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Sensorimotor learning is a dynamic, systems-level process that involves the combined
action of multiple neural systems distributed across the brain. Although much is known
about the specialized cortical systems that support specific components of action (such
as reaching), we know less about how cortical systems function in a coordinated
manner to facilitate adaptive behavior. To address this gap, our study measured human
brain activity using functional MRI (fMRI) while participants performed a classic
sensorimotor adaptation task and used a manifold learning approach to describe how
behavioral changes during adaptation relate to changes in the landscape of cortical
activity. During early adaptation, areas in the parietal and premotor cortices exhibited
significant contraction along the cortical manifold, which was associated with their
increased covariance with regions in the higher-order association cortex, including both
the default mode and fronto-parietal networks. By contrast, during Late adaptation,
when visuomotor errors had been largely reduced, a significant expansion of the visual
cortex along the cortical manifold was associated with its reduced covariance with the
association cortex and its increased intraconnectivity. Lastly, individuals who learned
more rapidly exhibited greater covariance between regions in the sensorimotor and
association cortices during early adaptation. These findings are consistent with a view
that sensorimotor adaptation depends on changes in the integration and segregation
of neural activity across more specialized regions of the unimodal cortex with regions
in the association cortex implicated in higher-order processes. More generally, they
lend support to an emerging line of evidence implicating regions of the default mode
network (DMN) in task-based performance.
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Adaptive behavior depends on aligning one’s actions with the external constraints
present in a given situation and updating this mapping in response to new demands
(1, 2). Contemporary perspectives on brain function suggest that this process relies on
cooperation between brain systems specialized for implementing behavior at the moment
and those that help adapt behavior in the face of a changing environment. In the field of
motor learning, much focus has been placed on identifying the contributions of several
sensorimotor brain areas whose activity varies over the course of sensorimotor adaptation,
a key form of learning by which the brain adjusts movement through trial-and-error (3–
9). For instance, it is well understood that adaptation is supported, in part, by an implicit
learning process wherein discrepancies between expected-versus-actual sensory outcomes
(i.e., sensory prediction errors) are computed within the cerebellum (6, 8, 10, 11).
These sensory prediction errors serve as a “teaching” signal to recalibrate subsequent
motor commands in cortical sensorimotor regions, such as parietal, premotor, and motor
cortices (12, 13) and thus gradually reduce errors over time.

In addition to this cerebellar-dependent learning process, emerging evidence indicates
that sensorimotor adaptation is also supported by higher-order cognitive processing
that takes place in the cortex (14–16). For instance, during sensorimotor adaptation,
participants are able to use explicit knowledge about the change in environmental
parameters in order to generate deliberate (and strategic) compensatory movements that
minimize their movement errors (17–19). Along these lines, work has demonstrated that
subjects who utilize this explicit knowledge are able to more rapidly reduce their errors
during sensorimotor adaptation than participants who do not exhibit this same level
of explicit knowledge (19–21). To date, neuroimaging and lesion studies have mainly
implicated “task-positive” brain areas in the frontoparietal cortex, such as the dorsolateral
prefrontal cortex (DLPFC) and inferior parietal cortex (15, 22, 23), as supporting the use
of explicit strategies during sensorimotor adaptation. However, emerging perspectives on
cortical organization highlight that even areas within the default mode network (DMN),
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which were initially viewed as “task negative” (24), may also be
important when guiding task-related behaviors.

Positioned at the apex of cortical processing (25, 26), the
DMN has been commonly attributed a role in mind-wandering,
autobiographical memory, and internal mentation (24, 27–31).
However, prior work has also implicated regions of the DMN,
such as the medial frontal cortex and posterior cingulate cortex, as
being involved in the exploration and implementation of strate-
gies during task performance (32–34). This work is consistent
with emerging perspectives of a role for the DMN in several
aspects of task-based cognition, such as demanding working
memory and decision-making tasks (35–38). Recent views argue
that the broad contribution of the DMN to cognition, including
during tasks, can be accounted for by its functional interactions
with unimodal regions within sensory and motor networks
(24, 39, 40). These interactions are thought to be enabled through
its unique positioning on the cortical mantle, located equidistant
between unimodal systems involved in perception and action,
which is hypothesized to allow its broad oversight over brain-
wide activity patterns (24, 26). Taken together, the recruitment
of strategic processes during sensorimotor adaptation suggests
that cortical regions in the association cortex, and possibly those
located within the DMN, may play an important role in adapting
motor behavior following a change in the environment.

