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Abstract 

Background  Breast cancer is one of the three most common cancers worldwide and is the most common malig-
nancy in women. Treatment approaches for breast cancer are diverse and varied. Clinicians must balance risks and 
benefits when deciding treatments, and models have been developed to support this decision-making. Genomic risk 
scores (GRSs) may offer greater clinical value than standard clinicopathological models, but there is limited evidence 
as to whether these models perform better than the current clinical standard of care.

Methods  PREDICT and GRSs were adapted using data from the original papers. Univariable Cox proportional hazards 
models were produced with breast cancer-specific survival (BCSS) as the outcome. Independent predictors of BCSS 
were used to build multivariable models with PREDICT. Signatures which provided independent prognostic informa-
tion in multivariable models were incorporated into the PREDICT algorithm and assessed for calibration, discrimina-
tion and reclassification.

Results  EndoPredict, MammaPrint and Prosigna demonstrated prognostic power independent of PREDICT in multi-
variable models for ER-positive patients; no score predicted BCSS in ER-negative patients. Incorporating these models 
into PREDICT had only a modest impact upon calibration (with absolute improvements of 0.2–0.8%), discrimination 
(with no statistically significant c-index improvements) and reclassification (with 4–10% of patients being reclassified).

Conclusion  Addition of GRSs to PREDICT had limited impact on model fit or treatment received. This analysis does 
not support widespread adoption of current GRSs based on our implementations of commercial products.

Keywords  PREDICT, Breast cancer, Prognosis, Genomic score, Chemotherapy, Calibration, Discrimination, 
Reclassification

Introduction
Breast carcinoma is an unregulated growth of cells within 
the functional units of breast epithelium [1]. It is one of 
the three most common cancers worldwide (with an esti-
mated 2.26 million new cases in 2020) and the most com-
mon malignancy in women [2, 3]. Treatment approaches 
for breast cancer are diverse and varied: in the UK 
between 2013 and 2014, 81% of breast cancer patients 
had surgery as part of their primary treatment regimen, 
63% had radiotherapy, 34% had chemotherapy [4], and 
62% had endocrine therapy [5].
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Clinicians managing breast cancer must balance the 
risks of treatment against the potential benefits. Prog-
nostic scores have been developed to assist in these pre-
dictions. These include clinical risk scores and genomic 
risk scores (GRSs). PREDICT is one example of a clini-
cal score. It is based on a multivariable Cox proportional 
hazards model incorporating patient age, tumour size, 
tumour grade, tumour protein expression (ER, HER2 
and KI67), positive nodes and mode of diagnosis [6, 7]. 
It provides estimates of absolute treatment benefit for 
hormone therapy, chemotherapy, adjuvant trastuzumab 
and bisphosphonate therapy. PREDICT is recommended 
by the National Institute for Health and Care Excellence 
(NICE) as a tool for supporting clinical decisions on 
adjuvant treatment benefit [8] and has been endorsed by 
the American Joint Committee on Cancer [9]. The under-
lying model is flexible, enabling additional biomarkers to 
be incorporated.

GRSs (also called genomic prognostic scores) based on 
RNA gene expression data were developed in response to 
the concern that clinicopathological features are imper-
fect estimators of disease risk and chemosensitivity [10]. 
They have the theoretical advantages of optimal use of 
continuous variables and added robustness (e.g. by gath-
ering information on ER activity through a cluster of 
genes) [11]. Many GRSs have been developed, but few 
are commercially available and fewer still are endorsed by 
clinical bodies. At present, only Oncotype DX [12], EPC-
lin [13] and Prosigna [14] have been approved for use in 
clinical practice in the UK under specific circumstances 
[15]. Another signature, MammaPrint [16], was deemed 
clinically effective but not cost-effective.

