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Abstract

Exome sequencing has introduced a paradigm shift for the identifi-
cation of germline variations responsible for Mendelian diseases.
However, non-coding regions, which make up 98% of the genome,
cannot be captured. The lack of functional annotation for intronic
and intergenic variants makes RNA-seq a powerful companion
diagnostic. Here, we illustrate this point by identifying six patients
with a recessive Osteogenesis Imperfecta (OI) and neonatal proge-
ria syndrome. By integrating homozygosity mapping and RNA-seq,
we delineated a deep intronic TAPT1 mutation (c.1237-52 G>A) that
segregated with the disease. Using SI-NET-seq, we document that
TAPT1’s nascent transcription was not affected in patients’ fibrob-
lasts, indicating instead that this variant leads to an alteration of
pre-mRNA processing. Predicted to serve as an alternative splicing
branchpoint, this mutation enhances TAPT1 exon 12 skipping, cre-
ating a protein-null allele. Additionally, our study reveals dysregu-
lation of pathways involved in collagen and extracellular matrix
biology in disease-relevant cells. Overall, our work highlights the
power of transcriptomic approaches in deciphering the

repercussions of non-coding variants, as well as in illuminating the
molecular mechanisms of human diseases.
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Introduction

Whole exome sequencing (WES) targets less than 2% of our

genome, whereas the majority of non-coding sequences are still

understudied. These crucial sequences for gene regulation are to a

large extent transcribed and form a significant portion of our

genome which are also susceptible to harbor variants responsible

for human diseases (Djebali et al, 2012; Khan et al, 2017; Chen
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et al, 2019; Jamshidi et al, 2019). Indeed, from the more than 4,000

Mendelian phenotypes reported to date, of which approximately

50% still lack the identification of the underlying genetic cause

(Chong et al, 2015). This speaks to the necessity to further explore

non-coding sequences. Whole-genome sequencing (WGS) provides

a more comprehensive method to cover the full genome, however, a

key challenge to its implementation is the prioritization of the vast

amount of non-coding variants identified. This barrier to interpreta-

tion is in part driven by the lack of annotated information in intronic

and intergenic regions which together comprise up to 98% of our

genome. RNA-sequencing (RNA-seq) has proven to be a powerful

complementary approach to overcome these hurdles by revealing

the functional impact of the genetic variants at the transcriptome

level. The use of RNA-seq in conjunction with WGS permits cross-

referencing of endogenous RNA levels and splicing events to help

prioritize disease-causing mutations at the DNA level (Cummings

et al, 2017; Evrony et al, 2017; Kremer et al, 2017).

Here we report the study of six affected children from two consan-

guineous Jordanian families that presented with a congenital syndrome

consisting of osteogenesis imperfecta (OI), severe developmental delay

and neonatal progeria. By combining homozygosity mapping, RNA-seq

and targeted Sanger sequencing, we identified an intronic homozygous

variant (c.1237-52 G>A) in TAPT1 (MIM612758) which entirely segre-

gated with the disease. Using patient-derived fibroblasts, our down-

stream characterization methods including an in vitro splicing assay

showed how this private non-coding mutation aggravates skipping of

exon 12 leading to a TAPT1 protein-null allele.

TAPT1 which codes for a predicted transmembrane protein is

involved in ER/Golgi pathways, human Cytomegalovirus (HCMV)

infection and primary ciliogenesis (Baldwin et al, 1996, 2000; Jonikas

et al, 2009; Symoens et al, 2015; LaMonte et al, 2016, 2020; Zhang

et al, 2017a, 2017b). Our functional studies using patient-derived

TAPT1-knockout cells could not detect patent anomalies in the path-

ways previously linked to TAPT1, indicating that its precise molecular

function has yet to be ascertained. Notwithstanding, our RNA-seq and

SI-NET-seq analyses revealed a role for TAPT1 in collagen and ECM

biology, which is consistent with the clinical presentation of our

patients. Overall, our study highlights the capacity of applying robust

transcriptomic approaches to prioritize disease-causing genes and

understand the underlying pathogenesis of Mendelian disease.

Results

A severe recessive progeroid syndrome with
osteogenesis imperfecta

We investigated six severely-affected children from two consan-

guineous Jordanian families (Fig 1A and B) manifesting growth

retardation, short stature, multiple bone deformities, lipodystrophy

and neonatal progeria. The patients from both families had various

craniofacial abnormalities including prominent forehead, plagio-

cephaly, depressed nasal bridge, nasal septum deviation, low set

ears, ear deformities, micrognathia, and occult cleft palate (Figs 1C–

E and EV1). The patients also suffered from microphthalmia,

cataract, and bilateral esotropia. They had translucent, wrinkled

skin with patent acrogeria and sparse hair with premature depig-

mentation (Figs 1C–E and EV1). They also displayed pectus excava-

tum and brachydactyly of both hands and feet (Figs 1C–E and EV1).

X-ray and MRI (magnetic resonance imaging) tests were performed

for patient V.1 (F1). X-ray images showed extensive deformity of

the bones, bone dysplasia with bowing, and evidence of previous

multiple fractures (Fig 1F). This proband had spared joints, a flat-

tened epiphysis of the humeral bone, irregular growth of arm bones

resulting in small deformed radius bone, and a bowed ulnar bone.

She also presented a deformed clavicular bone with displacement of

both claviculosternal and acromioclavicular joints, deformed shoul-

ders, irregular development of the scapula, bilateral shallow acetab-

ulum, abnormal contour of bilateral femoral head, and absent

femoral diaphysis. X-rays also revealed severe calcification defects

involving premature atherosclerotic vascular calcification, periartic-

ular soft tissue calcification, and irregular calcification of carpal

bones (Fig 1F). Brain abnormalities were also reported with cranial

MRI showing defects in the white matter of the frontal and occipital

lobes with pachygyria, possibly representing some form of

leukodystrophy. The probands V.1 (F1) and V.5 (F1) died of severe

respiratory infection and inflammation at the age of 10 and

4.5 years, respectively. The history of a similar disease was remark-

able in this extended kindred. Two affected girls (IV.7 (F1) and V.13

(F1)) born to the mother’s aunts who showed similar clinical mani-

festation and died of severe respiratory distress at the age of 5 years.

Another case (V.12 (F1)) of 2 years of age is alive and manifests

similar clinical features.

A deep intronic TAPT1 variant segregates with the disease

Although the two families were reported to be unrelated, both origi-

nated from the Jordan valley. Assuming a founder mutation, we car-

ried out homozygosity mapping for a total of 15 individuals

including 3 affected patients (V.1 and V.5 (F1), IV.1 (F2)), 3 pairs of

parents from both families, and 6 unaffected siblings from F1 (IV.4,

IV.5, IV.6, V.2, V.3 and V.4). Homozygosity mapping confirmed dis-

tant relatedness between the 2 families with a minimal shared locus

on chromosome 4 (4p16.1-p15.31) (hg19). The length of this

Identical-by-Descent (IBD) locus was 8.4 Mb spanning a total of 39

candidate genes (Figs 2A and EV2A). We first performed whole-

exome sequencing (WES) for V.1 (F1) and IV.1 (F2), but no com-

pelling recessive mutations were found. To expand our search, we

▸Figure 1. Patients from two distantly related families present with a recessively inherited syndrome characterized by osteogenesis imperfecta and neonatal
progeria.