Given that the association cortex is thought to exert influence
on behavior through its topographical location on the cortex,
in order to study the role of the DMN in cognition and
behavior, it is necessary to use an analytic approach that explores
cortical activity from a whole-brain connectivity perspective. In
our study, therefore, we leverage advanced manifold learning
approaches that provide a compact, low-dimensional description
of changes in the overarching cortical functional architecture to
explore and characterize the widespread involvement of the cortex
during sensorimotor adaptation. Recent electrophysiological
work has established that low-dimensional manifolds can provide
a compact description of the covariance of neural population
activity within regions of the premotor and motor cortices (41–
43). At the same time, studies in other domains have applied
the same logic to establish that low-dimensional representations
of cortical activity can be a useful description of the macroscale
organization of neural activity (44, 45). Recently, whole-brain
manifolds, or gradients, have provided insight into the low-
dimensional organization of brain structure and morphometry
(46–48), intrinsic brain activity during rest (26), and changes in
brain organization in clinical disorders (49–51) and throughout
the lifespan (52–54). Here, we applied this approach to gain
insight into how distributed cortical activity is coordinated
during sensorimotor adaptation and how this changing cortical
landscape unfolds across different phases of learning. Specifically,
by estimating the relative positions of cortical brain regions in
a connectivity-derived manifold space and understanding how
these change in response to an environmental perturbation, we
aimed to capture the evolving landscape of brain activity that
supports sensorimotor adaptation as well as the features of this
activity that relate to better or worse learning performance.

Results

We had participants (N = 32) perform a classic visuomotor
rotation task (55) during functional MRI (fMRI) scans, in which
they launched a cursor from an initial center position to a cued
target that could be located in one of eight encircling positions
on a visual display (Fig. 1A). Participants launched the cursor

by applying a brief isometric directional force pulse on an MRI-
compatible force sensor (SI Appendix, Fig. S1 for experimental
setup). Following a Baseline block (120 trials), in which the
cursor direction directly matched the force direction (Fig. 1
A, Top), the cursor was rotated 45◦ clockwise relative to the
force direction for a remaining 320 trials (Fig. 1 A, Bottom).
Overall, we found that participants’ angular error was low during
Baseline, indicating that individuals could perform the task with
high accuracy (Fig. 1B). Following the onset of the rotation,
errors increased significantly as participants had to learn how
to counteract the cursor rotation to successfully hit each target
(by aiming their hand in a 45◦ counterclockwise direction).
Over time, participants were able to reduce their error to near-
Baseline levels of performance, indicative of successful adaptation
(Fig. 1B).

In order to study adaptation-related changes in functional
cortical organization, we used three distinct, equal-length epochs
over the time course of the task. Specifically, in addition to
task Baseline (120 trials), we defined Early and Late adaptation
epochs using the initial and final 120 trials, respectively, after
rotation onset. Each epoch was treated as a continuous block
of trials for estimating cortex-wide functional connectivity. For
each participant, we extracted mean blood oxygenation level-
dependent (BOLD) time series for each cortical region defined by
the Schaefer 1000 parcellation (56) and estimated separate func-
tional connectivity matrices for each epoch (Baseline, Early, and
Late) using the covariance matrix of the time series (Fig. 1C). To
reduce the influence of large individual differences in functional
connectivity that can obscure any task-related changes (Fig. 1D;
see also ref. 57), all connectivity matrices were centered according
to a Riemannian manifold approach (SI Appendix, Materials and
Methods; 58–60). Briefly, each participant’s covariance matrices
were translated to have a common mean (equal to the overall
mean covariance) so as to remove static participant differences
which may disguise task-related differences in functional con-
nectivity. As the space of covariance matrices is non-Euclidean,
this translation cannot be performed by ordinary subtraction but
rather involves computing the difference between each covariance
matrix and the corresponding participant mean (formally, a
tangent vector) and then transporting this tangent vector to the
overall grand mean in order to obtain a new covariance matrix
which differs from the grand mean in an equivalent way. (See
SI Appendix, Materials and Methods for the exact computations
involved in this procedure.) To demonstrate the effect of this cen-
tering procedure—and its importance for elucidating learning-
related effects in the data—we projected participants’ individual
covariance matrices, both before and after centering, using
uniform manifold approximation (UMAP; 61). As can be seen
in (Fig. 1 D, Left), prior to the centering procedure, functional
network structure is dominated by participant-level clustering,
which masks any task-related structure (i.e., differentiation of
Baseline, Early, and Late learning). However, after centering
(Fig. 1 D, Right), a task structure becomes more readily apparent.