Several key metrics are used to assess model fit, includ-
ing calibration, discrimination and reclassification. Cali-
bration is defined as the agreement between observed 
outcomes and predictions, often presented as an abso-
lute difference in values. Discrimination is a model’s abil-
ity to differentiate between those with and without the 
outcome [17], typically expressed using c-indices [18]. 
Reclassification refers to the movement of individuals 
between risk categories with the introduction of a new 
prediction model (or extension of a model through the 
addition of new variables) [17, 19]. Even if the calibration 
or discrimination of a model does not change, a change 
in risk categories may result in an individual receiving 
different treatment according to clinical guidelines [19].

There is a paucity of evidence comparing GRSs to cur-
rent validated clinical scores. Previous studies comparing 
GRSs to clinicopathological scores use models less com-
prehensive than PREDICT and tend to reduce continu-
ous variables into categories [20–28].

This study aims to assess whether GRSs provide any 
additional clinical benefit beyond PREDICT, the current 

standard of care, using a head-to-head comparison in an 
external cohort. It also analyses the impact of model fit 
when GRSs are incorporated into the PREDICT algo-
rithm. GRSs included for comparison were those referred 
to by NICE in their most recent guideline [15]: EPClin, 
Oncotype DX, Prosigna and MammaPrint.

Material and methods
Linked clinical and gene expression data were obtained 
from the METABRIC study [29, 30], described in detail 
elsewhere. The hazard ratio (HR) functions from PRE-
DICT version 2.1 were used in this analysis [7]. Surrogate 
KI67 status was calculated using gene expression data for 
MKI67, the gene which codes the KI67 protein, using the 
mclust package [31]. Proportions of KI67 status grouped 
by cancer grade, stage, number of lymph nodes positive 
and hormonal status were similar to those previously 
reported [32].

Four GRSs were adapted in line with the specifications 
of their respective papers—EndoPredict, Oncotype DX 
(ODx), Prosigna and MammaPrint. Code was adapted 
from the genefu R package [33] to make it suitable for use 
on z-score normalised expression data. 10-year breast 
cancer-specific survival (BCSS) was the outcome of inter-
est, defined as the percentage of patients who did not die 
from breast cancer over ten years.

Building Cox proportional hazards models
Cox proportional hazards models were built using the 
survival package [34]. The primary outcome of interest 
was breast cancer-specific death. Separate models were 
built for ER-positive and ER-negative patients, since the 
baseline hazard is different in these two groups [7, 12]. 
In all models, the PREDICT prognostic index was con-
strained to have a coefficient of one and it was included 
as an offset. This avoids overfitting and serves as an 
independent validation of the PREDICT model. No con-
straints were placed upon GRSs as this information was 
unavailable, and so this does not serve as an independent 
validation of these scores as used clinically. Unlike in the 
original PREDICT model, follow-up was not censored at 
15 years.

Univariable models were built for each GRS in turn. 
Multivariable models were built using PREDICT plus 
a GRS to assess whether the prognostic information 
provided by GRSs was independent of PREDICT. Since 
PREDICT is already a validated multivariable model 
which incorporates key clinical factors known to be 
associated with breast cancer prognosis, no additional 
terms were included in the model to prevent overfit-
ting; for this reason, EndoPredict was used in place of 
EPClin, and the ROR-C score chosen for Prosigna, in 
multivariable models. Models were built using single 
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GRSs, since multiple scores are unlikely to be used 
simultaneously in a clinical setting due to prohibitive 
cost.

Adding GRS terms into the PREDICT algorithm
We also assessed the impact of including GRSs on the 
calibration, discrimination and reclassification of the 
PREDICT algorithm. GRS terms were incorporated as 
additional terms into PREDICT after rescaling such that 
the average HR across the GRS distribution was one. This 
ensures that the baseline hazard used in PREDICT is 
appropriate.

