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The syndrome of vaccine-induced immune thrombotic throm-
bocytopenia (VITT) is a rare thromboembolic complication of
adenoviral-vectored severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) vaccines ChAdOx1 nCoV-19 (AstraZeneca)
and Ad26.COV2.S (Janssen/Johnson & Johnson) mediated by
antibodies directed against platelet factor 4 (PF4).1-5 The
mechanisms by which the adenoviral DNA vectors break
immune tolerance to PF4 and trigger B-cell clonal expansion
and secretion of anti-PF4 immunoglobulin Gs (IgGs) are under
intense investigation and likely involve formation of immuno-
genic complexes of PF4 with vaccine components in a proin-
flammatory setting.6 Pathogenic anti-PF4 IgGs subsequently
form circulating immune complexes with PF4 tetramers, which
are thought to drive thrombotic events by Fc γ receptor IIa–
dependent platelet activation and to activate granulocytes to
release procoagulant neutrophil extracellular traps.6-8 Serum
anti-PF4 antibodies are mostly transient and appear in serum
within days of vaccination, suggesting a recall immune response
on memory B cells.9

Given their causal role in VITT, identification of the molecular
composition of the anti-PF4 antibodies and their antigenic tar-
get(s) is crucial for better understanding of the pathogenesis and
for developing better diagnostics and treatments. In a key
advance, Huynh et al havemapped the antibody-binding site to a
single conformational epitope on the PF4 molecule, which is
locatedwithin theheparin-binding site anddistinct fromepitopes
bound by serum from patients with heparin-induced thrombo-
cytopenia (HIT).10 Moreover, a recent intact mass spectrometric
analysis of anti-PF4 IgGs in patients with VITT and HIT revealed
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Table 1. Demographic, laboratory, and clinical features of ChAdOx1 nCoV-19 (AstraZeneca)-associated VITT patients

Patient
code Age (y) Sex

Timing of
symptom
onset after

vaccination (d)
Platelets
(×109/L)*

Fibrinogen
(g/L)§†

D-dimer
(mg/L)‡

Thrombotic
features

Asserachrom
HPIA IgG,

Stago (OD)§

Life codes
PF4 IgG,
Immucor
(OD)‖ Outcome

VITT 1 73 F 12 11 1.1 44.7 CVST with
secondary
ICH

2.43 3.14 Died

VITT 2 59 F 15 13 1.5 >80 CVST, PE,
SVT

0.73 3.39 Recovered

VITT 3 88 F 13 57 1.3 52.4 Bilateral DVT 2.24 0.89 Recovered

VITT 4 54 M 13 60 1.0 >80 SVT requiring
bowel
resection

2.18 1.17 Recovered

VITT 5 49 F 12 40 1.4 35 CVST, DVT 1.46 1.08 Recovered

CVST, cerebral venous sinus thrombosis; DVT, deep vein thrombosis of legs; ELISA, enzyme-linked immunosorbent assay; F, female; ICH, intracerebral hemorrhage; M, male; OD, optical
density; PE, pulmonary embolism; SVT, splanchnic vein thrombosis.

*Reference range: 150 to 450 × 109/L.

†Reference range: 1.5 to 4.0 g/L.

‡Cutoff value: <0.5 mg/L.

§ELISA cutoff value: OD ≤ 0.21.

‖ELISA cutoff value: OD < 0.4.
expression of monoclonal and oligoclonal light chains in
the former as distinct from a polyclonal light-chain pattern in the
latter. Although intact light-chain mass measurements were
performed to inform clonality, direct amino acid sequencing of
light or heavy chains was not investigated in this study.11,12

We have developed an efficient in-house proteomic workflow
based on de novo mass spectrometric sequencing of immuno-
purified serum antibodies to identify their immunoglobulin var-
iable (IgV) subfamily expression profiles; clonotypical light- and
heavy-chain third complementarity-determining region (LCDR3
and HCDR3) amino acid sequences as barcodes for clonal
tracking; and V region amino acid replacement mutational sig-
natures as molecular markers of antigen-driven intraclonal
diversification.13-16 Here, we have used a proteomics discovery
approach (Figure 1A) to profile serum anti-PF4 antibodies in
VITT patients and unexpectedly reveal stereotypic (also termed
public) LCDR3 and HCDR3 amino acid sequences with near
perfect light-chain stereotypy. This points to highly convergent
pathways of anti-PF4 antibody production and potential trans-
lation of shared CDR3 peptide “barcodes” to novel molecular
biomarkers for these highly pathogenic clonotypes.

