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Abstract 

Molecular similarity search is an often-used method in drug discovery, especially in virtual screening studies. While 
simple one- or two-dimensional similarity metrics can be applied to search databases containing billions of molecules 
in a reasonable amount of time, this is not the case for complex three-dimensional methods. In this work, we trained 
a transformer model to autoencode tokenized SMILES strings using a custom loss function developed to conserve 
similarities in latent space. This allows the direct sampling of molecules in the generated latent space based on their 
Euclidian distance. Reducing the similarity between molecules to their Euclidian distance in latent space allows the 
model to perform independent of the similarity metric it was trained on. While we test the method here using 2D 
similarity as proof-of-concept study, the algorithm will enable also high-content screening with time-consuming 3D 
similarity metrics. We show that the presence of a specific loss function for similarity conservation greatly improved 
the model’s ability to predict highly similar molecules. When applying the model to a database containing 1.5 billion 
molecules, our model managed to reduce the relevant search space by 5 orders of magnitude. We also show that our 
model was able to generalize adequately when trained on a relatively small dataset of representative structures. The 
herein presented method thereby provides new means of substantially reducing the relevant search space in virtual 
screening approaches, thus highly increasing their throughput. Additionally, the distance awareness of the model 
causes the efficiency of this method to be independent of the underlying similarity metric.
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Introduction
Molecular similarity search
The mean financial burden of researching and develop-
ing a new drug has been estimated to exceed 1 billion US 
dollars [1]. Resource, cost, and time efficient methods of 
finding new drug molecules are therefore imperative for 
reducing the cost and duration of drug development. 
Using computer-based methods can help reach this goal.

A well-known concept in drug development is that 
similar molecules exhibit similar properties and activity 
profiles [2, 3]. This can enable researchers to find novel 
hits by comparing them with known active substances, 
which is the main principle behind similarity search in 
drug development. Similarities between compounds 
can be determined by different strategies, from simple 
descriptor-based comparisons over 2D fingerprints to 
detailed 3D measures such as shape-based or field-based 
similarities dependent on alignment of the molecules to 
be compared. To calculate similarities between molecules 
for large-scale similarity search, typically molecular fin-
gerprints are utilized and computed. These fingerprints 
encode chemical properties and usually consist of 
binary vectors. While traditional molecular fingerprints 
were mainly rule-based (e.g. based on the presence of 
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substructures or atom-pairs [4, 5]), data driven finger-
prints (e.g. learned by machine learning models) became 
more prominent in recent years [6]. Various metrics like 
the Tanimoto or Dice coefficient, or the Tversky index 
can be used to compute similarities based on these binary 
fingerprints [3].

There is a large variety of molecular fingerprints, rang-
ing from simple fragment-based 2D methods to complex 
3D approaches [2, 7]. 2D based fingerprints can easily be 
applied to virtual screenings of multi-million compound 
databases (up to several billion) [8, 9]. While this is pos-
sible in a relatively short period of time due to their low 
complexity, more complicated 3D similarity measures 
such as shape screening and similarity based on field 
points are realistically only feasible to use on smaller 
datasets of several hundred thousands up to a few million 
compounds [10, 11].

Here, we present a different approach to the problem 
of high-content similarity screening combining trans-
former-based autoencoder models, similarity-based 
latent space shaping, and direct sampling in the reduced 
latent space representation. In this current proof-of-
concept study presented here, we demonstrate the 
feasibility of the approach using 2D fingerprint similari-
ties. We show that our approach can capture molecular 
similarities very well in latent space. The performance 
of the presented model is, however, independent of the 
used similarity metric. This allows researchers to train 
a model on highly complex 3D similarity metrics and 
thus perform high-content screening using metrics that 
otherwise would not be feasible to apply to a large set 
of compounds. Since the presented problem falls under 
the domain of distance metric learning [12, 13], we show 
how to overcome this obstacle by implementing a custom 
loss function specifically designed to map similarities to 
Euclidian distances.