To account for differences in follow-up time, the 
expected 10-year survival probability of each patient was 
calculated using PREDICT. Calibration was reported 
as the absolute difference in 10-year BCSS between the 
predicted results (the mean survival of all patients as 
reported by each algorithm) against the observed results 
(calculated using the survival package [34]). Discrimina-
tion was reported for each algorithm in turn by produc-
ing a univariable Cox proportional hazards model, and 
statistical significance tested using the survcomp [35] 
package. Goodness of fit was reported using log-likeli-
hoods and tested using one-way ANOVA tests. Log-like-
lihoods are equivalent to Akaike information criterion 
in this case since all models have the same number of 
variables.

In order to account for the effect of using the same 
observations to estimate the hazard ratios and to meas-
ure model performance, we computed the optimism [36] 
using a bootstrap procedure adapted from the rms R 
package [36]. We resampled 100 times from the original 
dataset, fitted the model for each of these samples and 
compared the performance estimated in the bootstrap 
sample with a testing sample that contained the obser-
vations not sampled in each iteration. The difference 
between them is the optimism and gives an indication of 
the amount of overfitting in the model.

The effect of second-generation chemotherapy upon 
BCSS was used to assess reclassification. Locally, the 
Cambridge Breast Unit uses PREDICT to stratify patients 
into three groups according to the predicted benefit 
of adjuvant chemotherapy: absolute increases in BCSS 
of < 3%, 3–5% and > 5% [37]. The first group is usually 
not offered chemotherapy, and chemotherapy is recom-
mended in the third group; for the middle group, a dis-
cussion of the pros and cons of treatment is conducted. 
These thresholds were used to categorise patients; reclas-
sification was assessed using reclassification tables.

All analyses were conducted in RStudio (version 4.1.0, 
RStudio, Inc., MA, USA); analysis code and data are pro-
vided as Additional file 1.

Results
Study population characteristics
Matched clinical outcome and gene expression data were 
available for 1980 patients in the METABRIC cohort 
(Table 1). Median follow-up in the study population was 
9.56  years (range 0–29.2  years). There were 646 breast 
cancer-specific deaths during the study period.

Cox proportional hazards models
Additional file 2: Table S1 summarises key metrics from 
univariable Cox proportional hazards models. In the ER-
positive cohort, all scores except MammaPrint had sta-
tistically significant HRs. No GRS had a significant HR in 
ER-negative patients.

The discrimination of PREDICT (c-index 0.687) was 
better than GRSs in ER-positive cases; MammaPrint was 
the best GRS (0.652). GRS discrimination was poor for 
ER-negative patients with PREDICT performing substan-
tially better (0.667).

In multivariable models, EndoPredict and Mam-
maPrint statistically significantly improved the fit of PRE-
DICT in ER-positive patients (Table  2). While adding 
Prosigna significantly improved model fit in ER-negative 
patients, the overall hazard ratio remained non-signifi-
cant. There was no significant change in discrimination 
with the addition of GRSs in either ER-positive or ER-
negative patients.

Modified PREDICT algorithm
The PREDICT algorithm was modified to incorporate 
GRS coefficients from the multivariable models. All 
modified algorithms underestimated 10-year absolute 
survival in the METABRIC cohort (Table  3). Survival 
in the METABRIC cohort at 10 years was 74.0% for ER-
positive patients and 58.5% in ER-negative patients. Esti-
mates in ER-positive patients underestimated survival by 
between 12.2% and 13%, with the closest estimate from 
PREDICT + MammaPrint. Estimates in ER-negative 
patients underestimated survival by between 2.3 and 
8.8%, with the closest estimate from PREDICT + Pros-
igna. Subgroup analyses are reported in Additional file 2: 
Figures S1–S6.

Including GRSs in PREDICT resulted in statistically 
significant improvements in model fit. Point estimates 
of discrimination were improved in ER-positive patients 
with the inclusion of any GRS. However, none of these 
changes were statistically significant.

