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Abstract

LC-HRMS experiments detect thousands of compounds, with only a small fraction of them 

identified in most studies. Traditional data processing pipelines contain an alignment step to 
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assemble the measurements of overlapping features across samples into a unified table. However, 

data sets acquired under nonidentical conditions are not amenable to this process, mostly due 

to significant alterations in chromatographic retention times. Alignment of features between 

disparately acquired LC-MS metabolomics data could aid collaborative compound identification 

efforts and enable meta-analyses of expanded data sets. Here, we describe metabCombiner, a 

new computational pipeline for matching known and unknown features in a pair of untargeted 

LC-MS data sets and concatenating their abundances into a combined table of intersecting feature 

measurements. metabCombiner groups features by mass-to-charge (m/z) values to generate a 

search space of possible feature pair alignments, fits a spline through a set of selected retention 

time ordered pairs, and ranks alignments by m/z, mapped retention time, and relative abundance 

similarity. We evaluated this workflow on a pair of plasma metabolomics data sets acquired with 

different gradient elution methods, achieving a mean absolute retention time prediction error of 

roughly 0.06 min and a weighted per-compound matching accuracy of approximately 90%. We 

further demonstrate the utility of this method by comprehensively mapping features in urine 

and muscle metabolomics data sets acquired from different laboratories. metabCombiner has 

the potential to bridge the gap between otherwise incompatible metabolomics data sets and is 

available as an R package at https://github.com/hhabra/metabCombiner and Bioconductor.

Graphical Abstract

Untargeted metabolomics assays provide valuable information about the composition of 

organic samples and biochemical phenomena underlying diverse phenotypes. The most 

common method for profiling metabolites is liquid chromatography coupled to electrospray 

ionization mass spectrometry (LC-ESI-MS) due to its sensitivity, resolution, and versatility.1 

Analysis and interpretation of metabolomics data are challenging due to the intricacy of 

mass spectral data and the difficulty of assigning unambiguous compound identities to 

detected features; in most studies, only a small portion is readily identified.2
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A key step in LC-MS data processing pipelines is the alignment of mass spectral peaks 

represented as < mass-to-charge ratio (m/z) and retention time (RT) > features, across 

a set of experimental samples. The common goal is to maximize the discovery of 

shared constituent analytes and assemble their respective abundance measurements into 

a unified table of spectral features to be used for further downstream analyses. Dozens 

of algorithms have been developed for the alignment of LC-MS peaks,3 many of which 

have been implemented in popular open-source processing software, such as XCMS4 and 

MZMine2.5 Feature alignment methods should account for a drift in RTs resulting from 

distinct sample matrices and changes in chromatographic conditions between individual 

runs. In recent years, new approaches such as BatchCorr,6 MetMatch,7 and DIMEDR8 have 

emerged for alignment of metabolomics data acquired in separate experimental batches 

in order to account for significant interbatch alterations in compound RTs which may 

lead to misalignments, especially when long interval periods occur between analyses of 

experimental batches. Other methods, such as metaXCMS,9 facilitate meta-analysis of 

multiple processed data sets by aligning features nearest in m/z and RT distance among 

different sample groups.

These approaches are designed for aligning LC-MS features acquired under roughly 

identical settings within a single laboratory, which may harbor slight alterations in 

analytical conditions between runs. A greater challenge is presented when aligning features 

detected under varied experimental factors, such as differences in gradient methods, 

chromatographic columns, or mobile phase solvents. Such disparities typically result in 

significant deviations between chromatograms that cannot be corrected by conventional 

feature alignment approaches. Protocols for the untargeted analysis of biological mixtures 

have not been standardized across laboratories, creating “incompatible islands” of data sets 

where feature measurements cannot be directly and thoroughly compared.8 Multilaboratory 

comparison studies focused on determining the consistency of global LC-MS metabolomics 

measurements typically use identical assays,10 employ indirect quantitative approaches such 

as CCSWA,11 or limit their analyses to shared identified compounds12 due to the challenges 

of matching and comparing the measurements of unidentified features.