A, B Pedigrees of two distantly related consanguineous families from Jordan, showing an autosomal recessive mode of inheritance of the disease. Black symbols and
crossed symbols represent affected and deceased individuals, respectively.

C–E Pictures of investigated patients showing severe bone deformities and fractures, neonatal progeria, wrinkled skin, prominent forehead and pectus excavatum.
F Radiographs of affected V.1 (F1) showing several deficits in the bones including deformity, dysplasia, spared joints and evidence of previous fractures. Severe

calcification defects can also be noticed, involving premature atherosclerotic vascular calcification, periarticular soft tissue calcification and irregular calcification of
carpal bones.
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turned to an unbiased RNA-seq approach using primary cutaneous

fibroblasts from 2 affected individuals (V.1 and V.5 (F1)), and 2

unrelated wild-type (WT1 and WT2) controls. Of the 39 candidate

genes in the IBD region, our differential expression analysis data dis-

closed that TAPT1 was the only significantly dysregulated transcript

in the patient primary dermal fibroblasts (Log2 fold change = �2.5;

Figs 2B and EV2B and D). Moreover, the alternative splicing analy-

sis identified 63 genes with splicing defects in patient samples,

TAPT1 being the top significant transcript with an exon 12 skipping

event (Figs 2C and D, and EV2C and D). Interestingly, homozygous

mutations in TAPT1 were previously reported as the genetic cause

of complex osteochondrodysplasia (MIM616897) (Symoens

et al, 2015). Although less severe, this disease bears strong clinical

overlap with the syndrome reported in this study. The exon 12-

skipping event prompted us to search for the presence of possible

TAPT1 intronic mutations. Targeted Sanger sequencing for this exon

and its neighboring nucleotides (~ 300 bps) revealed a deep intronic

single nucleotide polymorphism (NM_153365.3, c.1237-52 G>A)

within intron 11 that entirely segregated with the disease in all avail-

able family members (Figs 2D and 3A). This variant was not

reported in the Genome Aggregation Database (gnomAD). While

there were similar variants described to occur in its vicinity, none of

them were homozygous. Together, these findings indicate that the

c.1237-52 G>A mutation within TAPT1 intron 11 most likely caused

the disease for the 6 affected children.

Exon 12 skipping targets TAPT1 mutant transcripts for NMD,
resulting in a protein-null allele

How does this deep intronic mutation in TAPT1 lead to disease? To

gain insights into the underlying disease-causing molecular mecha-

nism, we applied a combined computational and experimental

approach. We found that the private homozygous c.1237-52 G>A

transition was predicted to serve as an alternative splicing branch-

point (Fig 3B), thereby resulting in the exclusion of TAPT1 exon 12

(Fig 2D). To confirm the causality of this deep intronic mutation in

exon 12 skipping, we adapted and used a minigene splicing assay

(Westin et al, 2021; Iturrate et al, 2022; Rodriguez-Mu~noz

et al, 2022). Notably, transfection with the mutant construct showed

that c.1237-52 G>A variant resulted mainly in a truncated splicing

product (~ 260 bps), due to exon 12 skipping while the rescue con-

struct without the mutation yielded a major full-length product con-

taining exon 12 (Fig 3C). These in vitro findings were verified by

RT–PCR on endogenous TAPT1 transcripts using WT, heterozygous

carrier and patient fibroblasts. In accordance with the results of the

minigene assay, both TAPT1 canonical and exon 12 skipped tran-

scripts were detected in all tested samples. However, the private

mutation enhanced exon 12 skipping (Fig EV3A).

As the complete loss of exon 12 creates a premature stop codon,

we used orthogonal RT–qPCR validation tests to investigate whether

the TAPT1 mutant transcript was targeted for nonsense-mediated

◀ Figure 2. Homozygosity mapping followed by RNA-seq uncovers a deep intronic recessive mutation in TAPT1.

A Schematic representation of the shared IBD region between both Jordanian families, located on Chromosome 4 (4p16.1–p15.31) with a size of ~ 12 cM. Although WES
analysis did not reveal any mutations in the coding sequences located in the IBD region, RNA-seq analysis helped us to identify the disease causative gene from this
locus.

B Volcano plot showing differentially expressed genes between WT (WT1 and WT2) and patient (V.1 (F1), V.5 (F1)) primary dermal fibroblasts. The vertical axis (y-axis)
shows the �log10 P-value, whereas the horizontal axis (x-axis) displays the log2 fold change value. The red dots represent the upregulated transcripts; the blue dots
represent the downregulated transcripts. A total of 172 genes were found significantly dysregulated. TAPT1, a gene located in the IBD region, appeared among the
most significantly downregulated genes in the patients.

C Plot showing the alternative splicing analysis results from WT (WT1 and WT2) and patient (V.1 (F1), V.5 (F1)) primary dermal fibroblasts. The vertical axis (y-axis)
shows the �log10 FDR (False Discovery Rate), whereas the horizontal axis (x-axis) represents the exon inclusion level (value ranging from �1 to 1). The red dots repre-
sent transcripts with exon inclusion events; the blue dots represent transcripts affected by exon skipping. A total of 63 aberrantly spliced genes were found in the
patient cells, being TAPT1 the most significant exon skipping event.

D (Left) Schematic representation showing the complete loss of exon 12 from TAPT1 transcript in patient cells, as defined by our splicing analysis data. (Right)
Chromatogram showing the novel intronic mutation (c.1237-52 G>A) we found entirely segregating with the disease in all available family members. For display pur-
poses, results from the targeted Sanger sequencing in WT, IV.3 (F1) and V.5 (F1) individuals are shown. The mutation is present in heterozygosis in IV.3 (F1) (unaffected
mother) and in homozygosis in V.5 (F1) (affected patient).

▸Figure 3. TAPT1 c.1237-52 G>A mutation triggers exon 12 skipping.

A Schematic representation of TAPT1 and TAPT1-AS1, indicating the causative intronic mutation (c.1237-52 G>A). The transcription start sites and the direction of tran-
scription are indicated by arrows. Scale bar represents 2 kb.

B Diagram showing the branchpoint scores for the target c.1237-52 position and flanking nucleotides in TAPT1 intron 11 in both WT (+/+) and patient cells (�/�), as
obtained from the RNABPS (Nazari et al, 2018), LaBranchoR (Paggi & Bejerano, 2018) and BPP (Zhang et al, 2017a) softwares. High branchpoint scores were predicted
for the G>A transition in the patient cells using the RNABPS and LaBranchoR methods. The x-axis represents the nucleotide distance to the 30 splice site (3´SS).