The majority of patients remained in the same clinical 
group when using the original and modified forms of the 
PREDICT model. A total of 1878 patients were included 
in these analyses, with the remaining 102 excluded due 
to missing event data. There were 74 (4%) reclassifica-
tions when Oncotype DX was included in PREDICT. This 
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was lower than those for EndoPredict (132; 7%), Mam-
maPrint (154; 8%) and Prosigna (183; 10%).

The most important clinical category of ER-positive 
patients to consider is intermediate benefit, since the 
benefit of adjuvant chemotherapy is unclear in this 

group. Reclassification varied by GRS (Table  4). Simi-
lar numbers of patients were reclassified into and out of 
the intermediate benefit category with Oncotype DX (40 
vs. 34) and EndoPredict (71 vs. 61). More patients were 
reclassified out of intermediate benefit than into it using 
MammaPrint (66 vs. 88), while more were classified as 
intermediate when using Prosigna (102 vs. 80).

No patients were reclassified from high to low benefit 
or vice versa when Oncotype DX, EndoPredict or Mam-
maPrint were used; with Prosigna, 1 patient was reclassi-
fied from low to high benefit.

Discussion
Overall, EndoPredict, MammaPrint and Prosigna dem-
onstrated prognostic power independent of PREDICT 
in multivariable models in ER-positive patients; how-
ever, discrimination was not significantly improved. 
Incorporating GRSs into the PREDICT algorithm 
did not improve calibration, with underestimation of 
10-year BCSS in the METABRIC cohort in ER-positive 
and ER-negative cohorts. Measures of discrimination 
were not significantly changed. GRS inclusion caused 
4–10% of patients to be reclassified into different clinical 
categories.

This analysis addresses some key gaps in the current 
evidence base. In their most recent guideline on the 
topic, NICE [15] states that “there are no data available 
to compare the tumour profiling tests with PREDICT, or 
to define the clinical risk groups using PREDICT”. Previ-
ous studies tended to compare GRS against one another 
or against suboptimal clinicopathological parameters. 
This study used the current clinical standard of care, 
making it easier to assess whether clinical predictions are 
improved.

By creating modified versions of the PREDICT algo-
rithm which accepted GRSs as an additional term, this 
analysis leveraged absolute risk predictions from PRE-
DICT to allow inferences about the impact of GRSs on 
model fit. Although this is not the same as calculating the 
calibration of the scores themselves, it nonetheless dem-
onstrates what the impact of combining PREDICT and 
GRSs would be.

PREDICT had poor calibration in this analysis, under-
estimating 10-year BCSS by 13%. Independent validation 
of PREDICT by Gray et  al. [38] on the Scottish Cancer 
Registry showed much higher calibration, with 5% over-
estimation of 5-year mortality and 2% underestimation 
of 10-year mortality. The differences in findings between 
this analysis and previous work may be due to differences 
in the outcome of interest (overall survival versus BCSS) 
or the cohorts themselves (as outcomes in the general 
population may be different to those in a highly selected 
cohort like METABRIC, from the UK and Canada). It 

Table 1  Study population characteristics

Characteristic Patients (n = 1980)

Median age at diagnosis, years (range) 61.8 (21.9–96.3)

Inferred menopausal state (%)

 Pre-menopausal 424 (21)

 Menopausal 1556 (79)

Oestrogen receptor status (%)

 Positive 1506 (76)

 Negative 474 (24)

Progesterone receptor status (%)

 Positive 1040 (53)

 Negative 940 (47)

HER2 receptor status (%)

 Positive 247 (12)

 Negative 1733 (88)

Stage (%)

 In situ 12 (1)

 I 501 (25)

 II 825 (42)

 III 118 (6)

 IV 10 (1)

 Not specified 514 (26)

Grade (%)

 1 169 (9)

 2 772 (39)

 3 955 (48)

 Not specified 84 (4)

Median tumour size, mm (range) 23 (1–403)

Lymph node involvement (%)

 Negative 1043 (53)

 Positive 937 (47)

Surgery (%)

 Breast-conserving 785 (40)