Serum specimens were obtained from 5 patients with
AstraZeneca-associatedVITT, and their demographic, clinical, and
serological findings are summarized in Table 1. As denoted in the
workflow (Figure 1A), anti-PF4 IgGs were immunopurified by
Figure 1. Mass spectrometry (MS)-based characterization of PF4-specific clonotyp
antibodies. PF4-specific immunoglobulins are purified from serum of VITT patients usi
reduced sodium dodecyl–sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and exci
spectrometry/mass spectrometry (LC-MS/MS). IgV region peptide sequences are analyze
purified anti-PF4 antibodies.Monospecificity ofmagnetic bead–purified anti-PF4 IgGs is ve
fractions using ELISAs coated with individual PF4, SARS-CoV-2 spike S1, and S2 proteins. D
complementarity-determining region (CDR3) signatures. IgV region subfamilies of PF4-sp
HCDR3 and LCDR3 amino acid sequences from 5 individual VITT patients are identified by
across unrelated patients, and amino acids in color denote amino acid replacement muta

1740 13 OCTOBER 2022 | VOLUME 140, NUMBER 15
PF4-coupled magnetic beads from VITT patient serum. Prior to
sequencing, monospecificity of anti-PF4 IgGs was verified by
ELISAs, andnocross-reactivitywas foundbetweenelutedanti-PF4
IgGs and SARS-CoV-2 S1 and S2 proteins, consistent with a recent
report17 (Figure1B). Purifiedanti-PF4 IgGswere thenseparatedby
sodium dodecyl–sulfate polyacrylamide gel electrophoresis;
heavy- and light-chain bands excised for in-gel digestion; and
analysisofpeptidesperformedinaThermoOrbitrapFusionLumos
Tribrid mass spectrometer with de novo sequencing and IMGT
database matching. See more details for patients and methods in
the supplemental methods, available on the BloodWeb site.

Mass spectrometric sequencing of anti-PF4 immunoglobulins
revealed a single IgG H-chain species paired with a single λ
L-chain species in all 5 unrelated patients. In contrast, murine
anti-human PF4 monoclonal antibodies (eg, KKO and RTO) are
IgG κ.18 Remarkably, all L chains were encoded by the identical
IGLV3-21*02 gene subfamily and showed identical LCDR3
peptide lengths consistent with a high degree of L-chain ste-
reotypy. Notably, the shared IGLV3-21*02 allele expresses an
acidic (negatively charged) DDxD motif in the CDR2 region,
which we suggest may be of potential importance in antibody
binding to the positively charged PF4 epitope.10 Another
shared amino acid motif of interest QxWD is located in the
LCDR3 region (Figure 1C). The roles of these putative binding
motifs await confirmation by formal structural studies. The fre-
quencies of different alleles of the IGLV3-21 gene vary
ic antibodies. (A) Proteomics workflow to identify molecular signatures of anti-PF4
ng PF4-coupled magnetic beads. Heavy (H) and light (L) chains are separated by
sed and digested with enzymes to generate peptides for liquid chromatography mass
d by combined de novo sequencing and IMGT database matching. (B) Specificity of
rifiedby testing starting serum, bead-purified anti-PF4 antibody fraction, andunbound
ata are shown asmean ± standard deviation (n = 2). (C) Clonotypic H- and L-chain third
ecific antibodies as highlighted in yellow are assigned by IMGT database matching.
de novo sequencing. Bold amino acids in HCDR3s and LCDR3s denote sharedmotifs
tions found in individual patient HCDR3 and LCDR3 regions.
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among ethnicities, with the highest prevalence of IGLV3-21*02
in Europeans and lowest in East Asians.19 The IGLV3-21*02
represents ~4% of IGLV transcripts from peripheral blood
mononuclear cells in healthy donors and has been observed
as a minor component of the total serum antibody proteome,
such as human anti–double-stranded DNA and anti-Ro60
autoantibodies.13,15,19 To our knowledge, the dominant
stereotyped expression of IGLV3-21*02 has not been
observed in any other serum antibody responses to date and
can be regarded as a unique fingerprint of anti-PF4 IgGs in
VITT.