The primary hurdle in aligning disparate LC-MS data sets is correcting significant deviations 

in observed RTs for shared analytes. Numerous approaches have been published for 

translating RTs between similar, but nonidentical, chromatography methods. Retention 

indices, calculated from internal standards as a dimensionless, transferrable alternative to 

retention times, are traditionally applied to GC-MS data and have seen limited application to 

LC-MS.13–15 The analogous iRT is empirically derived using synthetic peptides of varying 

hydrophobicity for proteomics data.16 Abate-Patella et al. described a “retention projection” 

approach that uses experimentally measured retention factor (k) vs solvent composition (Φ) 

relationships.17,18 The PredRet tool contains a database of compounds whose RTs have been 

recorded by different chromatography systems, and the tool uses a spline-fitting approach to 

predict RTs in a new system with an overlap of measured compounds within this database.19 

Recently, the CALLC tool coupled chromatographic systems mapping with Quantitative 

Structure Relationship Relationship (QSRR) modeling, a technique that applies machine 

learning approaches to predict metabolite retention times from their underlying chemical 

descriptors.20 While these approaches are designed to facilitate compound identification, 
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they cannot be directly applied for the related but distinct goal of matching and aligning 

unknown spectral features. One tool for metabolomics feature matching between data sets 

is PAIR-UP MS,21 which utilizes the shared correlation structure of similar biological 

specimens, effectively bypassing RT comparisons. However, this method requires a large 

number of samples and shared known identified metabolites to work effectively. Various 

proteomics alignment approaches take advantage of MS2-based identifications, using shared 

peptide identities between runs to nonlinearly model RT shifts, followed by score-based 

matching.22–25 This solution is not always viable in metabolomics since LC-MS assays 

are often performed without comprehensive MS/MS analysis or alternative means of 

determining metabolite coverage overlaps. Mitra et al.26 proposed a quality control method 

for determining elution order distortions in LC-MS proteomics data generated by different 

laboratories, using m/z and abundance ranks to perform RT mapping and peak matching.26

Here, we present a novel computational pipeline, implemented in the metabCombiner R 

package, for matching features corresponding to shared known and unknown metabolites 

and concatenating their spectral measurements to form a combined feature table. 

metabCombiner takes a pair of conventionally processed metabolomics data sets as input, 

fits a nonlinear spline to map between RTs, and ranks all feature pair alignments (hereafter 

denoted as FPAs), assigning to each a similarity score based on differences in m/z, retention 

time (fitted vs observed), and relative abundance. metabCombiner has no sample size limit 

and does not require identified compounds, though prior knowledge may be incorporated for 

enhanced results. We evaluated the accuracy of RT mapping and feature matching of shared 

known compounds in a pair of plasma data sets generated with two different reversed-phase 

liquid chromatography (RPLC) protocols. We further demonstrated the method in two 

separate cross-data set alignment cases consisting of human urine and rat skeletal muscle, 

analyzed under varied conditions in separate metabolomics laboratories.

METHODS

Software Overview.

metabCombiner is a software package written in the R statistical language. The inputs 

for this package are two peak-picked and conventionally aligned feature tables. Rows 

represent individual features whose m/z, retention time, and per-sample abundance values 

are displayed in separate columns. The data sets must be acquired in the same ionization 

mode, with no prior scaling or normalization that may distort their ranked abundance 

order. The data sets used as inputs must be acquired from biologically similar specimens 

with a strong expected overlap in their metabolic composition. Finally, chromatographic 

protocols used to acquire the data sets must be similar enough that the elution order of 

compounds is largely comparable, if not identical. Postprocessing steps for removal or 

annotation of features of nonsample origin (e.g., blank sample features, noise, processing 

artifacts) and isotopologues are desirable but not required. Users may include recommended 

but optional, feature identifiers, as well as adduct, fragment, or formula labels for validation 

and parameter optimization purposes. Additional input data set columns may be included in 

the output report table as “extra” nonanalyzed columns.
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metabCombiner workflow.

For a pair of data sets, one is designated as the projection (X) data set, whose retention 

times will be mapped to the chromatogram of its complement, denoted as the reference 
(Y) data set. We recommend that the data set with the shorter retention time range be 

designated as the reference as we generally observe smaller absolute prediction errors when 

mapping from a highly separated chromatogram to a less separated one than vice versa. The 

metabCombiner workflow is constructed around key observations for shared compounds 

in data sets that conform to the following assumptions. The first is that m/z deviations 

for identical compounds are generally small, rarely exceeding 5–10 mDa even if measured 

by different high-resolution mass analyzers, as long as proper instrument calibration was 

maintained throughout the analyses. The second is that while raw spectral abundances are 

generally not comparable between experiments, relative abundance (Q)–here calculated as 

ranked median or mean intensity quantile values between 0 and 1–can serve as an additional 

dimension for comparison besides m/z and rt. Finally, due to the requirement for biological 

sample similarity, a number of highly abundant common endogenous metabolites (e.g., 

creatinine in urine) are assumed to be present in both data sets, and these can be used to 

anchor a nonlinear mapping of retention times. The workflow is depicted in Figure 1, and 

the specific steps are described below.

