biological complex evolving systems contain
information, the information life cycle—and hence the
degree of functional information within them—is stunted
compared with biological systems.

Let us take mineral evolution as a characteristic example.
In general, the minerals that form are those that minimize the
free energy of the system at the pressure–temperature–com-
position conditions during crystallization. Hence, data
about the paragenetic environment are recorded in the min-
eral’s chemical and isotopic composition, crystal structure,
habit and its context within a mineral assemblage (e.g.
[79–90]). Furthermore, the increasing diversity of mineral
species and natural kinds through time reflects the increasing
chemical complexification of the cosmos [91].

However, the data that minerals contain do not participate
fully in the information life cycle (figure 1c). First, in minerals,
preservation is static (resistance to chemical change) rather
than a dynamic process (like cellular replication); the identity
of a crystal is tied to its physical substrate, whereas the
information in an organism will be replicated many times
from new material. Second, the steps of stewardship and
management are non-existent for minerals. Third, while the
information content of mineralogical systems can be updated
by subsequent alteration in changing environments, there is
no feedback between the information that has already been
generated and the acquisition of new data.

In other words, minerals are essentially geological flash
drives: they record data imparted on them by external
forces—information that can be erased, updated or overwrit-
ten with time (e.g. the conversion of graphite to diamond)—
but they do not correct defects in acquired data or otherwise
use their stored data to ensure the fidelity of the other steps in
the information life cycle. These kinds of differences limit the
amount of functional information in abiotic systems to a
narrow range of modalities (in minerals, to dissipation and
static persistence) and prevent them from evolving open-
endedly. Perhaps one axis for measuring ‘lifelikeness’ is the
degree to which a system performs informatics processes
and exhibits a data–information–knowledge ecosystem.

Finally, wewish to emphasize that on a living planet, infor-
mation flows between biotic and abiotic systems (figure 2),
blurring the distinction between life and its environment.
Roughly half of the mineral species on Earth are biologically
mediated [92], and the nature of Earth’s atmosphere has been
reshaped over evolutionary time through the exchange of
metabolic gases (e.g. [93–95]). At the macroscopic scale, the
information life cycle that the biosphere engages in will cer-
tainly include traditionally non-biological factors. A fuller
exploration of this idea is saved for future work.

We contend that understanding how data are acquired
and processed into functional information will be instrumen-
tal in developing a richer understanding of complex evolving
systems, and to building a general theory of life. A full exam-
ination of the role that information plays in various biotic and
abiotic systems requires a more granular level of exploration
than we can cover here. The details of information content
and the degree of information processing differ greatly
across non-living systems; for instance, how would one
weigh the functional information content of a star versus
that of a river channel? Future work in information theory
is required before we can truly characterize and compare
these disparate physical systems with one another—and
with life—on an equal footing. With the tools of data science
and informatics at our disposal, perhaps the answers to these
fundamental questions are finally within reach.
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