 Mastectomy 1170 (59)

 Not specified 25 (1)

Chemotherapy (%)

 None 1568 (79)

 Second generation 395 (20)

 Third generation 17 (1)

Radiotherapy (%)

 Not received 810 (41)

 Received 1170 (59)

Hormone therapy (%)

 Not received 764 (39)

 Received 1216 (61)
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may also be due to calibration drift, where risk estimates 
change over time due to changes in population charac-
teristics or disease incidence [39]. This may also explain 
the lower underestimates of calibration in ER-negative 

disease (Additional file 2: Figure S1), for whom treatment 
advances have been more limited.

There is a need to develop prognostic molecular scores 
which take into account the standard clinicopathologi-
cal variables already used in a clinical setting and then 
explore how much additional benefit is gained from the 
inclusion of genomic signatures. In this way, the devel-
oped scores will reflect real-world clinical practice and be 
more relevant to clinical decision-making.

Limitations and future work
A key limitation of this work is that surrogate GRSs were 
used rather than their commercial counterparts due to 
cost considerations. Although all GRSs in this study were 
derived from published papers in line with the origi-
nal authors’ instructions, there is nonetheless a risk that 
these differ from commercial scores. Future work should 
use commercial scores where possible.

Due to the time period in which METABRIC patients 
were recruited, certain treatments (e.g. bisphosphonates) 
were less commonly used. There is also a risk of time-
varying confounding due to available treatment regi-
mens changing over time (and affecting patient survival). 
This is likely given that breast cancer survival rates have 
improved dramatically over the past decades, a finding 
attributed in major part to improved treatment [1, 2].

The use of pre-processed METABRIC data presented 
some challenges for conversion of GRSs. Changing the 
type of data normalisation post hoc is challenging and 
risks introducing further biases [40]. These issues con-
tinue to exist even if raw data are analysed; the only way 
to eliminate them is to use the genomic test with the 

Table 2  Multivariable Cox proportional hazards models for each genomic prognostic signature adjusted for PREDICT in (a) ER-positive 
and (b) ER-negative patients

95% CI, 95% confidence interval
† Hazard ratio has been constrained to this value

Model Hazard ratio (95% CI) Log-likelihood Model fit p value c-index (95%CI) c-index optimism

(a)

PREDICT 2.72† (NA) − 2860.6 – 0.687 (0.661–0.713) –

Oncotype DX 1 (0.99–1) − 2859.1 0.0835 0.693 (0.667–0.718) − 4.17 × 10–4

EndoPredict 1.13 (1.02–1.24) − 2858 0.024 0.692 (0.666–0.717) 0.003

MammaPrint 0.52 (0.17– 0.87) − 2853.9 2.32 × 10–4 0.699 (0.674–0.724) 6.72 × 10–4

Prosigna 1.58 (1.11– 2.05) − 2858.7 0.0546 0.694 (0.668–0.719) − 8.68 × 10–4

(b)

PREDICT 2.72† (NA) − 1072 – 0.667 (0.630–0.704) –

Oncotype DX 0.998 (0.986– 1.01) − 1072 0.77 0.667 (0.63–0.704) 0.011

EndoPredict 0.884 (0.657– 1.11) − 1071.4 0.287 0.667 (0.630–0.705) 0.007

MammaPrint 0.854 (0.196– 1.51) − 1071.9 0.638 0.669 (0.632–0.706) 0.005

Prosigna 0.252 (− 0.875–1.38) − 1069.3 0.0166 0.661 (0.622–0.699) 7.84 × 10–4

Table 3  Calibration of original and modified PREDICT models 
in the METABRIC cohort for (a) ER-positive and (b) ER-negative 
patients

In bold, reference survival (METABRIC cohort)

Model 10-Year 
survival 
%

Difference Difference optimism

(a)