1. Data Preprocessing.—Each data set is separately processed and formatted, checking 

for all required and optional metadata. Subsequently, multiple filters are applied to reduce 

the input feature list. A retention time range filter can limit to features between a start and 

end retention time, eliminating the head and/or tail of the chromatogram which often contain 

features mostly of solvent origin. The second filter eliminates features that are missing in 

more than a certain percentage of the analyzed samples. Finally, pairs of features within 

a specified m/z and RT tolerance values are deemed duplicates, with one copy retained. 

Relative abundance quantile Q values are calculated for the remaining features in each data 

set.

2. Grouping by m/z.—Features from both input tables are pooled, sorted, and binned 

in the m/z dimension. Distinct feature groups form whenever the difference between 

consecutive m/z values is less than a user-specified binGap argument (by default 5 mDa). 

Each group contains m features from data set X and n features from data set Y (m > 0 and 

n > 0), with m * n total possible FPAs. Subsequent steps assess which FPAs correspond to 

shared metabolite entities.

3. RT Ordered Pair Selection.—A set of ordered pairs is required to anchor RT 

mapping. Ideally, confidently identified compounds would be useful for this purpose; 

however, we often do not observe a sufficient coverage of known metabolites to span the 

full retention time range of both chromatograms. Therefore, the ordered pairs are selected 

among all possible FPAs using the process illustrated in Figure 2A. First, the most abundant 

feature (i.e., with the largest Q value) from the X data set is selected and denoted as x1. 

The most abundant Y data set feature in the same m/z group containing x1 is selected as 

the corresponding y-ordinate, y1. Together, the RTs of x1 and y1 serve as the first anchor. 

All features within a small RT window (e.g., 0.03 min) of x1 and y1 in their respective data 
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sets are excluded from consideration as potential anchors. This selection approach is iterated 

for the remaining features, until all feature pairs have been either included or excluded as 

anchors, providing an initial list of ordered pairs (x1,y1), (x2, y2), …, (xn,yn) which we 

denote as Set A. This process is repeated, now choosing the most abundant features of 

data set Y and their counterparts in data set X, deriving a second anchor list, Set B. The 

final anchor set is the intersection of sets A and B and is expected to provide a rough 

outline of the nonlinear smooth curve between two sets of chromatographic retention times 

through which a spline may be fit. This largely unsupervised process may select a number 

of inaccurate FPAs, which manifest as outliers from the outlined curve. Constraints can be 

placed on m/z and Q differences of anchoring X and Y features to increase the robustness 

of anchor selection. Users may also incorporate features with shared identities as anchors, 

which the program will select first as ordered pairs before performing the outlined process 

based on relative abundance. Incorporating prior knowledge improves and refines the RT 

mapping steps.

4. Spline-Fitting.—Basis splines, implemented in the mgcv R package, is the main 

method for RT mapping in this workflow.27,28 Basis splines are a type of generalized 

additive model (GAM), where a smooth curve is computed based on the sum of low-order 

polynomial basis functions joined at k control points. k determines the flexibility of the 

smooth curve and must be optimized from the underlying data. The RT mapping process is 

illustrated in Figure 2B. First, multiple GAMs with different values of k (e.g., 5, 7, 10, …) 

are fit to the ordered pairs computed in the anchor selection step, modeling Y-ordinates as a 

function of the X-ordinates, i.e.

rty f rtx + ∈

In each individual model, we calculate for each ordered pair (rtx, rty) the absolute value of 

the fitted vs observed residual value. Anchors which have consistently high residuals (by 

default, defined as twice the mean model error in over half of the model fits) are excluded 

as outliers. This is repeated for a specified number of iterations, removing anchors that 

deviate significantly from the outlined curve. Anchors selected by matching identity are a 

key exception as they are never filtered, even if relatively high errors are observed. With the 

remaining points, the optimal k value is selected from among the provided options using 

10-fold cross-validation, minimizing mean absolute deviation. The final model is computed 

using this k value, which then maps RTs between data sets.

5. Similarity Scoring.—Each feature may have a multitude of potential candidate 

matches in its counterpart data set. To determine the most plausible FPAs, we assign all 

pairs of grouped features Fx and Fy a similarity score between 0 and 1 according to the 

expression

S Fx, Fy = exp −A mzy − mzx − B
rty − f rtx
range rty

− C Qy − Qx
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where mzx, rtx, and Qx are the respective m/z, RT, and Q values of feature Fx; mzy, 

rty, and Qy are the respective m/z, RT, and Q values of feature Fy; and f denotes the 

computed RT mapping function, with prediction errors normalized by the range of the Y 

data set RT values. A, B, and C are positive weight parameters penalizing differences in 

features m/z, rt, and Q, respectively. Detailed guidelines for choosing effective weights 

are contained in S1. Briefly, the most effective ranges of values used in testing for A, 

B, and C are 50–120, 5–20, and 0–1, respectively. The choice of values should account 

for instrument mass accuracy, model fit, chromatographic range, and sample similarity. 