To examine reconfigurations of cortical connectivity during
visuomotor adaptation, we took the centered matrices and
estimated separate cortical connectivity manifolds for each
participant’s Baseline, Early, and Late connectivity matrices.
Using established procedures (26, 62, 63), each matrix was first
transformed into an affinity matrix by computing the pairwise
cosine similarity between regions after row-wise thresholding (SI
Appendix, Materials and Methods). Then, we applied principal
components analysis (PCA) to obtain a set of principal com-
ponents (PCs), i.e., manifold, that provides a low-dimensional
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Fig. 1. Procedure and analysis overview. (A) Visuomotor rotation task. On Baseline trials, the cursor direction matched the aim direction. On rotation trials,
the cursor direction was rotated 45◦ clockwise relative to the aim direction. (B) Average participant performance throughout the visuomotor rotation task.
Shading indicates ±1 SEM. Three equal-length task epochs for subsequent neural analyses are indicated below: Baseline, Early adaptation (Early), and Late
adaptation (Late). (C) Neural analysis approach. For each participant and each task epoch, functional connectivity matrices were computed using region-wise
time series extracted with the Schaefer 1000 parcellation. Functional connectivity manifolds for each task epoch were estimated using PCA with centered
and thresholded connectivity matrices (SI Appendix, Materials and Methods). All manifolds (participant×epochs) were aligned to a common template manifold
created from a group-average Baseline connectivity matrix (Left) using Procrustes alignment. (D) Visualization of the similarity of connectivity matrices, both
before and after centering, using UMAP. Note that uncentered connectivity matrices show strong participant-level clustering (Outer-Left, colored by participant),
which masks differences in task structure (Inner-Left, colored by task). By contrast, centering removes this participant-level clustering (Inner-Right) and decouples
task structure (Outer-Right) from these individual differences.

PNAS 2022 Vol. 119 No. 52 e2209960119 https://doi.org/10.1073/pnas.2209960119 3 of 12

https://www.pnas.org/lookup/doi/10.1073/pnas.2209960119#supplementary-materials


representation of cortical functional organization. Each matrix
was then aligned to a template Baseline manifold, which was
constructed using the mean of all Baseline connectivity matrices
across participants (Fig. 1 C, Right). Crucially, not only did
this template Baseline manifold provide a common target for
manifold alignment (62) but it also allowed us to examine changes
in cortical connectivity that selectively arise during the learning
phase itself (i.e., Early and Late adaptation), thus increasing
our sensitivity to detect deviations from the Baseline functional
architecture.

Connectivity Manifold During Task Baseline. The top three PCs
of the template Baseline manifold (Fig. 2A) provide a compact
representation of the cortical functional organization during
Baseline trials. PC 1 distinguishes somatomotor regions (positive

loadings in red) from remaining cortical areas (negative loadings
in blue), most prominently higher-order association regions
within the DMN, such as posteromedial cortex (PMC), as well
visual areas. Meanwhile, PC 2 illustrates a gradient between
visual areas and the DMN, and PC3 is a joint gradient of
i) superior-versus-inferior frontoparietal regions and ii) lateral-
versus-medial occipital regions. These top three PCs collectively
explain 49.30% of the total variance (Fig. 2B). Although only
the top three PCs were retained for all subsequent analyses, we
note that including PC 4, which explains nearly as much variance
(8.98%) as PC 3 (9.63%), does not meaningfully alter our results
and interpretations (SI Appendix, Fig. S2).

Mapping brain regions onto their assigned intrinsic functional
network (56, 64) shows that PCs 1 and 2 jointly differentiate
visual, DMN, and somatomotor regions, resembling the tripartite

A

B C

D E

PC 1 PC 2 PC 3

Vis
SomMot

Default
Cont

SalVentAttn
DorsAttn

Limbic

a.u.

Ecc.