Related work
Since the goal of this project is to group similar samples 
closer together in latent space while pushing dissimilar 
samples further apart, it shares similarities with contras-
tive learning approaches [14, 15]. Contrastive learning 
has been widely used in visual learning with great success 
[16–18]. Recently, it has also been applied to molecular 
data, not only in a supervised but also in a self- or unsu-
pervised fashion [19–21]. Self-supervised methods have 
the advantage that they do not rely on the explicit labe-
ling of positive (similar) and negative (dissimilar) sam-
ples. When it comes to molecular data, self-supervision 
is feasible in 2D space by slightly altering substructures 
of molecules to obtain positive samples. However, when 
moving to 3D representations, altering substructures 
may lead to large differences in the 3D conformation of a 

molecule, where it is not guaranteed that the newly gen-
erated structure is still similar to the original. Further-
more, our approach differs from contrastive learning by 
providing a continuous measure of similarities to allow 
for a ranking of molecules according to their similarity to 
a template.

The use of deep learning models to create latent space 
embedding of molecules is not novel and has been used 
for several years now [22, 23]. However, to our knowl-
edge, this is the first time that the generated latent space 
was explicitly shaped in a way that allows the direct con-
servation of molecular similarities without having to rely 
on the discrimination of the data into different classes 
and without losing the direct scalability to higher dimen-
sional representations.

A well established approach of learning chemical 
properties of molecules is by using so called autoencod-
ers [24–27]. An autoencoder is a model that attempts to 
encode its input into latent space and decodes it again 
while minimizing the difference between the input and 
the decoded output. The latent space can be considered 
a reduced representation of the underlying structures of 
the chemicals in the dataset. Herein, we make use of an 
autoencoder in order to learn similarities of molecules. 
Honda et al. previously used a transformer model to gen-
erate molecular fingerprints from SMILES strings using 
a simple reconstruction loss function [24]. Bjerrum et al. 
found that mapping enumerated to canonical SMILES 
improves the conservation of similarities in latent space 
[25].

As mentioned before, conserving similarities in latent 
space is not only of high relevance in drug discovery but 
also in other fields such as image recognition. Schroff 
et  al. [28] proposed a loss function called triplet loss 
(Eq. 1) which can be used to map related images to simi-
lar regions in latent space while increasing the distance 
between dissimilar images:

This loss function relies on the definition of an anchor 
(A), a positive (i.e. similar) sample (P), and a negative (i.e. 
dissimilar) sample (N) and is therefore well suited for 
data with discrete labels. f (·) describes the coordinates of 
a compound in latent space, || · || the L2-norm, and m the 
hyperparameter specifying a margin to separate similar 
from non-similar molecules.

In this work, we follow the approach of Honda et al. 
and use a transformer model to autoencode SMILES 
strings to generate fingerprints suitable for similar-
ity calculations [24]. We then use the generated latent 
space encodings for similarity search based on Euclid-
ian distances. In order to improve the similarity 

(1)
L(A,P,N ) = max(||f (A)− f (P)|| − ||f (A)− f (N )|| +m, 0)
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conservation in latent space, we compare a model based 
only on a reconstruction loss with models trained on 
additional loss terms to specifically learn similarities. 
Since the triplet loss function in Eq. 1 requires discrete 
labels, working with similarities requires the definition 
of a similarity threshold separating similar molecules 
from dissimilar ones. As such a separation is highly 
ambiguous for diverse sets of molecules, we developed 
a novel loss function which we call the similarity loss 
function. The similarity loss function can be used to 
work with continuous data, rendering it well-suited for 
working with similarities.

The herein presented models are therefore intended 
to estimate similarities based on Euclidian distances in 
latent space, allowing the subsequent use of exhaustive 
similarity search on a drastically reduced search space. 
We also show that a model trained on a small dataset is 
able to generalize to huge compound libraries contain-
ing highly diverse structures.

Methods
Model architecture
In recent years, transformer-based models witnessed 
great success in various areas such as natural language 
processing, speech recognition, object detection, and 
more [29–33]. In this work, we follow the initial trans-
former model architecture proposed by Vaswani et  al. 
[34]. Figure 1 shows a representation of the implemented 
model architecture.

To encode simple SMILES representations of mole-
cules, we first tokenized the strings, embedded them and 
added a positional encoding. An example of a tokenized 
SMILES string can be found in Additional file 1: Fig. S1−
S3. The positional encoding is done using a set of sine 
and cosine functions of varying frequencies as indicated 
in Eq. 2 where pos refers to the position of the token in 
the sequence, d is the size of the embedding, and i is 
the dimension of the embedding. In this study, we set 
d = 256.