If the data sets contain a sufficiently representative set of shared identified compounds, 

the package method evaluateParams() finds the set of A, B, and C weight values that 

optimize an objective function maximizing the positive difference between scores of true 

FPAs of these known compounds from their respective misaligned pairings. A score of 

1 implies perfect concordance of m/z, RT prediction, and relative abundance of a pair 

of complementary features from the input data sets, implying a likely aligned compound 

match, whereas scores closer to 0 may be disregarded as misaligned pairs. Each feature’s 

potential matches from the complementary data set are ranked in reverse score order, with 

best matches (rankX = 1 and rankY = 1) displayed first.

6. Row Reduction.—The final step is to reduce the report table by removing misaligned 

pairs. Ideally, every feature should be aligned with at most one feature from the counterpart 

data set; however, in some cases, multiple matches may need to be considered. The 

labelRows() package method facilitates this process by placing thresholds on score and 

pairwise ranking; then, lower-ranked FPAs are flagged for review if either the score or mz/rt 

values are within a small distance from the top-scoring FPA or rejected as removable rows 

otherwise. This process typically eliminates 80–90% of misalignments. Further details on 

FPA table reduction are contained in S2.

Evaluation Data Set.

Untargeted RPLC metabolomics data were acquired twice in the positive ionization mode 

for ten human plasma samples, five from a pooled plasma obtained from deidentified Red 

Cross (RC) blood donors and five from a pooled plasma purchased from a commercial 

supplier for the NIH Children’s Health Exposure Analysis Resource (CHEAR) consortium. 

Samples and process blanks were analyzed using the same instrumentation and column 

but with two different gradient elution methods: one with a total run time of 20 min, the 

other 30 min. Both data sets were processed with XCMS and reduced by isotopologue 

and negative sample control filtering. We identified 137 metabolites in common according 

to Metabolomics Standards Initiative (MSI) criteria 1 or 229 and annotated 532 in-source 

adducts, fragments, and multimers of these metabolites using a custom R script and the 

Binner annotation software,30 which are listed in Supplementary Sheet S1. For this pair 

of data sets, we evaluated the RT fitting and score-based matching of compounds, using 

identified features as a benchmark. First, known metabolites were partitioned into 50% 

training, 50% test sets. RT fitting was both semisupervised (with all training set compounds 

included as anchors) or unsupervised (rt fitting without prior knowledge), with mean 

absolute deviation (MAD) of the fit calculated for the test set compounds. To evaluate score-

based matching, we used evaluateParams to guide A, B, and C weight value selection on the 
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training set compounds. An “accurate match” is defined to be a best-scoring FPA (rankX = 

1 and rankY = 1) between two identically annotated features with a score greater than 0.5. 

Feature matching accuracy is assessed “per-variant”–that is, weighing each adduct/fragment 

feature equally–and “per-compound”–summing the fractions of accurately matched adducts 

and fragments for each compound over the total number of test compounds. Different 

sample subsets (CHEAR, RC) analyzed in the 30 min analysis are designated as data set X, 

with the opposite set in the 20 min analysis designated as data set Y. Further analysis details 

for this pair of data sets are contained in S3.

Exploration Data Sets.

We used metabCombiner to align untargeted metabolomics data sets acquired at the 

University of Michigan Metabolomics Core with data acquired from other institutions. 

First, data from three pooled replicates of healthy human urine obtained from BioIVT 

(Westbury, NY) and NIST Standard Reference Material SRM3673 (together called ‘B3N3’) 

were aligned to that of 43 samples from interstitial cystitis patients (“IC43”) obtained from a 

study published by Blaženović et al.31 We replicated sample preparation and HILIC-positive 

chromatographic approaches from this study but with a shorter column, inducing major 

RT shifts. We use a QTOF mass spectrometer as opposed to an Orbitrap. MS files from 

B3N3 and IC43 (downloaded from Metabolomics Workbench32 Study ID ST001122) were 

both processed by MZMine2 using the ADAP pipeline,33 extracting 10624 and 22313 

features, respectively. In the published study, hundreds of compounds were putatively 

identified at MSI levels 1 and 2, which are annotated in IC43. For B3N3, we assigned 

123 compound identities, all at MSI level 2 using a simple MS/MS-based workflow using 

NIST MSPepSearch.34 More experimental and computational analysis details for this pair of 

data sets can be found in S4.

Second, muscle tissue from 10 sedentary and 10 exercised rats was analyzed in our facilities 

(“MiSE10”) as well as by the Broad Institute (“BrSE10”) in the negative ionization mode. 