C Schematic illustration of minigene constructs and RT–PCR analysis of splicing products. The pSPL3 vector contains SDv and SAv exons (gray boxes) and functional
intron (black line) in its backbone. SDv: splice donor vector; SAv: splice acceptor vector. TAPT1 c.1237-52 G>A mutant fragments containing 200 bps of intron 11, exon
12 and 500 bps of intron 12 (green) were cloned into the EcoRI and BamH1 cloning sites (pink) of the pSPL3 vector. Using site directed mutagenesis, the TAPT1 c.1237-
52 G>A mutant construct was rescued into c.1237-52 A>G (Purple arrow: c.1237-52 G>A; green arrow: rescued into c.1237-52 A>G). Green and red lines show canonical
and internal/aberrant splicing, respectively. Two TAPT1 minigene constructs and an empty pSPL3 vector were transfected into HEK293T cells for 24 h. Following RNA
extraction and cDNA synthesis, RT–PCR was done using vector specific primers (F: SD6 forward; R: SA2 reverse). The 263 bp PCR product in the empty vector showed
internal splicing between SDv and SA2 exons. In c.1237-52 G>A mutant minigene construct, the majority of splicing products had a size of 263 bp due to the aberrant
exon 12 skipping while in the rescued construct, most of the transcripts had the expected size of 340 bps. Direct Sanger sequencing confirmed the identity of the
normal and exon-12 skipped products.

Source data are available online for this figure.
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decay (NMD; Fig 4A). Our data confirmed the statistically significant

reduction of endogenous TAPT1 mRNA levels in three of the

patients’ primary fibroblasts compared with WT individuals

(Fig 4B). We next examined the effect of the identified deep intronic

TAPT1 mutation on the expression of its encoded protein. We

employed two different commercial antibodies to detect endogenous

TAPT1 in protein extracts from primary fibroblast cultures from two

distinct patients and two WT individuals. Western blotting with

both antibodies showed a complete loss of endogenous TAPT1 pro-

tein in all patient cells carrying the c.1237-52 G>A mutation in

homozygosity (Fig 4C). Notably, the fibroblasts from the mother

IV.3 (F1) showed intermediate TAPT1 protein levels, which were

also consistent with her heterozygous genotype (Fig 4C).

To clarify whether NMD was responsible for the degradation of

aberrant transcripts in patient cells, we treated the patient and WT

fibroblast with a potent NMD inhibitor cycloheximide (CHX) and

assessed the rescue of NMD-sensitive transcripts by qPCR. Interest-

ingly, the level of TAPT1 transcripts was significantly increased in

the patient cells upon CHX treatment, indicating that the mutation

induced NMD (Fig 4D). A mild but not significant increase was also

observed in the treated WT cells due to low levels of TAPT1 exon-

12 skipped transcripts. Moreover, the c.1237-52 G>A mutation had

no impact on the stability of the TAPT1 RNA (Fig EV4A). Taken

together, these findings indicate that the novel mutant variant

reported in this study behaves as a protein-null allele by creating an

aberrant mis-spliced TAPT1 transcript, which undergoes degrada-

tion before being translated.

The TAPT1 antisense transcript is inconsequential for TAPT1
gene expression

TAPT1 is situated head-to-head with its sequence-related antisense

gene TAPT1-AS1 (Fig 3A), which encodes a long non-coding RNA.

Such upstream antisense transcripts can play a critical role in the

regulation of gene expression (Faghihi & Wahlestedt, 2009; Seila

et al, 2009; Pelechano & Steinmetz, 2013; Lloret-Llinares

et al, 2016), in particular towards their associated protein-coding

genes (Faghihi et al, 2008; Yu et al, 2008). Here, because of the

manifest physical proximity of TAPT1 and TAPT1-AS1, it is likely

that both genes are expressed in a coordinated manner through

shared regulatory elements as previously described for the majority

of long non-coding RNA:mRNA gene pairs (Sigova et al, 2013). As

such, we examined whether the downregulation of TAPT1 may also

alter the expression levels of TAPT1-AS1. qPCR data showed no

overt changes in TAPT1-AS1 levels in patients’ fibroblasts relative to

control cells (Fig 4B), thereby indicating that TAPT1 downregulation

does not affect the expression of its neighbor antisense transcript.

To further investigate the possible regulatory function of TAPT1-

AS1 on its target gene, we knocked down the endogenous transcript

in WT and TAPT1 mutant fibroblasts by transient transfection of

two different TAPT1-AS1 GapmeRs. As evidenced by our qPCR

results, no significant alterations were detected in TAPT1 mRNA

levels (Fig EV4B), although both GapmeRs achieved the near com-

plete depletion of TAPT1-AS1 transcripts in both control and patient

cells. In addition, TAPT1 protein expression was also found unaf-

fected in a TAPT1-AS1 knocked down context (Fig EV4C). These

results argued against the potential regulatory role of TAPT1-AS1 on

TAPT1 expression, and hence excluded the possibility that this anti-

sense transcript could have an impact on the pathogenesis of the

disease observed in our patients.

TAPT1 is enriched in the ER/Golgi and is dispensable for
HCMV gH infection

TAPT1 codes for a protein termed Transmembrane Anterior Poste-

rior Transformation 1, with 5 membrane-spanning helices (Fig 5A).

Its cellular localization has been reported to be either in the endo-

plasmic reticulum (ER) or at the centrosome (Jonikas et al, 2009;

Symoens et al, 2015; Zhang et al, 2017b). In order to gain further

insights in its cellular localization, we performed immunofluores-

cence (IF) staining with two commercial TAPT1 antibodies in WT

and mutant primary dermal fibroblasts. Each antibody yielded dif-

ferent staining patterns especially for centrosome and the cyto-

plasm, which were identical between control and TAPT1 knockout

cells (Fig EV4D and E). This result clearly indicated that these anti-

bodies were not suitable for IF purposes. Since we validated the use

of the same antibodies for western blotting, we opted to conduct

subcellular fractionation on patient and WT fibroblasts as an alter-

native strategy to examine its subcellular localization. Endogenous

TAPT1 was enriched in the Mito/ER/Golgi fractions and, to a lesser

extent, in the nuclear fractions (Fig 5B). These data were consistent

with the previous reports on EMP65, the homologous TAPT1 pro-

tein in yeast (Jonikas et al, 2009; Zhang et al, 2017b), and pfcarl,

the homologous TAPT1 protein in plasmodium (LaMonte

et al, 2020), showing a preferential localization in the ER/Golgi

apparatus. Additional evidence of TAPT1 localization in the

◀ Figure 4. Exon-12 skipped transcripts undergo NMD to create a protein-null allele.

A Schematic representation showing that the complete loss of exon 12 in TAPT1 results in a premature stop codon, which targets the transcript for nonsense-mediated
mRNA decay.

B qPCR results using specific primers for TAPT1 and TAPT1-AS1 in 3 WT (WT1, WT2, V.2 (F1)) and 3 affected (V.1 (F1), V.5 (F1), IV.1 (F2)) primary fibroblasts. TAPT1 mRNA is
significantly reduced in all patients compared with WTs, whereas TAPT1-AS1 transcript levels are unaffected. Fold change relative to V.2 (F1) is plotted as mean � SD.
Asterisks indicate conventional statistical significance (Student’s t-test; n.s. P-value > 0.05, ****P-value < 0.0001).

C Western blot analysis of endogenous TAPT1 protein (~ 60 kDa) using whole protein extracts from primary dermal fibroblasts from WT (WT1 and WT2), heterozygous
(IV.3 (F1)) and homozygous (V.1 (F1), V.5 (F1) and IV.1 (F2)) individuals and two different commercial antibodies (top: Sigma, HPA042567; bottom: Sigma, HPA048658).
Results show a complete absence of TAPT1 protein in patient samples. GAPDH was used as a loading control.