Fig. 2. Template Baseline manifold structure and eccentricity. (A) Region loadings for top three PCs of the template Baseline manifold (a.u.: Arbitrary units).
(B) Percent variance explained for the first 20 PCs of the template Baseline manifold. (C) Functional network organization of the template Baseline manifold.
Right, Scatter plots show the embedding of each region along the top three PCs, colored according to their intrinsic functional network (56, 64). Left, Probability
density histograms show the distribution of each functional network along each PC. Vis: Visual. SomMot: Somatomotor. DorsAttn: Dorsal attention. SalVentAttn:
Salience/Ventral attention. Cont: Control. (D) Visualization of the eccentricity calculation. Region eccentricity along the manifold is computed as the Euclidean
distance (dashed line) from manifold centroid (black square). The eccentricity of four example brain regions is highlighted (bordered colored circles). (E) Regional
eccentricity for the template Baseline manifold. Each brain region’s eccentricity is color-coded and visualized in low-dimensional space (Left) and on the cortical
surface (Right).
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structure of resting-state connectivity gradients (Fig. 2C; 26).
This differentiation is thought to reflect a fundamental feature of
functional brain organization, in which the transition from the
largely unimodal cortex (i.e., visual and somatomotor networks)
to the transmodal cortex (i.e., DMN) represents a global
processing hierarchy of increasing integration and abstraction
from lower- to higher-order systems (25, 26, 65). In contrast, PC3
appears to be task-specific in that it isolates key dorsal attention,
control, and somatomotor regions known to be involved in
the planning and execution of hand movements required to
successfully perform goal-directed actions, such as the dorsal
premotor cortex (PMd), superior parietal cortex (SPC), and
DLPFC (66–68).

Next, in order to characterize the relative positions of cortical
brain regions along the Baseline connectivity-derived manifold
space, which provides the basis for examining resultant changes
in these positions throughout learning, we computed each
region’s manifold eccentricity by taking its Euclidean distance
from the manifold centroid (Fig. 2D; 52, 53, 69). Eccentricity
provides a multivariate index of each region’s three-dimensional
embedding, in which distal regions situated at the anchors of
the manifold have greater eccentricity than proximal regions
within the manifold core (Fig. 2 E, Left). Highly eccentric regions
therefore can be interpreted as functionally segregated from other
networks in the rest of the brain, as revealed by correlating
eccentricity with graph theoretical measures of integration and
segregation. We find that Baseline eccentricity is positively related
to node strength (r = 0.83, two-tailed P < 0.001), defined as
the sum of connectivity weights for a given region. Similarly,
eccentricity is positively associated with the within-manifold
degree z-score (r = 0.49, two-tailed P < 0.001), which indexes
a region’s connectivity within its own respective functional
network. Together, these findings are consistent with the idea
that eccentric regions are tightly interconnected with other
members of the same functional network (SI Appendix, Fig. S3).
Commensurate with this, eccentricity is negatively related to the
participation coefficient (r = −0.69, two-tailed P < 0.001),
which measures how evenly distributed the connections are
across different functional networks. Therefore, eccentricity is
inversely proportional to a region’s degree of cross-network
integration. Together, these results support the notion that
adaptation-induced changes in a region’s functional segregation
or integration can be assessed through changes in eccentricity
during Early and Late adaptation.

Manifold Reconfigurations During Adaptation. We found that
the Early and Late adaptation epochs each exhibited distinct
patterns of increases (i.e., expansion) and decreases (i.e., contrac-
tion) in manifold eccentricity relative to Baseline (Fig. 3A; for raw
eccentricity maps, see SI Appendix, Fig. S4). To determine which
regions showed significant changes in manifold eccentricity across
the three task epochs (Baseline, Early, and Late adaptation),
we performed region-wise repeated measures ANOVAs and
corrected for multiple comparisons using false-discovery rate
correction (FDR; q < 0.05). Across the cortex, we found that
131 regions showed a significant main effect of task epoch, i.e.,
adaptation-related changes, with 111 of these regions forming 14
contiguous clusters (Fig. 3B). Major clusters include contiguous
regions spanning from the left (contralateral) PMd to SPC (18
regions), left PMC (20 regions), and dorsolateral portions of
the bilateral extrastriate cortex (left = 22 regions; right = 11
regions). Smaller clusters and singleton regions were also observed
throughout the rest of the cortex, and the combination of all

clusters/regions spanned all six nonlimbic functional networks
(Fig. 3C). Note that these topographical clusters arise because of
the large degree of spatial autocorrelation along each dimension
(see Fig. 2A). That is, topographically adjacent regions are more
likely to have similar connectivity profiles and thus have similar
projections onto the manifold.