Data were processed using XCMS and Progenesis QI (nonlinear dynamics), detecting 5335 

and 8573 features, respectively. There were greater differences in the experimental methods 

used in this case, including column type (Waters H3 TSS modified C18 vs unmodified C18), 

mobile phase solvents (methanol vs acetonitrile), mass analyzer (QTOF vs Orbitrap), and 

m/z scan range (50–1000 vs 70–850). See S5 for more experimental and computational 

analysis details for this pair of data sets. Of the named identified compounds (200 in 

MiSE10 and 80 in BrSE10), there were only 14 (mostly nonpolar) overlapping identities, 

which are listed in Supplementary Sheet S2.

RESULTS

metabCombiner Output.

The main output of metabCombiner is a table containing FPAs organized into separate 

m/z groups in order of increasing m/z. The signal abundance values of each feature are 

concatenated to form a combined table. An example of the m/z group from the plasma data 

sets is shown in Figure 3A. It consists of three features from data set X (30 min analysis) 

and three features from data set Y (20 min analysis), all within the m/z range 426.3205–
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426.3223. Two features each from the two complementary data sets are unidentified isomers 

(X7710 and X7753, Y7385 and Y7434) with the third feature previously identified in both 

data sets as cholate [M + NH4]+. A pairwise top match (rankX = 1 and rankY = 1) is 

assigned between [X7710, Y7385] and [X7785, Y7434], respectively, with alignment scores 

very close to 1. Alternative possible alignments for this pair of compounds are displayed 

as separate rows which can be quickly dismissed as misalignments. The alignment score of 

cholate [M + NH4]+ with itself is lower due to a higher retention time prediction error and 

a slight difference in the relative abundance of this compound between assays; nonetheless, 

it is correctly assigned the top-scoring FPA with itself, and all other pairs score very poorly. 

Thus, three FPAs corresponding to three separate compounds remain in the final table, and 

six misalignments are eliminated. A visual inspection of the peaks shown in Figure 3B and 

3C confirms this matching.

m/z Grouping.—The size of the initial table of FPAs is a function of input data set feature 

counts, their degree of m/z overlap, and the binGap parameter in the m/z grouping step. 

Table S1 reports the initial FPA count in the three test cases using different values for 

binGap. In the plasma data sets, the number of FPAs is comparable to the initial data set 

sizes and grows steadily with increased gap values. In the urine data analysis, the FPA 

space grows very rapidly due to a high density of features in the low (m/z = 100–400 Da) 

range in both data sets. On the other hand, we observe a smaller FPA list between the 

muscle data sets, likely due to differences in m/z ranges surveyed by the respective analyses. 

While the majority of matching known compounds displays small (<1 mDa) m/z differences, 

larger errors (>5 mDa) may be observed in some cases as a result of instrumental and 

preprocessing software factors. Thus, the value of binGap reflects a trade-off between 

compactness of the initial combined table and the ability to detect all true FPAs. The binGap 
value is set to 5 mDa by default and can be altered as necessary.

Retention Time Mapping.—The plot package method is useful for visualizing results 

of anchor selection and GAM-fitting. Plots for plasma, urine, and muscle data sets are 

displayed in Figure 4. In each case, we observe a moderate to high degree of fluctuation 

in the center of the chromatogram along the gradient slope, indicating that these regions 

are generally more difficult to model accurately. Moreover, there are differences in how 

well-represented each chromatographic region is in the three plots. In the first case, all 

regions are well-represented, whereas the third case contains a noticeable gap along the 

gradient. The second plot also has a relatively sparse representation of ordered pair anchors 

in the early chromatogram. The plot serves as a useful tool for tuning the parameters 

associated with model fitting as well as determining an appropriate RT penalty weight.

Evaluation with Plasma Data sets.

We analyzed CHEAR and Red Cross plasma aliquots together in our laboratory using 

two different RPLC protocols with 20 and 30 min total chromatography times. Of the 

137 identified compounds common to both plasma data sets, all but three could be 

grouped by m/z using the default 5 mDa binGap value. The principal ions of caffeine, 

glutamylphenylalanine, and creatine deviated by 0.006, 0.0088, and 0.02 Da, respectively. 

We opted for a binGap value of 0.0075 to be used for all analyses of this data set pair, 
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grouping all metabolite ions except for creatine. Therefore, 136 compounds were used for 

our analysis, with 68 each randomly partitioned into training and test sets. The choices of 

sample subset (CHEAR vs Red Cross) and whether or not to use known identity information 

affect the selection of anchors and the subsequent modeling and feature matching accuracy. 