Fig. 1  Architecture of the used transformer model. Encoder and decoder layers are constructed following the original publication of the 
transformer model by Vaswani et al. [34]. To help conserve similarities in latent space, a special loss function denoted as ”similarity loss” is added to 
the reconstruction loss
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The pre-processed data are then passed to a transformer 
encoder consisting of four layers. Each layer contains a 
multi-head attention layer. In this model, we used four 
heads per attention layer. To compute the attention, we 
follow the original article where attention is defined as 
shown in Eq. 3 where Q, K, and V are matrices containing 
the queries, keys, and values, respectively, and dk is the 
dimensionality of the keys [34].

This encoder computes a latent space representation 
of the input. To obtain a single vector representation 
for each source molecule, we average over all tokens 
in the sequence. For the decoder part, we feed the 
tokenized target SMILES to an embedding layer and add 
a positional encoding the same way it was done for the 
encoder part. Note that since we are working with an 

(2)
PE(pos, 2i) = sin

(

pos

10000
2i
d

)

PE(pos, 2i + 1) = cos

(

pos
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2i
d

)

(3)attention(Q,K ,V ) = softmax

(

QKT

√

dk

)

V

autoencoder, the source and target represent the same 
SMILES string while the target is right shifted. This 
means that the matrices containing the queries, keys, and 
values (Eq. 3) all contain the same information consisting 
of the tokenized SMILES strings. The queries and keys 
are used to calculate attention weights which represent 
the importance of each element in the SMILES string. 
These attention weights can then be used to compute a 
weighted sum of the values. The transformer decoder 
layers combine the predicted latent space representa-
tion of the source with the attention weights and masked 
target embeddings, and subsequently predict the target 
sequence.

In a regular transformer model, this prediction is then 
used to calculate the reconstruction loss usually in form 
of a cross entropy loss which is used to train the model. 
Here, we develop and test novel loss functions to con-
serve similarities in the produced latent space. When 
applying the model to predict similarities, the decoder 
part of the model will not be used. Similarities are cal-
culated based solely on the latent space representation 
of the query molecules; the L2 norm is used to calcu-
late the distance between two molecules in latent space 
(Fig.  2). In praxis, a perfect correlation between latent 

Fig. 2  Predicting similarities between two molecules. The L2 norm is used to calculate the distance in latent space based on tokenized SMILES 
strings
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space distance and ground truth similarity metric can-
not be expected. Therefore, the purpose of this model 
is to obtain high enrichment in predicted, similar com-
pounds to reduce the relevant search space by a signifi-
cant degree. This will drastically increase the efficiency of 
virtual screening.

Similarity conservation in latent space
When using a transformer model to auto-encode 
SMILES strings, the used loss function commonly only 
consists of a reconstruction term, e.g. in form of a cross 
entropy loss. While this may be sufficient to conserve 
similarities in latent space for small datasets, the model 
does not specifically learn relationships between mole-
cules. The triplet loss function introduced in the previous 
section can be used to separate labelled samples in latent 
space. Since the herein presented work uses continuous 
data, a similarity threshold has to be defined with the 
intention of distinguishing between similar and dissimi-
lar compounds. The determination of such a threshold 
is ambiguous and may differ between systems and their 
active molecules.

To better deal with the continuous nature of our data, 
we developed a novel loss function which we call the sim-
ilarity loss (Eq. 4).

The similarity loss depends on an anchor (A) sample 
much like in the triplet loss function. However, it does 
not have to rely on the determination of positive and 
negative (i.e. similar and dissimilar) samples. Instead, 
it compares each anchor in a batch with all other sam-
ples (X) in the same batch. Since most similarity metrics 
sim(·, ·) range from 0 to 1 (0 being completely different 
and 1 being identical), 1− sim(·, ·) can be used to convert 
the similarity to a relative distance. The loss function is 
therefore trying to set the Euclidian distance in latent 
space equal to the relative distance in data space. In this 
study we used the Tanimoto coefficient calculated based 
on Morgan fingerprints as similarity metric. However, 
the described loss function is agnostic of the used simi-
larity metric as long as its values are in the range [0, 1]. In 
order to spread the embedded samples in latent space, we 
included a scaling factor a to the term describing the rel-
ative distance in data space. The complete loss function 
consists of the sum of reconstruction loss (here we use a 
cross entropy loss) and our similarity loss:

(4)
L(A,X) =

∣

∣a · �(1− sim(A,X))� − �f (A)− f (X)�
∣

∣

(5)

L(A,X) =
∣

∣a · �(1− sim(A,X))� − �f (A)− f (X)�
∣

∣

−
∑

I∈{A,X}

nI
∑

i=1

∑

c

ti,c · log(p̂i,c)

where ti,c is the label of a token i, p̂i,c is the predicted 
probability for class c for token i, and nI is the number 
of tokens for compound I. More information about the 
training of the model such as the selection of anchors 
during the batch generation can be found in the Addi-
tional file 1: Section 2.1.