To provide a concise summary of the ANOVA results
presented above, we used k-means clustering to group regions
with significant main effects according to their coordinates at
Baseline (Fig. 3C, colored circles). This approach gave way to brain
regions that tended to exhibit similar temporal trajectories in
manifold space during adaptation (Fig. 3C, traces). The clustering
analysis revealed four ensembles of regions (Fig. 3D): ensemble 1
(blue) is composed of somatomotor and dorsal attention network
regions that load positively onto PC 1 and 3, which includes left
sensorimotor regions that make up the largest cluster in Fig. 3B,
along with right PMd and parietal regions; ensemble 2 (red)
primarily involves higher-order transmodal areas of the DMN
that load negatively onto PC 1 and 2, such as PMC, angular
gyrus (AG), and superior temporal sulcus (STS); ensemble 3
(purple) mainly comprises visual regions, which include bilateral
extrastriate and parahippocampal regions, which load negatively
and positively onto PC 1 and 2, respectively; and ensemble
4 (yellow), which includes remaining regions in somatomotor
and salience/ventral attention networks that load positively on
PC1 but negatively on PC3. Computing the average eccentricity
of each ensemble reveals distinct patterns of contractions and
expansions along the manifold that characterize the key changes
in connectivity during adaptation (Fig. 3 D, Right).

Next, we directly examined the region-based changes in
eccentricity between each task epoch by performing follow-up
paired t tests on the regions that exhibited significant main
effects (in Fig. 3B), with corrections for multiple comparisons
applied across all tests using FDR correction (q < 0.05; Fig. 3E).
As revealed by a contrast of Early>Baseline, Early adaptation
is primarily characterized by reductions in eccentricity, i.e.,
manifold contractions, of regions belonging to ensembles 1
and 2, including regions in the somatomotor and PMd, as
well as areas of the DMN, such as bilateral PMC and AG.
Although regions in ensemble 3 (visual network) collectively
trend toward manifold contraction during Early learning (see
Fig. 3D), only eight regions in extrastriate and parahippocampal
cortices exhibited significant contractions, after corrections for
multiple comparisons. Meanwhile, regions in ensemble 4 showed
significant increases in eccentricity over the same time window,
i.e., manifold expansion.

As revealed by the contrast of Late>Baseline (Fig. 3E,Middle),
we found that sensorimotor and DMN regions in ensembles 1
and 2, respectively, maintained their contraction during Late
adaptation. Performing a Late>Early contrast (Fig. 3 E, Bottom)
shows that the extent of the contraction in these regions did
not significantly differ between epochs, with the exception of
an increased contraction in the left somatosensory cortex and a
subregion within the left PMC. However, by and large, the main
characteristic feature of Late adaptation is the expansion of the
visual cortex along the manifold, including bilateral extrastriatal
regions. These effects are more pronounced for the Late>Early
contrast than for the Late>Baseline contrast, which is a result
of the overall trend toward manifold contraction of these visual
areas during Early adaptation.

Taken together, the above pattern of results suggests that, dur-
ing Early adaptation, several visual, sensorimotor, and transmodal
areas in the DMN begin to integrate with regions outside of their
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Fig. 3. Adaptation-related changes in manifold eccentricity. (A) Region-wise mean changes in eccentricity during Early and Late adaptation, relative to Baseline.
Positive (mauve) and negative (teal) values indicate relative increases and decreases in eccentricity, respectively. (B) Significant changes in eccentricity across
task epochs (Baseline, Early, and Late) according to region-wise repeated measures ANOVAs with false-discovery rate (FDR) correction for multiple comparisons
(q < 0.05). (C) Temporal trajectories of statistically significant regions from B in low-dimensional space. Colored circles indicate each region’s initial position
during Baseline, and the traces show the unfolding displacement of that region during Early and Late adaptation. Each region is colored according to its
functional network assignment (Left). Nonsignificant regions are shown in gray point cloud. (D) Patterns of effects for four ensembles of significant regions in B
derived from k-means clustering on each brain region’s coordinates during Baseline (see C). Scatter plots (Right) show within-ensemble mean eccentricity for
each participant, and line plot overlays (white markers) show the group mean across task epochs. (E) Pairwise contrasts of eccentricity between task epochs.
Region-wise paired t-tests were performed for each contrast, and FDR correction was applied across all comparisons (q < 0.05). Positive (orange) and negative
(blue) values show significant increases and decreases in eccentricity, respectively.

respective functional networks. By contrast, during Late adapta-
tion when performance plateaus and errors become minimized,
our findings suggest that visual cortical regions, particularly
higher-order visual areas, become functionally segregated from
other brain networks. In the next section, we seek to directly test
these interpretations of manifold contractions and expansions
during Early and Late adaptation, respectively.