The results of our evaluation are displayed in Table 1. The mean absolute error of each 

model is consistently around 0.06 min, with a slight advantage observed in semisupervised 

models in which training set compounds are selected as anchors. Prediction errors vs 

observed retention times for selected test set compounds are shown in Figure S1. In 

each model, more than 50 out of the 68 compounds could be predicted within 0.1 min. 

Polar and very nonpolar metabolite RTs are mostly well-predicted, whereas compounds of 

intermediate polarity were less predictable due to alterations in gradient slopes, with the 

highest retention time errors between 0.25 and 0.35 min. Notably, the inclusion of prior 

information provides a distinct advantage in predicting metabolite RTs in relatively sparse 

chromatographic regions.

The fitted models were then used to evaluate scoring, using 270 annotated variants (adducts, 

in-source fragments, and multimers) of the test set metabolites as points of comparison. 

Score parameter arguments were chosen to be to be A = 100, B = 15, and C = 0.3, as 

guided by evaluateParams on training set compounds. Most compounds accurately achieve 

the highest alignment score for all of their variants, with weighted per-compound average 

scores between 0.85 and 0.9 in all analyses. Four shared compounds scored at or below the 

threshold 0.5 level, mostly due to penalization of high m/z differences. In cases for which 

the correct alignment is ranked below a misalignment, at least one feature may be more 

similar in m/z, Q, or RT fit. The feature(s) may arise from a structural isomer eluting within 

close proximity, while in other cases, a peak may be divided as a result of processing errors. 

No accurate FPA ranked poorer than third best for the respective compounds, and the scores 

of all but one compound variant were within 0.2 from the top-scoring alignment. Proceeding 

with table reduction, we set score, rankX, rankY, and delta score tolerance values at 0.5, 3, 

2, and 0.2 to automatically reduce the set of 14024 FPAs by 6765; further inspection reduces 

an additional 400, reducing the table to less than 6900 FPAs.

Data Exploration with metabCombiner.

Urine Data Sets Analysis.—In a preliminary survey of the data sets, we observed 

relatively subpar mass accuracy, particularly for our B3N3 data set; therefore, we opted for a 

wider m/z grouping binGap tolerance value of 0.01, despite the substantial increase to 95898 

rows in the initial FPA table. We conducted the metabCombiner analysis for this pair of 

data sets in two stages. First, we performed analysis without relying on named features and 

assessed the validity of these alignments. This was followed by a semisupervised analysis 

using consistently named compound identities to obtain an improved RT mapping and 

reduced table of FPAs.

The anchor selection step produced 66 ordered pairs for mapping between retention times 

in both data sets, using B3N3 as data set X and IC43 as data set Y. Scoring parameter 

values were set to A = 60, B = 8, and C = 0.3. Forty-one consistently named compounds 

between both data sets achieved the highest-scoring alignments among their respective 
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groups. Three more top alignments were between features named as positional isomers, 

e.g., 4- and 3-hydroxypyridine, which we count among the consistent set. The computed 

GAM mapped retention time accurately for the majority of these compounds, with 28 

and 33 fitted within 0.1 and 0.2 min (1–2%) of the observed retention time, respectively. 

One named compound, ornithine, eluted 0.67 min later than predicted as its elution order 

changed considerably between the two data sets. Seven identically named features did not 

score highly, mainly due to excessive RT fit deviations. In 14 cases, we found high-scoring 

alignments between features with mismatched identities; six of these could be resolved 

through manual review of MS/MS or correcting adduct annotations of these features. Many 

assigned features had no probable match in the counterpart data set (particularly among 

drug-related metabolites), and a few others could not be definitively assigned as a match due 

to low scores or the presence of conflicting feature(s). On the other hand, aligning B3N3 
to the well-annotated IC43 provides moderate-to-high scoring alignments to 167 distinct 

features that were named in IC43 but not B3N3. These alignments provide a list of putative 

identities which can be subsequently verified through the use of authentic standards. The list 

of consistent, inconsistent, and putative compound identities is provided in Supplementary 

Sheet S3.

We proceeded with the semisupervised analysis aided by the 44 consistently named 

metabolites. With this adjustment, 98 ordered pairs were selected for anchoring the updated 

RT mapping. A visual of the two model fits is shown in Figure S2. The greatest differences 

in the model-predicted RTs are observed in the early to middle chromatographic regions. 

Score parameters, as guided by the evaluateParams method, were similar to those used 

before, with only B changed to 7. Table reduction proceeded with similar thresholds to the 

previous case, with alignment scores below 0.5 and ranks above 3 filtered; together with 

inspection of flagged rows, we reduced the table from 95898 to 3265 FPAs or roughly 3% of 

the original table size.