D qPCR analysis of TAPT1 expression in 3 WT (WT1, WT2, WT3) and 3 affected (V.1 (F1), V.5 (F1), IV.1 (F2)) primary fibroblasts treated with cycloheximide (CHX). CHX was
used to block nonsense mediated decay (NMD). Our results showed a time dependent increase in the level of TAPT1 transcripts in all 3 patient cells while TAPT1 RNA
level remained constant in the WT cells. For each graph, fold change relative to non-treated condition is plotted as mean � SD. Asterisks indicate conventional statis-
tical significance (Student’s t-test; n.s. P-value > 0.05, ****P-value < 0.0001).

Source data are available online for this figure.
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secretory pathway was supported by TAPT1 partner protein SUCO

localization in various human cell lines (Hein et al, 2015).

We then carried out a series of functional tests by comparing WT

and patient fibroblasts in order to gain a better understanding of

TAPT1’s cellular function. Several studies in yeast have reported

that EMP65 is critically involved in the Unfolded Protein Response

(UPR; Jonikas et al, 2009) and ER-Associated Degradation (ERAD)

pathways (Zhang et al, 2017b). However, we could not document

significant alterations in the expression levels of a panel of ER

stress-associated markers in TAPT1 knockout cells by qPCR

(Fig 5D). IF staining did not reveal obvious defects in ER- (using

anti-CANX antibody), GOLGI- (using anti-GLG1 antibody) or

mitochondrial-morphology (using anti-TOM20 antibody) in patient

TAPT1 knockout cells compared with WT cells (Fig 5C).

Two early publications had reported that TAPT1 encoded for a

receptor of the human cytomegalovirus (HCMV) gH (Baldwin

et al, 1996, 2000). We revisited this claim by testing whether human

TAPT1-null patient cells were resistant to HCMV strain RC256 infec-

tion. The HCMV strain RC256 is a recombinant virus carrying the

Escherichia coli lacZ gene as a marker under the control of the b-gal
gene promoter (Spaete & Mocarski, 1987). Our b-gal reporter assay
showed no discernable differences between WT and mutant patient

cells (Fig 5E), hence indicating that TAPT1 is not essential for

HCMV infection, further suggesting the likely presence of other cel-

lular receptors which would permit HCMV cellular entry in the

absence of TAPT1.

Extracellular matrix and collagen-related pathways are
dysregulated in TAPT1-null cells

To gain insights into the cellular role of TAPT1 and the disease

mechanism, we investigated which genes and pathways were

altered in TAPT1-null patient cells. The combined analysis of RNA-

seq and SI-NET-seq data was highly informative in this context.

While RNA-seq quantifies the steady-state RNA levels, SI-NET-seq

provides a quantitative measure of the RNA polymerase II (Pol II)

occupancy with single-nucleotide precision genome-wide (Arnold

et al, 2021). SI-NET-seq is an improved variant of the NET-seq

approach (Mayer et al, 2015) that relies on spike-ins, thereby

allowing quantitative comparisons between conditions (Arnold

et al, 2021). While the RNA-seq data identified TAPT1 as the only

dysregulated gene on the candidate Chr.4 locus, it also provided an

unbiased list of 172 significantly (P < 0.05) dysregulated genes in

the patients’ fibroblasts at the mRNA level (Fig 6A; Dataset EV1). Of

these significantly altered genes, a similar fraction was up- and

downregulated (Fig 6A; Dataset EV1). Beyond TAPT1 which is the

fifth most significantly downregulated gene in mutant cells, the dys-

regulation of several other target genes such as RARRES2, ZIC1, and

ZIC4 was validated by qPCR (Fig 6B). Moreover, SI-NET-seq results

revealed a total of 317 genes with aberrant Pol II occupancy and

dysregulated nascent RNAs in the patient cells (Figs 6C and EV5A

and B; Dataset EV2). For the majority of these genes (70%), the den-

sity of transcriptionally engaged Pol II was significantly increased in

patient cells (Fig 6C; Dataset EV2). The Pol II occupancy at TAPT1

was not changed in patient cells, indicating that Pol II transcription

of TAPT1 was not impacted by the mutation (Fig 6C). Importantly,

the integrated analysis of RNA-seq and SI-NET-seq data provided a

comprehensive view on the molecular pathways that were affected

by the TAPT1 mutation. A subsequent pathway analysis of genes

with either a significantly altered mRNA level or Pol II occupancy

consistently revealed that extracellular matrix (ECM) organization

and collagen-related pathways were highly enriched in our analysis

(Fig 6D), further supporting a role for TAPT1 in the ECM and colla-

gen dynamics.

Transcriptional compensation of ECM and collagen-related genes
in parent cells

In heterozygous parent cells, the TAPT1 protein level was reduced

but not completely abolished as in patient cells (Fig 4C). The

remaining level of TAPT1 seemed to be sufficient for cell func-

tions, thereby protecting the parents from a clinical manifestation.

To gain insights into the underlying protection mechanism, we

performed SI-NET-seq experiments on parent fibroblasts. SI-NET-

seq revealed that nascent transcription was changed for fewer

genes (170 genes) in parent cells (Fig EV5C; Dataset EV3) when

compared with patient cells (317 genes). Surprisingly, an inte-

grated Reactome pathway analysis of parent and patient fibroblasts

uncovered a high overlap of affected pathways (Fig EV5D). How-

ever, from the 24 genes that were linked to the pathogenic path-

ways (Fig EV5E), only five genes (COL3A1, COL5A2, COL8A1,

COMP, ELN) exhibited a significant change in nascent Pol II tran-

scription in both parent and patient cells. The remaining deregu-

lated genes in patient cells were not altered in parent cells

◀ Figure 5. TAPT1 cellular localization and functional data.

A TAPT1 predicted topology: a membrane-spanning protein consisting of 5 transmembrane helices (Uniprot database).
B Western blot analyses for TAPT1 (~ 60 kDa) using cytosolic, Mito/ER/Golgi and nuclear protein extracts from primary dermal fibroblasts of two WTs (WT1 and WT2)

and two patients (V.5 (F1) and IV.1 (F2)). TAPT1 protein is highly enriched in the Mito/ER/Golgi fraction, and to a lower extent in the nuclear fraction. GAPDH, TGN46
and BiP served as a cytosolic, Golgi network and ER markers, respectively. Adenylate Kinase (AK2) was used as a mitochondrial marker. Laminin A/C was used as a
nuclear marker.

C Immunofluorescence staining of mitochondria using anti-TOM20 (green), ER using anti-CANX (red) and Golgi using anti-GLG1 (red) in primary dermal fibroblasts from
WT1 and V.5 (F1). Similar staining patterns are observed with the three antibodies in both cell lines. Scale bar represents 10 lm.

D qPCR analysis of a panel of canonical ER stress markers shows no significant differences in 3 patients (�/�) (V.I (F1), V.5 (F1) and IV.1 (F2)) primary dermal fibroblasts
compared with WTs (+/+) (WT1, WT2 and WT3) cells. Fold change relative to WT is plotted as mean � SD. Statistical significance was tested by Student’s t-test (n.s.
P-value > 0.05).

E CMV cell infection assay on 2 patient (V.1 (F1) and V.5 (F1)) and 3 WT (WT1, WT4 and WT5) primary dermal fibroblast cell lines, using b-galactosidase activity as a
readout. MRC5 cell line was used as a positive control. All of the cells were infected by the HCMV strain RC256 at a MOI = 0.1. Data are shown as mean � SD of three
technical replicates. Statistical significance was tested by Student’s t-test (n.s. P-value > 0.05).