Connectivity Changes Underlying Manifold Reconfigurations.
Because eccentricity represents a multivariate measure of
a region’s overall connectivity profile, we performed seed

connectivity analyses in order to help characterize the changes in
connectivity that underlie the patterns of manifold contraction
and expansion we observed throughout adaptation. To describe
connectivity changes during Early adaptation, we selected repre-
sentative regions of the three largest clusters in the Early>Baseline
contrast, which included the left PMC, left SPC, and left PMd
(SI Appendix, Materials and Methods). For each region, we
contrasted seed connectivity maps between the Early and Baseline
epochs (Early>Baseline) by computing region-wise paired t-tests,
producing contrast maps for each seed region (Fig. 4A). We
show the unthresholded contrast maps to allow visualization of
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Fig. 4. Patterns of connectivity differences underlying changes in manifold
eccentricity. (A) Early>Baseline seed connectivity contrast maps for the left
PMC, SPC, and PMd. Selected seed regions are shown in yellow and are also
indicated by arrows. Positive (red) and negative (blue) values show increases
and decreases in connectivity, respectively, during Early adaptation relative
to Baseline. (B) Late>Early and (C) Early>Baseline seed connectivity contrast
maps for the left visual/extrastriate (Vis) seed region.

the complete array of connectivity differences that collectively
contribute to the eccentricity changes.

During Early adaptation, we found that the left PMC
seed region exhibited decreased connectivity with other PMC
subregions across both hemispheres as well as with other DMN
areas located in bilateral AG and STS and with the left
DLPFC. Instead, the PMC exhibited increased connectivity with
sensorimotor regions such as the PMd and SPC, along with
anterior portions of the frontal cortex and insula. Notably, the
opposite pattern can be observed for both the left SPC and PMd
seed regions, which exhibited decreased connectivity with other
sensorimotor regions in favor of increasing their connectivity
with areas of the DMN (e.g., bilateral PMC, AG, STS) and
the DLPFC. Together, these findings indicate that manifold
contractions of the PMC, SPC, and PMd during Early adaptation
largely arise from increased integration between sensorimotor
regions (ensemble 1) and higher-order transmodal regions of the
DMN (ensemble 2).

We also repeated the seed connectivity analysis to investigate
the basis of the manifold expansion of the visual cortex observed
during Late adaptation. Using the Late>Early eccentricity con-
trast, we selected a representative region from the left extrastriate
cluster, which was the largest cluster across both hemispheres.
By contrasting seed maps between the Late and Early epochs
(i.e., Late>Early), we found that connectivity increased within

bilateral visual cortex and parahippocampal regions (Fig. 4B).
Meanwhile, connectivity to the rest of the cortex remained
relatively unchanged, with the exception of subtle connectivity
reductions in the dorsomedial frontal cortex. These results
suggest that the segregation/expansion of visual areas during
Late adaptation is mainly driven by increased intraconnectivity
of the visual cortex rather than a decoupling from the rest of
the cortex. Notably, this same visual seed region also exhibited
a significant contraction in our Early>Baseline eccentricity
contrast (see Fig. 3E), and as such, we additionally contrasted
this region’s seed connectivity during the Early and Baseline
epochs. This analysis revealed decreased connectivity with visual
and sensorimotor regions during Early adaptation, while also
showing increased connectivity with DMN areas, such as AG,
STS, and dorsomedial frontal cortex (Fig. 4C). Thus, consistent
with the pattern of effects shown above for areas PMC, SPC,
and PMd, we found that greater connectivity with the DMN
also underlies significant manifold contractions of visual areas.
Together, this suggests that increased functional interaction be-
tween unimodal and transmodal cortical areas is a feature of early
learning.

Eccentricity Relates to Performance During Early Adaptation.
Thus far, we have characterized within-participant alterations to
manifold structure throughout adaptation, revealing patterns of
manifold contraction and expansion expressed across individuals.
It is well established, however, that significant intersubject
variability exists during the initial phases of learning, when
visumotor errors are largest (17–19). Consistent with this prior
work, we find a large degree of between-participant variability
in performance during Early adaptation (Fig. 5A), which we
measured by computing the median angular error for each
participant (i.e., Early error; Fig. 5B). Given these prominent
individual differences in performance, we next asked whether
this intersubject variability is related to manifold structure during
Early adaptation, as captured by eccentricity.