Muscle Data Sets Analysis.—Experimental variables varied more for this pair of data 

sets as compared to the previous analyses. The protocols used to acquire BrSE10 are 

optimized for the measuring metabolites of intermediate polarity (e.g., bile acids and free 

fatty acids), whereas MiSE10 is acquired with a more generalized metabolomics assay. 

This has several implications when aligning features in this pair of data sets. First, as 

a consequence of different column types (Waters HSS T3 C18, which has an embedded 

polar retention functionality, vs Waters BEH unmodified C18), polar compounds were 

difficult to map and differentiate properly as they eluted very rapidly in BrSE10 as 

compared to MiSE10. Second, differences in coverage of highly nonpolar metabolites 

caused major distortions in the model fit (see Figure S3). To correct this, we excised the 

late chromatographic portions where highly nonpolar compounds elute, setting a maximum 

retention time of 24 and 17 min for MiSE10 and BrSE10, respectively. These constraints 

remove 10–20% of the input features in each data set. Third, we observed that a number 

of fatty acids present at high abundances in BrSE10 were barely or not at all detectable in 

MiSE10 samples, likely due to differences in sample extraction protocols between the two 

assays; therefore, quantile Q differences are less reliable in some cases. Finally, while we 

did not encounter significant mass errors for shared compounds in preliminary analysis, the 
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overall mean m/z for these two data sets differed by more than 200 Da (549.3 vs 316.1 in 

MiSE10 and BrSE10, respectively). With the binGap parameter kept to its default value of 

5 mDa, this generated a small initial set of only 3247 possible FPAs, indicating a limited 

coverage overlap between the assays.

We optimized anchor selection and GAM-fitting using a grid search of parameter values, 

with the mean absolute RT deviation for 14 shared identified compounds serving as the error 

metric. The final model mapped five compounds accurately to within 0.1 min; two were 

predicted within 0.25 min; five had errors of between 0.4 and 0.6 min; two (cholate and 

glycocholate) could not be predicted by any of the models to within 1.25 min. Given these 

factors, scoring parameters were chosen as A = 100, B = 7, and C = 0.2. Of the shared 

known compounds, cholate (0.35) and glycocholate (0.39) score the lowest due to the higher 

RT fitting errors. Ten compounds accurately achieved the highest alignment score in all of 

their respective adduct forms; the remaining metabolites have one misaligned variant each, 

and one variant ranked worse than the fifth best. On this basis, FPAs with scores below 0.35 

and ranking worse than fifth were removed, eliminating 1765 alignments; further inspection 

of conflicting alignments removed an additional 400–450 rows, reducing to under 1000 of 

the original 3247 FPAs.

DISCUSSION

The field of LC-MS metabolomics has long been constrained by the incompatibility of 

measurements acquired under disparate analytical conditions. metabCombiner provides an 

opportunity to bridge the gap between some previously incomparable metabolomics data 

and to increase the utility of multiple studies beyond their initial uses. metabCombiner is 

a versatile method designed to be widely applicable to metabolomics data sets, with and 

without prior knowledge of shared coverage.

Unlike many previously discussed alignment approaches, metabCombiner uses traditionally 

peak-picked and aligned metabolomics data rather than raw MS files as input. This allows 

for identically acquired spectral data to be peak-picked and aligned using any method; 

we have examined data analyzed using several different software tools in this study. It is 

important to acknowledge that important spectral information may be lost in translation 

from raw MS data to the tabular format. Different preprocessing software tools were used 

in this study to determine potential sources of error resulting from data set generation. We 

encountered errors similar to those reported previously,35 such as incomplete or multipeak 

integration, low signal-to-noise features, and missed peaks. Such errors may complicate the 

one-to-one alignment of features, as illustrated in Figure 5. In addition, factors affecting the 

accurate estimation of m/z, retention time location, and peak area as well as overall quantity 

of features have important ramifications for this analysis. Therefore, the preprocessing 

method and choice of parameters should be considered carefully for each data set. Another 

important distinction is that metabCombiner focuses on determining the intersection, as 

opposed to the union, of input data set features. While information from nonoverlapped 

features may be missed, the final output table consists of an expanded set of observations 

over a smaller set of observed compounds, providing increased statistical power to detect 
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significant biological changes. The output must be corrected for batch effects before 

carrying out further statistical and bioinformatics analyses.

To our knowledge, few methods for aligning metabolomics features make extensive use 

of relative abundance (Q). In metabCombiner, it is first used to select order pair anchors 

for RT mapping, and then it is incorporated alongside RT and m/z in pairwise alignment 

scoring. While useful for contrasting high- and low-abundance compounds, disparities in 

relative abundance may occur due to experimental factors, such as sample preparation and 

in-source ionization. We occasionally observe that the formation and relative abundances 

of in-source adducts and fragments may differ for the same compounds between data sets. 