 METABRIC cohort 74.0 Reference Reference

 PREDICT 61.1 − 13 –

 PREDICT + Oncotype 
DX

61.3 − 12.8 − 0.694

 PREDICT + Endo-
Predict

61.6 − 12.5 − 0.711

 PREDICT + Mam-
maPrint

61.9 − 12.2 − 0.640

 PREDICT + Prosigna 61.2 − 12.8 − 0.706

(b)

METABRIC cohort 58.5 Reference Reference

 PREDICT 49.7 − 8.8 –

 PREDICT + Oncotype 
DX

50.5 − 8 − 0.307

 PREDICT + Endo-
Predict

52.9 − 5.6 − 0.403

 PREDICT + Mam-
maPrint

48.3 − 10.2 − 0.150

 PREDICT + Prosigna 56.2 − 2.3 − 0.336
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official platform. This was not feasible due to the high 
cost of requesting such testing.

Only BCSS was considered in this analysis. Clinical 
outcome measures used in cancer are diverse and include 
measures of survival, disease recurrence and disease-free 
survival. Although these outcomes are correlated to some 
extent, future studies would benefit from considering 
multiple clinical outcomes to ensure that these findings 
are consistent and sustained across clinically relevant 
subgroups.

This study likely underestimates PREDICT’s per-
formance, since several variables required for optimal 
prediction (screening status, KI67 status and bisphospho-
nate use) were unavailable. Although alternative methods 
were used to infer KI67 status, these are unlikely to be as 
accurate as established histopathological techniques.

Similarly, this analysis likely overestimates GRS 
prognostic power, since GRS coefficients were uncon-
strained, while PREDICT was constrained to one. This 
has the effect of allowing GRS coefficients to be re-
estimated in the current dataset, effectively creating an 
overfitting problem whereby the predictive power of 
included variables is overestimated. The impact of this 
may be quite large: when univariable PREDICT mod-
els were built using the unconstrained variable, model 
fit was dramatically improved compared to the con-
strained model (log-likelihood -2823.6 versus –2860.2).

Although this study found that there were largely 
non-significant changes in model performance as a 
result of incorporation of genomic prognostic scores, 
these changes need to be modelled economically. In 
particular, the small number of reclassifications may 
be important at a health system level if they result in 

Table 4  Reclassification tables comparing clinical categories of chemotherapy benefit from standalone PREDICT and PREDICT with (a) 
Oncotype DX, (b) EndoPredict, (c) MammaPrint and (d) Prosigna in ER-positive patients

PREDICT + Oncotype DX

Low Intermediate High

(a)

 PREDICT

  Low 893 19 0

  Intermediate 27 434 7

  High 0 21 477

PREDICT + EndoPredict

Low Intermediate High

(b)

 PREDICT

  Low 890 22 0

  Intermediate 46 407 15

  High 0 49 449

PREDICT + MammaPrint

Low Intermediate High

(c)

 PREDICT

  Low 873 39 0

  Intermediate 54 380 34

  High 0 27 471

PREDICT + Prosigna

Low Intermediate High

(d)

 PREDICT

  Low 877 34 1

  Intermediate 60 388 20

  High 0 68 430
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improvements in patient care (which reduce long-term 
costs of readmission, for example).

Conclusion
This study evaluates the impact of adding GRSs to current 
standards of care for breast cancer predictive modelling 
using key model performance metrics (calibration, dis-
crimination and reclassification). Three GRSs (EndoPre-
dict, MammaPrint and Prosigna) demonstrated power to 
predict BCSS in breast cancer independent of PREDICT. 
However, incorporating these models into PREDICT had 
only a modest impact upon calibration (underestimating 
10-year BCSS by around 12%), discrimination (with c-indi-
ces non-significantly different to the original PREDICT 
algorithm) and reclassification (with 4–10% of patients 
reclassified into different clinical categories). Performance 
was much better in ER-positive than ER-negative patients. 
Although these small improvements in model fit might be 
clinically useful, economic analyses are needed to assess 
whether this justifies the increased cost.
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