Source data are available online for this figure.
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(Fig EV5E). Instead, we detected the transcriptional activation of a

set of genes (CTSK, FN1, MME, MMP3, PPIB) in parent cells associ-

ated with collagen- and ECM-related pathways. This significant

transcriptional increase may partially compensate for the effects

observed in patient cells. Together, these findings support the

view that the deregulation of transcription in parent cells was

below a potential syndrome-causing threshold.

Discussion

Phenotypic spectrum of TAPT1 insufficiency

Here, we report the successful identification of a genetic variant

causing a recessive Mendelian syndrome in six affected children

from 2 families presenting with severe bone defects, developmental

delay and premature aging. As we did not detect any recessive

mutations by WES, we followed an alternative analytical pipeline

which involved homozygosity mapping, RNA-sequencing and

targeted Sanger sequencing. We eventually identified a deep

intronic mutation (c.1237-52 G>A) in the TAPT1 gene that entirely

segregated with the disease. It is known that pathogenic deep

intronic mutations can induce splicing abnormalities, which in

most cases lead to mRNA NMD due to the introduction of prema-

ture termination codons (PTCs) (Naruto et al, 2015; Fusco

et al, 2019; Deng et al, 2020; Malekkou et al, 2020). Our prediction

analysis suggested that the novel c.1237-52 G>A mutation is likely

behaving as an alternative splicing branchpoint which triggers

aberrant exon 12 skipping in the TAPT1 pre-mRNA as confirmed

by RT-PCR and the in vitro minigene splicing assay. This splicing

aberration disrupts the reading frame and introduces a premature

stop codon which targets mutant TAPT1 transcripts for NMD in

patient’s fibroblasts. As expected and evidenced by western blot-

ting data, the significant drop in TAPT1 mRNA levels prevents the

translation of a truncated protein. Moreover, SI-NET-seq showed

that nascent transcription at the TAPT1 gene was not affected by

the mutation, confirming that the disease arises from a post-

transcriptional dysregulation.

Genetic defects in TAPT1 were firstly reported by Symoens

et al (2015) in two consanguineous families with a complex and

lethal osteochondrodysplasia syndrome (MIM616897) (Symoens

et al, 2015). Furthermore, Patel et al (2017) reported a homozygous

truncating mutation (c.846 + 2insT) in TAPT1 segregating with

pediatric cataract, although these patients did not show any evi-

dence of skeletal defects (Patel et al, 2017). In addition to the shared

clinical features with these previously reported TAPT1-deficient

patients, including bone abnormalities and cataract, our affected

children also suffered from neonatal progeria, characterized by

wrinkled and thin skin, premature depigmentation and lipodystro-

phy. This vast phenotypic variation may be driven by the severity of

the alleles identified. Our six new patients carry a complete loss-of-

function mutation resulting in a protein-null allele, whereas both

prior studies showed partial loss-of-function mutations including

missense and in-frame exon 6 and exon 10 skipping (Symoens

et al, 2015; Patel et al, 2017). Another possibility is that, as is the

case for LMNA (Worman, 2012), a wide range of TAPT1 diseases

exist depending on which domain of the protein is mutated, thus

accounting for the observed phenotypic heterogeneity.

TAPT1-deficiency resembles a collagenopathy

To date, RNA-seq stands out as the gold-standard technique to iden-

tify affected signaling pathways underlying a certain disease. To

identify cellular processes that are affected upon TAPT1 mutation,

we performed an integrated pathway enrichment analysis combin-

ing RNA-seq and SI-NET-seq results. RNA-seq and SI-NET-seq

uncovered genes with a significant change in transcript levels and

nascent transcription in patient cells, respectively. Despite the differ-

ent types of data, we observed a strong overlap in dysregulated

pathways between both datasets. Collagen- and ECM-related path-

ways standout as the most significant hits from this combined anal-

ysis, indicating a dysregulation of these processes in patient cells.

This interesting finding is consistent with our patients’ phenotype,

which manifests with severe bone defects and skin abnormalities.

Collagens are the most abundant proteins made by the human body

and serve to provide structural support, tensile strength while medi-

ating cell adhesion, and migration (Frantz et al, 2010; Rozario &

DeSimone, 2010). The bone tissue and the skin dermis account for

80% of the total collagen content of the body (Calleja-Agius

et al, 2013). Importantly, the majority of genetic alterations causing

bone defects affect collagen themselves e.g., COL1A1 (MIM114000,

MIM619115, MIM130060, MIM166200, MIM166210, MIM259420,

MIM166220, MIM166710), COL1A2 (MIM619120, MIM617821,

MIM225320, MIM166210, MIM259420, MIM166220, MIM166710),

or enzymes dedicated to their processing and secretion such as

P3H1 (MIM610915), CRTAP (MIM610682) and TANGO1

(MIM619269) (Forlino & Marini, 2016; Lekszas et al, 2020; Guille-

myn et al, 2021). Interestingly, SI-NET-seq in combination with

pathway analysis for the heterozygous mother cells with reduced

TAPT1 levels also showed a deregulation in collagen and ECM

◀ Figure 6. Integrated analysis of SI-NET-seq and RNA-seq data revealed enrichment of collagen and ECM-related pathways in TAPT1-null cells.

A Volcano plot showing differentially expressed genes as determined by RNA-seq in patient primary dermal fibroblasts (V.1 (F1), V.5 (F1)) compared with WT (WT1 and
WT2) cells. The y-axis shows the �log10 P-value, whereas the x-axis displays the log2 fold change value. The red dots represent 75 significantly upregulated genes,
and the blue dots represent 97 significantly downregulated genes.

B qPCR validation test for 3 top dysregulated genes (RARRES2, ZIC1, and ZIC4) detected by RNA-seq. The analysis was performed on RNA samples independent from
those sent for RNA-seq for 2 WTs (WT1 and WT2) and 2 patients (V.5 (F1) and IV.1 (F2)). Fold change relative to WT1 is plotted as mean � SD of three technical repli-
cates. Asterisks indicate statistical significance (Student’s t-test; ***P-value < 0.001, ****P-value < 0.0001).

C Volcano plot showing genes with an altered occupancy of transcriptionally engaged Pol II in patients (V.1 (F1) and V.5 (F1)) compared with WT (WT1 and WT2)
primary fibroblast cells using SI-NET-seq. The y-axis shows the �Log10 P-value, whereas the x-axis indicates the log2 fold change value for the Pol II occupancy. The
Pol II density is increased in 222 genes (red dots), and decreased in 95 genes (blue dots). The yellow dot represents TAPT1.

D Bubble plot showing enrichment of collagen and extracellular matrix (ECM) pathways from the integrated reactome pathway analysis (Jassal et al, 2020) of the SI-
NET-seq (light blue circles) and RNA-seq (dark blue circles) data. Enriched pathways are indicated on the y-axis, and the corresponding P-values are shown on the
x-axis. The size of the circles represents the number of altered genes from each pathway.
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pathways. However, in parent cells less genes of the pathogenic

pathways were altered and transcription of a set of genes that are

associated with collagen- and ECM pathways were indeed activated,

likely buffering the phenotypic consequences for the parent. The

clinical manifestations and transcriptomics results shown here sup-

port the hypothesis that TAPT1-deficiency belongs to the heteroge-

neous group of collagenopathies.