To examine this question at the region level, we calculated the
correlation between participants’ Early error and the eccentricity
values within each cortical region during Early adaptation
(Fig. 5C). Following FDR correction for multiple comparisons
(q < 0.05), we found that regions within the left (contralateral)
parietal cortex and bilateral PMd exhibited significant positive
associations between their manifold eccentricity and participant
Early error (i.e., greater eccentricity corresponds with a greater
error or worse performance). Note that, across participants, these
same regions exhibit overall manifold contractions during Early
adaptation (see Fig. 3E), and thus, participants with greater
contractions (i.e., lower eccentricity) in these regions during
Early adaptation show faster learning (i.e., lower Early error).
Also, recall that manifold contractions of these same regions (the
left PMd and SPC seed regions used for connectivity analyses
Fig. 5C, arrows) are associated with increased connectivity with
higher-order transmodal regions within the DMN (Fig. 4A).
Taken together, these findings suggest that participants who
adapt more rapidly express a greater degree of integration
between sensorimotor and higher-order association networks
during Early adaptation. This is consistent with the idea that the
coupling of transmodal and sensorimotor cortical regions during
adaptation reflects the recruitment of explicit learning processes,
which exert top–down control over the sensorimotor system
(16–18).

It is noteworthy that the region-level correlations shown in
Fig. 5C exhibit a high degree of spatial contiguity; that is, the
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Fig. 5. Manifold eccentricity during Early adaptation relates to task performance. (A) Individual differences in behavioral performance during Early adaptation.
The black line shows the average error across participants, binned by trial block, and colored traces show binned error for individual participants. Different
participants are colored according to their median error in B. (B) Distribution of median error during Early adaptation. Color in the scatter plot indicates
median error, with lighter color in the scatter plot indicating a lower Early error (better learning). (C) Correlation map between Early eccentricity and Early
error. Yellow traces show significant regions following FDR correction (q < 0.05). Arrows indicate left PMd and SPC seed regions in Fig. 4A, which are used
as exemplar significant regions in D. (D) Example correlations from left PMd and SPC seed regions in Fig. 4A. (E) Correlations between network eccentricity
and Early error (Left); scatter plots are shown for the two largest correlations (Right). Bar and scatter plot colors correspond to network colors shown on
the brain surface (Middle). Of all networks, Dorsal Attention B and Control A showed the strongest correlations (Right). VisCent: Visual Central. VisPer: Visual
Peripheral. SomMotA: Somatomotor A. SomMotB: Somatomotor B. TempPar: Temporal Parietal. DorsAttnA: Dorsal Attention A. DorsAttnB: Dorsal Attention
B. SalVentAttnA: Salience/Ventral Attention A. SalVentAttnB: Salience/Ventral Attention B. ContA: Control A. ContB: Control B. ContC: Control C. *P < 0.05,
***P < 0.001, †q < 0.05.

parietal and premotor cortical regions that pass FDR correction
(noted above) are situated within much larger clusters of regions
that exhibit a very similar pattern of correlations with learning
performance. This topography suggests that the association
between manifold eccentricity and participant behavior during
Early adaptation may be further characterized at the level of
distributed functional networks. To explore this possibility,
we mapped each region onto its respective functional network
and, within each participant, computed the average manifold
eccentricity for each network (i.e., network eccentricity). For
this purpose, we used the 17-network mapping in order to
capitalize on the improved spatial precision—and thus the
ability to better localize effects—compared to the 7-network
mapping (56, 64). Next, we correlated, for each network, its
eccentricity during Early adaptation with participants’ Early
error. Among these networks, the Dorsal Attention B (r = 0.60,
two-tailed P < 0.001; Fig. 5E) and Control A (r = 0.35,
two-tailed P = 0.046) networks showed a significant positive
association with Early error (although the Control A did not
survive FDR correction, q < 0.05). Collectively, these two
networks span several parietal (e.g., SPC, intraparietal sulcus),
premotor (e.g., PMd, frontal eye fields), and prefrontal areas
(e.g., DLPFC), which together represent an array of brain
areas previously implicated in higher-order sensorimotor pro-

cessing and the top–down control of goal-directed behavior
(67, 70–72).

Discussion

Complex behavior depends on the coordinated operation of
several specialized neural systems distributed throughout the
brain. During sensorimotor adaptation, these distributed systems
must modify their interactions to ensure that motor behavior ap-
propriately responds to changes in environmental dynamics and
regularities. While much focus to date has been on understanding
the cerebellar-dependent mechanisms that underlie sensorimotor
adaptation, our understanding of the contributions and func-
tional reorganization of cortical systems remains incomplete
(73). Here, we capitalized on recent analytical methods that link
together topographic and functional brain organization (26, 62)
in order to quantify adaptation-related changes in cortical activity
patterns and how features of this reorganization relate to learning
performance.