Therefore, metabCombiner can be configured to give relative abundance a less prominent 

role than RT and m/z for compound matching by selecting appropriate weight parameters. 

metabCombiner is not the first tool to use a GAM for the purposes of RT mapping 

between chromatograms. GAMs have distinct advantages over local regression (LOESS) 

and regression tree ensemble approaches. Their simplicity, versatility, and robustness to 

overfitting have been noted.18 In particular, setting the default “family” argument to scat 
(scaled t-family for heavy-tailed data) helps to eliminate the influence of outlier points, 

which may cause other overfitting in other approaches.

There are some important limitations to the current work that we hope to address in 

future iterations of this tool. The first is that metabCombiner is currently designed for 

combining two data sets. In order to align more data sets, many of the package constructs 

may need to be appropriately generalized or sequentially applied to additional data sets. 

For the current implementation, it is possible to iteratively merge combined data set 

outputs with an additional data set in a stepwise manner, using one set of m/z, rt, and 

sample measurements for comparison and the others as “extra”, nonanalyzed columns, 

as detailed in S6. A second limitation is that our RT mapping approach does not yet 

provide for prediction intervals as only the point estimate of the mapped RTs is used to 

determine the pairwise alignment score; however, we recognize that intervals may provide 

great utility due to the nonuniformity of prediction errors throughout the chromatogram. 

Cases presented in this study vary in key chromatographic variables, such as gradients, 

column types and dimensions, and mobile phase solvents, yet numerous other variables 

have yet to be fully explored. In general, we observe that data sets acquired from HILIC 

methods are more difficult to align than those by RPLC methods, a difficulty shared with 

previous studies attempting to predict compound retention in separate HILIC assays.36 

Finally, achieving optimal matching of features between two data sets using metabCombiner 
benefits significantly from careful refinement of weighting parameters and other factors. 

We attempted to provide guidance to enable users to achieve good results, but future 

developments may focus on automating this process to a greater extent, allowing for a 

more hands-off data alignment approach more compatible with nonexpert users.

In conclusion, we have developed a computational pipeline for comprehensive mapping 

of features detected in two distinct untargeted metabolomics experiments to generate an 

aligned data set in a semiautomated manner. This tool has numerous applications, such 

as allowing for comparisons of experimental protocols and reproducibility assessments, 

facilitating collaborations in compound identification efforts across institutions, and 
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generating expanded data sets suitable for performing meta-analyses. While this study 

focused on the alignment of metabolomics data, the methods described here may be adapted 

to other untargeted LC-MS analyses of complex mixtures, as long as the input data sets 

meet the main assumptions described in this manuscript. This workflow is implemented 

in the metabCombiner R package which is available on Github at https://github.com/hhabra/

metabCombiner.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
metabCombiner workflow with associated function names.

Habra et al. Page 16

Anal Chem. Author manuscript; available in PMC 2023 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
metabCombiner RT mapping procedure. In (A), RT ordered pairs are selected from shared 

abundant (or identified) features, generating two lists that are subsequently intersected to 

obtain a final set of anchors. Features within a close retention time window of anchors are 

excluded. In (B), multiple GAM fits determine outlier anchors before the best k parameter 

value is chosen through 10-fold CV, which generates the final mapping.
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Figure 3. 
Example scored feature group output with matching peaks. (A) Columns with pink and 

turquoise headings are feature metadata provided by the input data sets. Orange headings–

rtProj (model-predicted RT), Group number, Score, and Feature Ranks with respect to 

alternative matches–are generated by the program. Rows in gray contain mismatched 

features and should be discarded. Rows 1 and 2 are unidentified isomers; row 5 was 

previously identified in both data sets as cholate [M + NH4]+. (B) and (C) are the plotted 

chromatographic peaks corresponding to these features in data sets X and Y, respectively.
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Figure 4. 
Images of the RT mapping curve for each of the three cases described in this study. Anchor 

points with high residuals in over half the GAM fits at a given iteration are marked as 

outliers (indicated in green), except for those with matching identities.

Habra et al. Page 19

Anal Chem. Author manuscript; available in PMC 2023 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Illustration of common processing errors. The top row (A–C) displays correctly integrated 

peaks, whereas the second row (D–F) displays errors. In (A), two isomers are integrated as 

separate peaks, but in (D), they are fused as one feature. In (B), a wide peak is integrated as 

one feature, but in (E), it is split into multiple features. In (C) and (E), one peak is matched 

to numerous low signal/noise features, with only the abundant peak representing the true 

compound match. Processing errors such as these complicate accurate 1–1 feature matching 

between data sets.
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