Previous computational and experimental interactome analyses

proposed that TAPT1 physically interacts with two additional ER-

resident proteins: SUCO (SUN Domain Containing Ossification Fac-

tor; Hein et al, 2015; preprint: Parvez et al, 2020) and P4HB, also

known as PDI1 (protein disulfide isomerase 1; preprint: Parvez

et al, 2020). Notably, mutations in SUCO and P4HB have been

linked to skeletal dysplasia (Rauch et al, 2015; Ouyang &

Yang, 2017; Balasubramanian et al, 2018; Maddirevula et al, 2018;

Porntaveetus et al, 2018; Li et al, 2019) in humans, which aligns

with the TAPT1 loss-of-function clinical presentation. Tapt1 and

Suco mutant mice successfully phenocopy their corresponding

human disease as they also present with severe skeletal defects

(Howell et al, 2007; Sohaskey et al, 2010). These two proteins form

a highly conserved complex which is present in all eukaryotic cells

from yeast (Jonikas et al, 2009; Friederichs et al, 2012) to humans

(Hein et al, 2015). EMP65 and SLP1, the yeast homologs for TAPT1

and SUCO respectively, have been shown to be involved in the ER

quality-control machinery including UPR (Jonikas et al, 2009) and

ERAD pathways (Zhang et al, 2017b). Surprisingly, our functional

analyses did not reveal major abnormalities in the ER morphology

and expression levels of ER stress markers in TAPT1-null cells. Pre-

vious research actually reported unaltered protein levels of ER

chaperones, including BIP/GRP78, Calnexin, and GRP94, in Suco-

null mouse osteoblasts (Sohaskey et al, 2010), which is consistent

with our results assuming a common functional pathway for

TAPT1 and SUCO. P4HB, the other proposed interacting partner for

TAPT1, serves as a prototypic thiol isomerase that is involved in

the hydroxylation of proline residues in collagen fibers (Annunen

et al, 1997; Kukkola et al, 2003; Benham, 2012). Therefore, our

data add to previous studies supporting the hypothesis of TAPT1,

SUCO, and P4HB may form a functional complex residing in the

ER/GOLGI and playing a key role in collagen post-translational pro-

cessing with a particular relevance to skeletal development in ver-

tebrate species. In accordance with this idea, delayed collagen

folding and secretion was documented in TAPT1 mutant fibroblasts

(Symoens et al, 2015).

What could be TAPT1’s universal function in eukaryotic cells?

Although loss-of-function mutations in TAPT1, SUCO and P4HB in

humans all result in osteochondrodysplasia-like phenotypes, the

homologs of these genes in lower organisms lead to unrelated phe-

notypes when absent. POD1, the TAPT1 homolog in Arabidopsis,

was shown to be involved in pollen tube formation (Li et al, 2011).

F26F2.7, the Caenorhabditis elegans homolog of TAPT1 is a critical

gene for embryonic viability with yet undetermined function (Maeda

et al, 2001). In Plasmodium falciparum, the causative pathogen for

malaria, mutations in TAPT1’s homolog, pfcarl, confer resistance to

various structurally unrelated antimalarial compounds which

appear to target the ER/Golgi function of the parasite (Meister

et al, 2011; Kuhen et al, 2014; LaMonte et al, 2016). In the

unicellular fungus Saccharomyces cerevisiae, TAPT1 which is known

as Emp65, is required for the stability of soluble proteins that are

targeted to the secretory pathway (Zhang et al, 2017b). Notably,

none of these species of plants, invertebrates or fungus possess

genes coding for collagens, arguing that TAPT1’s role in all eukary-

otic cells must be unrelated to collagen biology per se, but instead

fulfill a more essential cellular role that is yet to be deciphered.

Materials and Methods

Sample collection and clinical assessment

The affected children were firstly diagnosed at the National Center

for Diabetes, Endocrinology and Genetics (NCDEG) (Amman, Jor-

dan) with severe osteogenesis imperfecta. In total, 15 saliva samples

were collected from members of the two families including parents,

affected and unaffected siblings. Genomic DNA from saliva samples

was isolated using the Origene DNA Collection Kit (OG-500,

DNAGenotek). Skin biopsies from three affected (V.I (F1), V.5 (F1)

and IV.1 (F2)) and one unaffected (IV.3 (F1)) family members were

also collected. Informed consent was obtained from all individuals

in accordance with local ethical review board requirements in Jor-

dan and Singapore (A*STAR IRB reference code #2019-087, Singa-

pore). Informed consent was also obtained from patients to publish

their photos. All the experiments with human samples were in

accordance with the principles set out in the WMA Declaration of

Helsinki and the Department of Health and Human Services Bel-

mont Report.

Genotyping and homozygosity mapping

SNP genotyping was performed on the genomic DNA from 15

affected and unaffected individuals from both families using Illu-

mina HumanCoreExome-12v1 Bead-Chips. Identity-by-descent (IBD)

mapping detected common homozygous regions in the 3 affected

individuals using Wolfram Mathematica data-analysis software. IBD

homozygous blocks were identified as regions > 2 cM. Candidate

homozygous regions were refined by excluding the shared homozy-

gous regions with unaffected individuals. Finally, a single identical

and homozygous region was revealed on Chr. 4 (4p16.1–p15.31)

(hg19).

Whole exome sequencing (WES)

The Ion TargetSeqTM Exome and Custom Enrichment Kit (Life Tech-

nologies) was used for exome capture from 1 lg of genomic DNA

from individuals V.I (F1) and IV.1 (F2). The Ion OneTouch System

(Life Technologies) was used for exome library preparation.

Sequencing was performed using the Ion Proton Instrument (Life

Technologies) with one Ion PI chip (Life Technologies). The vari-

ants were annotated with their associated gene and location. No

candidate variant was found using various filtering parameters.

RNA-Sequencing

RNA from primary dermal fibroblasts from 2 patients (V.I (F1) and

V.5 (F1)), and 2 unrelated wild types (WT1 and WT2) was extracted

� 2023 The Authors EMBO Molecular Medicine 15: e16478 | 2023 13 of 19

Nasrinsadat Nabavizadeh et al EMBO Molecular Medicine



using the RNeasy Mini Kit (Qiagen). After measuring RNA quantity

and integrity using the Agilent Bioanalyzer 2100 (Agilent Technolo-

gies), libraries were sequenced on a Illumina HiSeq/Novaseq

sequencer. Reads were aligned to the GRCh38.p12 human reference

genome using STAR v2.5.3a (Dobin et al, 2013) with default param-

eters in paired-end mode.

For differential gene expression analysis, we quantified the tran-

script abundance of the annotated genes from GENCODE v28

(Frankish et al, 2019) using HTSeq v0.11.4 (Anders et al, 2015) in

“union” mode. Significant changes between the conditions were

tested using DESeq2 v1.25.4 (Love et al, 2014). We defined genes as

significantly dysregulated when they had an FDR adjusted P-value

of <0.05. For alternative splicing analysis, we focused on alternative

exon inclusion and exclusion events between wild-type and patient

samples. After read mapping, we identified all exons from

GENCODE v28 annotation (Frankish et al, 2019) showing an “exon

inclusion level” difference of at least 10% using rMATs v3.1.0 (Shen

et al, 2014). The “exon inclusion level” of an exon describes the

fraction of reads accounting for the inclusion of the exon. We

defined alternative exon usage as an event between conditions with

a significant (FDR < 0.05) difference in the “exon inclusion level”.