In the following subsections, we compare the perfor-
mance of the presented loss functions in order to deter-
mine their suitability to conserve similarities in latent 
space.

Results and discussion
Initial tests using a small dataset
For a comparison of the three loss functions, three mod-
els were trained on a small dataset containing 10,000 
compounds (see Additional file 1). The three models were 
trained using the reconstruction loss of SMILES strings 
(vanilla transformer), reconstruction plus triplet loss func-
tion, and reconstruction plus our newly developed similar-
ity loss function. To compare the performance of the three 
models, we predicted the distances between a set of 100 
randomly chosen reference compounds from the validation 
set and all other compounds in the dataset and compared 
them to the respective ground truth similarities. Based 
on these calculations, we computed the area under the 
receiver operating characteristics curve (AUROC) using 
different similarity thresholds to distinguish similar from 
dissimilar compounds. To avoid bias from the high number 
of dissimilar compounds leading to increased AUROC val-
ues, we only included compounds with a mimimum simi-
larity of 0.40 to the individual reference compounds in this 
analysis.

As shown in Table  1, although there were overlapping 
error bands, the model trained with our similarity loss 
function in addition to the reconstruction loss clearly out-
performed the other two models. The AUROC values were 
above 0.90 for all tested similarity thresholds except the 
lowest two. For all three methods, we observed an increase 
in AUROC values with increasing similarity threshold. This 
is likely due to a negative correlation between the true posi-
tive rate and the total number of positives in a dataset.

The vanilla model often failed to distinguish between 
similar and dissimilar compounds based on the Euclidian 
distances in latent space. The predicted distances are all 
very similar which likely caused a blurring in latent space, 
rendering it difficult to accurately distinguish between sim-
ilar and dissimilar samples. While the model trained with 
an additional triplet loss was often able to map similar com-
pounds closer to the reference than dissimilar compounds, 
it also generated a very dense latent space in which small 
errors can lead to incorrect predictions. By including our 
custom similarity loss, the model not only learned to cor-
rectly distinguish between similar and dissimilar molecules 
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most of the times, it also spread out the generated latent 
space much more, making a separation between molecules 
much clearer.

Figure  3 highlights the differences between the three 
models on a randomly selected example. Compound B 
is highly similar to compound A, whereas compound C 
does not share a high similarity with A. Scaling the latent 

space distance dij between two molecules i and j to the 
range [0,  1] and translating them into similarities sLSij  , 
allows for a comparison of ground truth and predicted 
similarities in latent space:

where dmax is maximum distance between any two mol-
ecules in latent space.

By applying this formula to the compounds in Fig.  3, 
we obtain approximated similarities between A and B of 
0.724, 0.899, and 0.825, and between A and C of 0.139, 
0.821, and 0.852 using the similarity loss model, the tri-
plet loss model, and the vanilla model, respectively. This 
shows that the similarity loss model is clearly better at 
discriminating between similar and dissimilar molecules.

While the vanilla transformer model has no additional 
information about the similarity between molecules, the 
triplet loss function learns to group similar molecules 
together based on a similarity threshold. In contrast, 
the similarity loss function directly maps similarities to 
Euclidian distances and thereby, a superiority in this spe-
cific task was expected.