HCDR3 peptides are specific clonotypic markers of serum
antibodies. However, these peptides cannot be identified by
conventional database matching owing to the lack of reference
databases in IMGT. Accordingly, we have developed an
advanced de novo sequencing workflow to identify HCDR3
clonal barcode peptides and identified striking stereotypic
features characterized by identical HCDR3 lengths and homol-
ogous sequences, together with a shared binding motif G/
NLED, which was located in immunoglobulin heavy chain
diversity regions known to confer antigen-binding specificity20

(Figure 1C). Notwithstanding these convergent HCDR3
regions, individual patient anti-PF4 immunoglobulin proteomes
were encoded by distinct immunoglobulin heavy chain variable
region subfamilies, including 3-7, 7-4, 2-5, 3-48, and 3-53
(Figure 1C), emphasizing the critical role of HCDR3s in PF4
epitope binding as opposed to the divergent immunoglobulin
heavy chain variable regions.

Amino acid replacement mutations were also found in individual
patient HCDR3 and LCDR3 regions (Figure 1C), consistent with a
modelof PF4antigen-driven intraclonal diversificationasobserved
for systemic autoantibodies in lupus andSjögren syndrome.13,14,21

Additional glutamic acid (E) and aspartic acid (D) replacement
mutations of potential binding significance were identified in
the IgV regions of H and L chains, suggesting recall immune
responses on PF4-specific memory B cells (data available upon
request).

The finding of a stereotyped clonotypic anti-PF4 antibody in this
preliminary study of a small number of subjects represents a sig-
nificant advance in elucidating the molecular pathways of patho-
logic antibody production in VITT and offers a rare example in
human disease of a dangerous small B-cell clone that undergoes
rapid clonal expansion and secretion of a harmful monoclonal
antibody.22 The identification of anti-PF4 proteomic signatures
using theworkflowherein provides an entry point to analyze these
immunological processes at a molecular level; develop novel
diagnostic biomarkers for these pathogenic antibodies;
develop novel therapies aimed at removing pathogenic clones
(eg, anti-idiotypes and/or small peptide antibody inhibitors); and
allow profiling of anti-PF4 clonal evolution invisible to current
immunoassays. Moreover, the stereotyped expression of the
IGLV3-21*02 light chain paves the way for a potential genetic
screening tool to identify patients carrying this gene variant who
are at risk of this severe complication. Convergent anti-PF4
antibody responses are driven by selective responses to shared
epitopes. Given Ad26.COV2.S and ChAdOx1 nCoV-19 vaccine-
elicited anti-PF4 IgGs bind the same epitope and express mono-
clonal λ light chains, we anticipate they will share highly similar
clonotypic signatures.11,23 Moreover, it will be of diagnostic and
LETTERS TO BLOOD
pathogenetic significance to compare monoclonal stereotypic
anti-PF4 responses inVITTwithanti-PF4/heparin antibodies inHIT.
The latter binds to different epitopes on PF4 and are therefore
likely to select different sets of clonotypes.10 Priorities will be to
extend the study to a larger cohort and perform multi-omics
characterization of linked PF4-specific serum and B-cell receptor
repertoires, as reported for other human antibodies.16,24,25
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