Splicing events that were supported by less than 5 reads were

excluded.

SI-NET-sequencing

For spike-in NET-seq (SI-NET-seq), 15 × 106 primary dermal fibrob-

lasts were mixed with 3 × 106 murine NIH 3T3 cells. Murine NIH

3T3 cells served as spike-in controls. The cells were tested negative

for mycoplasma. All subsequent steps of the SI-NET-seq experi-

ments were performed as recently described (Arnold et al, 2021)

with the following modification. For reverse transcription of nascent

RNAs, the SuperScript IV Reverse Transcriptase (ThermoFisher)

was used.

Processing of SI-NET-seq data was performed as previously

described (Arnold et al, 2021) with some modifications. Briefly,

adaptor sequences and unique molecular identifiers (UMIs) were

trimmed by cutadapt v2.4 (Martin, 2011) and a custom python

script, which preserves information of UMI sequences for the corre-

sponding reads. The obtained reads were aligned to a joined refer-

ence genome from human GRCh38.p12 and mouse GRCm38.p6

using the STAR v2.5.3a aligner (Dobin et al, 2013). For uniquely

mapped reads, the position corresponding to the 30-end of the

nascent RNA fragment was recorded. We excluded reads that origi-

nated from reverse transcription mispriming and from PCR duplica-

tion using the UMI sequence information as described previously

(Gajos et al, 2021). Additionally, sequenced splicing intermediates

were excluded. We masked regions that were transcribed by Pol I

and III, as well as loci of short chromatin-associated RNAs, which

were extracted from annotations in GENCODE v28/v29 (Frankish

et al, 2019; mouse: M18 and M22), RefSeq v109 (O’Leary

et al, 2016), miRBase v22.1 (Kozomara et al, 2019) and the UCSC’s

RepeatMasker (Jurka et al, 2005). In the final step of data process-

ing, we split the spiked-in mouse observations from sample

observations.

We statistically tested the significance of changes in the Pol II

occupancy. First, we quantified the Pol II occupancy at actively tran-

scribed genes using SI-NET-seq data. Active genes had a calculated

TPM value of at least one using RSEM v1.3.1 (Li & Dewey, 2011)

quantifications from wild-type RNA-seq data. Second, we tested for

significant changes in the Pol II occupancy using DEseq2 v1.25.4

(Love et al, 2014). For data normalization, we calculated the “Rela-

tive Log Expression” on Pol II occupancy measurements from

spiked-in mouse cells. Quantification of Pol II occupancy in mouse

was calculated as for sample observations. To define actively tran-

scribed genes, we used RNA-seq data available for NIH3T3 mouse

cells (ENCODE: ENCSR000CLW) (Davis et al, 2018). Changes in the

Pol II occupancy at genes with an FDR adjusted P-value of 0.05 or

smaller were considered significant.

Segregation analysis

The position coordinates and sequence of the candidate gene were

obtained from the UCSC database. The region of the candidate

mutation was amplified by PCR from genomic DNA from all 15 indi-

viduals using specific primers. Direct Sanger sequencing was per-

formed on the PCR products using the BigDye Terminator Cycle

Sequencing Kit (Applied Biosystems). Primer sequences are shown

in Table EV1.

Cell culture and drug treatment

Primary dermal fibroblasts of affected and unaffected individuals

were derived from skin biopsies following standard procedures

(Vangipuram et al, 2013). All human cell lines were cultured at

5% CO2 and 37°C in high glucose DMEM (HyClone) supplemented

with 10% fetal bovine serum (FBS) (HyClone), 1X penicillin/strep-

tomycin (Thermo Fisher Scientific) and 2 mM L-glutamine (Biolog-

ical Industries), and tested negative for mycoplasma using the

MycoAlertTM Mycoplasma Detection Kit (Lonza). Murine NIH 3 T3

cells (ATCC: CRL-1658) were grown in DMEM containing 10%

FBS (Bovine Calf Serum, iron-fortified, Sigma) and 5% penicillin–

streptomycin. To block NMD, the patient and WT cells were

treated with 100 lg/ml of cycloheximide (CHX) for 4 and 8 h or

with DMSO as a negative control (Rio Frio et al, 2008). Besides,

RNA stability was checked by treating the cells with 5 lg/ml of

actinomycin D (ActD) as a transcription inhibitor (Lai et al, 2019)

for 0.5, 1 and 1.5 h.

Quantitative PCR

Total RNA was isolated from primary dermal fibroblasts using the

RNeasy Mini Kit (Qiagen). RNA (1 lg) was reverse transcribed using

the IscriptTM cDNA Synthesis Kit (Bio-Rad) according to the manu-

facturer’s instructions. Transcript levels were assessed using the

Power SYBRTM Green PCR Master Mix (Applied Biosystems) and

specific primers (Table EV1) on the ABI Prism 7900HT Fast qPCR

System (Applied Biosystems). qPCR assays involved three biological

replicates per condition and three technical replicates per sample

(N = 3, n = 3). GAPDH was used as the housekeeping gene to nor-

malize gene expression.

Western blot

Total cellular protein extracts from primary dermal fibroblasts

were obtained using RIPA buffer supplemented with 1X Protease
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Inhibitor Cocktail (Roche). Nuclear, Mito/ER/Golgi, and Cytoplas-

mic fractions were prepared using the Cell Fractionation Kit Stan-

dard (Abcam, ab109719) following the manufacturer’s instructions.

Protein concentrations were measured using the PierceTM BCA

Protein Assay Kit (Thermo Fisher Scientific). Samples were reduced

in Laemmli loading buffer containing dithiothreitol, and denatured

at 95°C for 5 min. Equal amounts of protein were loaded on precast

10% Tris/Glycine/SDS polyacrylamide gradient gels (Bio-Rad), fol-

lowed by transferring on PVDF membranes (Bio-Rad) using the

Trans-Blot� TurboTM Transfer System (Bio-Rad). Membranes were

blocked in 5% milk in TBST for 1 h at room temperature, and sub-

sequently probed with the following primary antibodies diluted in

5% milk in TBST overnight at 4°C: mouse anti-GAPDH (1:1,000;

Santa-Cruz, sc-47724), rabbit anti-TAPT1 (1:1,000; Sigma,

HPA042567, reacted with TAPT1 sequence covering exon 13–14),

rabbit anti-TAPT1 (1:1,000; Sigma, HPA048658, reacted with

TAPT1 sequence covering exon 6–8), mouse anti-BIP (1:1,000; BD

Biosciences, 610978), rabbit anti-TGN-46 (1:1,000; Abcam,

ab50595), rabbit anti-AK2 (1:1,000; Proteintech, 11014-1-AP) and

mouse anti-Lamin A/C (1:1,000; EMD Millipore, MAB3211). After

washes in TBST, secondary anti-mouse/HRP or anti-rabbit/HRP

antibodies were used at 1:4,000 dilution in 5% milk in TBST for

1 h at room temperature. The signal was revealed with the

SuperSignalTM West Chemiluminescent Substrate System (Thermo

Fisher Scientific, #34080/34076/34096) and developed using CL-

XposureTM Films (Thermo Fisher Scientific) in a Carestream Kodak

developer.