Based on these results, we expected the model with 
the additional similarity loss function to perform best, 
followed by the model with the triplet loss. Since the 
vanilla model did not have the ability of explicitly learn-
ing to couple similarities with latent space distances, we 

(6)sLSij ≈ 1−
dij

dmax
,

Table 1  AUROC values for the different models trained on a 
small dataset of 10,000 compounds

While the vanilla transformer model was trained using only a reconstruction 
loss function, the other two models were trained with an additional loss term 
to specifically enforce the conservation of ground truth similarities in the latent 
space

Similarity 
threshold

Vanilla transformer Triplet loss Similarity loss

0.45 0.68 ± 0.17 0.73 ± 0.17 0.82 ± 0.18

0.50 0.69 ± 0.18 0.75 ± 0.16 0.86 ± 0.17

0.55 0.75 ± 0.18 0.80 ± 0.15 0.92 ± 0.08

0.60 0.76 ± 0.18 0.81 ± 0.15 0.91 ± 0.11

0.65 0.80 ± 0.17 0.85 ± 0.13 0.94 ± 0.09

0.70 0.84 ± 0.18 0.89 ± 0.12 0.96 ± 0.07

0.75 0.87 ± 0.16 0.91 ± 0.12 0.97 ± 0.07

0.80 0.90 ± 0.14 0.94 ± 0.09 0.98 ± 0.07

0.85 0.92 ± 0.14 0.96 ± 0.08 0.98 ± 0.07

0.90 0.94 ± 0.14 0.98 ± 0.05 0.98 ± 0.08

0.95 0.97 ± 0.09 0.99 ± 0.04 1.00 ± 0.01

Fig. 3  Similarity conservation in latent space. A 2D structure of a randomly chosen reference compound. B 2D structure of a molecule similar 
to the reference. Similarity was defined as having a Tanimoto coefficient above 0.8. The distances to the reference in latent space are shown for 
the individual models. C 2D structure of a dissimilar molecule. Dissimilarity was defined as having a Tanimoto coefficient below 0.3. Latent space 
distances to the reference are shown for the individual models
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expected it to perform worst in the similarity-based vir-
tual screening tasks.

Scale‑up using the ZINC database
Training of the models was subsequently upscaled using 
a large dataset of around 500,000 molecules (see Addi-
tional file  1: Dataset generation). To test the optimized 
model, we chose a diverse set of 10 reference compounds 
and screened the whole downloadable ZINC database 
(around 1.5 billion SMILES) against each reference com-
pound [35]. The 10 reference compounds were randomly 
selected from the complete ZINC database while ensur-
ing some degree of structural diversity and making sure 
that the compounds were neither part of the training nor 
the validation set. An overview of all 10 reference com-
pounds can be found in Additional file 1: Fig. S4. The goal 
of these models was not to achieve a perfect correlation 
with calculated 2D similarities but to reduce the search 
space to a manageable size for subsequent exhaustive 
similarity search. We therefore checked for each refer-
ence compound how many of the 10 most similar data-
base entries (determined using an exhaustive search) can 
be found within the N closest samples according to each 
model (Fig. 4).

The model trained with the similarity loss function 
proved to be effective in reproducing the top 10 most 
similar compounds within the 15,000 closest samples in 
latent space for all investigated reference compounds. 
This corresponds to a reduction of the search space 
by 5 orders of magnitude. In comparison, the vanilla 
model (i.e. without similarity loss function) only man-
aged to identify 45% of all similar compounds within 
the top 100,000 predictions. With an identification rate 
of 75%, the model trained with the triplet loss was bet-
ter than the vanilla model while still being worse than 
the model with similarity loss.

To give further insights into the performance dif-
ferences between the individual models, we selected 
three structurally different compounds from the 10 
reference molecules. The first reference (reference1) is 
a large peptide with a molecular weight of more than 
2000  g/mol (PubChem CID 44335764). The second 
(reference2) is a highly cyclized compound (PubChem 
CID 44605611) and the third (reference3) is a potent 
5HT1B receptor antagonist (PubChem CID 44405730).

The first ”ranking” analysis (Fig.  5, middle column) 
shows the models’ potential to correctly identify and 
rank the 100,000 most similar compounds from the 
ZINC database. The right column in Fig. 5 analyses the 
models’ performance in identifying similar compounds 
to the reference (at a similarity threshold of 0.5). This 
analysis we name ”hit identification” in the subsequent 
paragraphs. In general, the vanilla transformer was 
capable to identify similar compounds to large refer-
ence molecules such as reference1, but had significant 
difficulties for small substances, e.g. reference3. The 
same was true for the triplet loss model although the 
reproduction performance for the small substances was 
better compared to the vanilla model (Fig. 5).