Immunofluorescence analysis

Primary dermal fibroblasts were cultured on 8-well glass chamber

slides (Millicell EZ SLIDES) and fixed for 15 min in 4%

paraformaldehyde in PBS at room temperature. The cells were per-

meabilized with 0.3% Triton-X100 in PBS for 15 min, and blocked

in 1% BSA in PBS for 1 h at room temperature. Samples were

then incubated with the following primary antibodies diluted in

1% BSA in PBS overnight at 4°C: rabbit anti-TAPT1 (1:1,000;

Sigma, HPA042567), rabbit anti-TAPT1 (1:1,000; Sigma,

HPA048658), rabbit anti-TOM20 (1:1,000; Proteintech, 11802-1-

AP), rabbit anti-Calnexin (1:2,000; Abcam, ab22595) and mouse

anti-GLG1 (1:500; Abcam, ab103439). For visualization, 1:500 sec-

ondary antibodies conjugated to Alexa Fluor 568 or Alexa Fluor

488 (Invitrogen, Molecular Probes) were incubated for 1 h at room

temperature in the dark. 1 lg/ml DAPI (Life Technologies) was

used for DNA staining, and cells were mounted using ProLongTM

Diamond Antifade Mountant (Invitrogen). Images were captured

using a FV1000 Olympus inverted confocal microscope equipped

with a Leica camera.

Minigene splicing assay

To confirm the potential role of TAPT1 deep intronic mutation

(c.1237-52 G>A) in splicing defect, an in vitro minigene assay was

done using pSPL3 exon trapping vector (Westin et al, 2021; Itur-

rate et al, 2022; Rodriguez-Mu~noz et al, 2022). A genomic DNA

fragment from patient cells (V.1(F1)) containing TAPT1 exon 12

flanked by 200 bps upstream and 500 bps downstream intronic

sequences were cloned into pSPL3 vector (Invitrogen) using

EcoR1/BamH1 restriction sites. Subsequently, the mutant construct

was used as a template to generate a rescue construct by introduc-

ing c.1237-52 A>G change using QuickChange II XL kit (Agilent).

Both mutant and rescue constructs were verified by direct Sanger

sequencing. Then, HEK293T cells were transfected with 4 lg of

DNA (pSPL3-c.1237-52 G>A, pSPL3-rescue or empty pSPL3 as a

control) using Opti-MEM (Gibco) and Lipofectamine 3000 reagent

(Invitrogen). Total RNA was extracted 24 h after transfection by

NucleoSpin RNA kit and 3 lg of RNA was used for cDNA synthe-

sis (Qiagen). To compare the splicing patterns of cells transfected

with different constructs, RT–PCR was performed using vector-

specific primers (SD6 and SA2). The PCR products were loaded on

2% agarose gel and purified after gel extraction. The transcripts

were analyzed by direct Sanger sequencing. Primer sequences are

shown in Table EV1.

The paper explained

Problems
A key step towards understanding Mendelian diseases is to identify
the disease-causing mutation. A milestone in the identification of the
relevant germline variations was the development of exome sequenc-
ing, the genome-wide determination of all exonic sequences encoding
for proteins. However, 98% of the human genome is non-coding and
escapes detection by exome sequencing including intronic regions.
Since non-coding regions contain gene regulatory signals such as
splicing regulatory sites, alterations in these genomic areas can have
deleterious consequences for gene expression and cell function. Reli-
able strategies to uncover disease-causing variants in the non-coding
portion of the genome and their functional consequences are still
lacking.

Results
In this study, we used homozygosity mapping, RNA sequencing (RNA-
seq) and targeted Sanger sequencing to identify a deep intronic muta-
tion in the TAPT1 gene (c.1237-52 G>A) in patient fibroblasts causing a
recessive progeroid syndrome. An integrative analysis of spike-in con-
trolled native elongating transcript sequencing (SI-NET-seq) and RNA-
seq data provided insights into the molecular disease mechanisms
caused by the intronic mutation. SI-NET-seq revealed that the intronic
variant was inconsequential for nascent transcription at TAPT1 point-
ing to a post-transcriptional defect. Further analyses showed
enhanced skipping of TAPT1 exon 12 in vitro and in patient cells
which introduces a premature stop codon. The truncated RNA is
rapidly degraded via the nonsense-mediated decay pathway resulting
in a TAPT1-null allele. Finally, the transcriptomic data uncovered
pathways involved in collagen and extracellular matrix biology as
most significantly changed in patient cells. In parent cells, these path-
ways were less affected and buffered by a transcriptional compensa-
tion mechanism providing a plausible explanation for why parents
had no clinical manifestation.

Impact
The integrative transcriptomic approach can now be applied to other
diseases for which exome sequencing could not reveal the underlying
cause. Our approach will help to identify new disease-causing muta-
tions in the non-coding genome contributing to the ultimate goal of
obtaining a systematic map for non-coding pathogenic variants of the
human genome. At the same time, RNA-/SI-NET-seq data can illumi-
nate the molecular disease mechanisms and pathways that are signif-
icantly impacted. A more complete understanding of the causes and
the pathogenic mechanisms of these diseases will improve diagnosis
and holds the promise to open new strategies for therapeutic inter-
ventions.
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GapmeR transfection

Primary dermal fibroblasts were seeded on 6-well plates at a density

of 100,000 cells per well. The following day, cells were transfected

using the Lipofectamine RNAiMAX Reagent (Invitrogen) with two

GapmeRs specific for TAPT1-AS1 and a non-targeted GapmeR as a

negative control at a 40 nM concentration. The GapmeRs were pur-

chased from Qiagen (Germany), and their sequences are given in

Table EV1. A 72 h post-transfection, RNA and protein were har-

vested for downstream experiments.

CMV b-Gal assay

20,000–40,000 cells were plated per well in 96-well plates. The

MRC5 human lung fibroblast cell line was used as a positive control.

The next day after seeding, the virus (CMV strain RC256 ATCC VR-

2356) was added in DMEM supplemented with 10% FBS at

MOI = 0.1 and absorbed for 1 h at room temperature. Then the virus

was aspirated off and the plates were carefully washed twice with

PBS. The 80 ll of DMEM supplemented with 10% FBS were added

back to each well and the plate was returned to the incubator. b-gal
activity was read at different time points (Days 0, 1, 2 and 3),

involving three replicates per time point and per cell line. For that

purpose, 20 ll of 5X lysis buffer (500 mM K-phos pH 7.8, 1% Triton

X-100) were first added to each well. After pipetting up and down,

samples were incubated for 15 min at 37°C. Then, 10 ll of the

lysates were transferred to a plate with Galacto-Star, which was sub-

sequently covered with foil and incubated at room temperature

for 20 min. The signal was finally measured with a luminescence

plate reader.

Statistical analyses

The statistical comparison of two groups were made by two-tailed

Student’s t-test. The values are presented as mean � SD. P-

value < 0.05 was considered statistically significant. All of the

experiments were done in at least three technical replicates.

Data availability

The RNA-seq and SI-NET-seq datasets produced in this study are

available in the Gene Expression Omnibus (GSE197120; https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197120) database.

Expanded View for this article is available online.
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