In detail, the analysis showed that all three models per-
formed very well for reference1 (Fig.  5A), with the tri-
plet loss model being slightly better at reproducing the 
similarity distribution of the exact metric than the other 
two models. In the ”hit identification” task, with approxi-
mately the first 100 predictions, all models performed 
similarly. For the compounds ranked lower in predicted 
similarity to the reference, the similarity and triplet loss 
models started to clearly outperform the vanilla model. 
Within 100,000 top-ranked compounds, the similarity 
and triplet loss models were able to reproduce around 
90% of the similar compounds whereas the vanilla model 
only managed to find around 40%.

Fig. 4  Comparison of reproduction abilities of the models with and without similarity loss function. The lines represent the normalized amount of 
the 10 most similar compounds within the top N closest samples in latent space for 10 reference compounds
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For reference2 (Fig. 5B) and reference3 (Fig. 5C), the 
similarity loss model clearly outperformed the other two 
models in both ”ranking” and ”hit identification” tasks. 
For reference2, the similarity loss model, triplet loss 
model, and vanilla model were able to identify 90%, 33%, 
and 18% of the similar compounds, respectively. Large 
difference was also seen for reference3, where the simi-
larity loss could identify all similar compounds within 
the top 2000 predictions while the vanilla model could 
only find around 7% of the similar compounds within 
the first 100,000 predictions. The triplet loss model was 
able to find 63% of the most similar compounds, thus 
performing much better than the vanilla model but still 
much worse than the model trained with the similarity 
loss. The comparatively good performance of the vanilla 
and triplet loss model for reference1 is likely due to the 
relatively low number of very large molecules in the data 
set, placing those molecules in a well-separated location 
in latent space. The model trained on the similarity loss 
however performed well in all three cases, proving the 
advantage of the additional loss term.

Exclusion of scaling factor in loss function
To study the importance of the scaling factor in the 
similarity loss function (Eq. 4), we trained an additional 

model with a scaling factor of 1, thus disabling its effect. 
Using the same analyses as previously discussed revealed 
a drop in accuracy compared to using larger scaling fac-
tors, although it still performs better than the vanilla 
model (Additional file  1: Fig. S5). These findings have 
likely to do with the fact that a well structured latent 
space that is not too densely packed may be important 
for a good reproduction performance.

Finding a good value for the scaling factor is not 
trivial and this hyperparameter has to be tuned dur-
ing training. In our tests, we found a value of 20 to 
work well for the initial analyses with a smaller dataset. 
However, when moving to a larger set, we found that 
decreasing the scaling factor to 10 further improves the 
performance of the model.

Conclusion
In this work, we developed models for similarity-based 
high-content screening with the aim to translate pair-
wise similarities in data space to Euclidian distances 
in latent space. This will facilitate efficient similarity 
searches independent of similarity metrics. We could 
show that the use of a loss function specifically designed 
to conserve molecular similarities in latent space greatly 

Fig. 5  Similarity reproduction abilities. Left: 2D structure of the respective reference compound. Middle: Histogram of similarities (calculated using 
the exact method) of the 100,000 closest molecules to the reference in latent space (”ranking” task). Right: Reproduction of fairly similar compounds 
to the reference where a threshold of 0.5 was chosen to distinguish between similar and dissimilar compounds (”hit identification” task). A analysis 
of the performance using a very large reference compound. B performance with a smaller, cyclized reference compound. C performance using a 
more linear compound with heterocycles
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improved the accuracy of the model. By training a trans-
former autoencoder using a novel similarity loss func-
tion, it was possible to obtain a model that could be 
successfully used for similarity search against a database 
of more than 1 billion compounds. We demonstrated that 
our model was able to generalize from a comparatively 
small dataset, making it possible to learn highly complex 
similarity metrics that could otherwise not be applied to 
large datasets. While the presented model did not obtain 
a perfect correlation to the underlying ground truth simi-
larity metric, it can be used to substantially reduce the 
available search space by five orders of magnitude. Such 
a drastic reduction of search space allows for subsequent 
use of exhaustive classical screening methods.

Here, we provide a proof of concept showing the pos-
sibility of generating a model for similarity search that 
is unaware of the underlying similarity metric, thereby 
uncoupling its efficiency from the chosen method. For 
future adaptation of the method to 3D similarities, we 
will explore whether SMILES representations are suf-
ficient as input or representations such as 3D graphs 
are necessary to allow the model to effectively learn 
3D information. The proposed loss function for latent 
space shaping, however, will be not affected by this 
potential architecture change, as it is agnostic of the 
specific similarity metric.
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