By projecting subjects’ cortical functional connectivity pat-
terns into compact low-dimensional manifold spaces, we found
that adaptation was primarily characterized by increasing man-
ifold contractions of higher-order sensorimotor regions in the
parietal and PMd cortex, as well as transmodal areas of the DMN.
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Further analyses revealed that these manifold contractions were
the result of greater covariance in neural activity between trans-
modal (i.e., DMN and frontoparietal networks) and unimodal
(i.e., sensorimotor) systems, which was largely maintained across
the entire adaptation period. In addition, we found that, by
the late stages of adaptation, when visumotor errors had been
largely reduced, visual cortical regions exhibited expansion along
the cortical manifold, a pattern that was explained by greater
intraconnectivity within the visual cortex. Finally, our analyses
revealed that these changes have important behavioral correlates,
as faster overall adaptation was linked to increased covariance
between sensorimotor and transmodal areas of the DMN.
Together, our results characterize the macroscale cortical changes
that support human sensorimotor adaptation and performance.
As we discuss below, these findings have important implications
for our understanding of the cortical basis of adaptation, in
general, and the role that the association cortex, and the DMN,
in particular, plays in the organization of adaptive behavior.

Several prior fMRI studies have revealed adaptation-related
increases and decreases in the activity of individual sensorimotor
cortical brain regions, including areas in the motor, premotor,
and parietal cortex (3–5, 7, 22, 74). Our results expand on
these findings by suggesting that these individual region-based
changes are part of a broader reorganization of the cortical
landscape that occurs during adaptation. Specifically, our analyses
suggest that sensorimotor areas become increasingly integrated
with higher-order association areas in the DMN and DLPFC
following a visuomotor perturbation. Contemporary models of
cortical organization (25, 26) suggest that transmodal regions
are important for organizing behavior in an increasingly abstract
manner. It is possible that the observed changes in the cortical
landscape, therefore, reflect the increased need for more abstract
control over unimodal systems. This perspective is consistent with
behavioral and lesion work indicating that adaptation recruits
cortically driven explicit learning processes (e.g., mental rotation,
working memory, etc.) that are strategic and declarative in nature
and thus presumed to involve brain areas in the higher-order
association cortex (e.g., prefrontal regions; 15, 23). Furthermore,
existing evidence suggests that faster learning across participants
results from the greater recruitment of explicit learning processes
during adaptation (19). Consistent with this, we find that faster
learning across participants is associated with a greater manifold
contraction of higher-order sensorimotor regions in the parietal
and PMd cortex and that these contractions reflect the increased
covariance of these areas with regions of the DMN and prefrontal
cortex (Fig. 4). We find it noteworthy that these parietal and
premotor cortical areas belong to the dorsal attention (DAN)
network (see Fig. 5E), given that this network, in particular, has
been heavily implicated in the top–down control of attention
and action (64, 70, 72). However, we recognize that, although
our study highlights the interactions of both unimodal and
transmodal systems during learning, our design does not allow
us to delineate the specific higher-order control processes that
this pattern reflects. For instance, the extent to which these
interactions may be linked to task-general processes, such as
changes in cognitive effort (75), attention (76), or inhibition
(77), which all play critical roles in shaping learning (78–80),
remains a question for future work.

Our data also have important implications for understanding
how and under what conditions the DMN contributes to ongoing
behavior. Initial observations that the DMN was often less
active in external tasks led many researchers to focus solely
on processes that are likely to occur in this context. These

included introspective states such as mind-wandering (28) or
mental time travel (30, 81) as well as aspects of both episodic
(30) and semantic memory (82). However, while the DMN
is undoubtedly important in these situations, recent research
highlights the need to go beyond these cognitive domains
for two different reasons. First, contemporary observations
from cognitive neuroscience suggest that even during complex
demanding external tasks, the DMN systematically changes its
functional organization in a manner that reflects features of the
external task. For example, in working memory (39) and feature
discrimination paradigms, (83) regions of the DMN can increase
connectivity with task-positive regions, such as the DLPFC, in
a manner that is linked to better performance. In externally
demanding situations, experience sampling studies highlight that
regions, such as the posterior cingulate cortex, are important for
supporting patterns of detailed task-relevant cognition (35, 40).
Moreover, in externally demanding tasks, in which memory is
important for guiding decisions, activity levels within the DMN
can increase even if the task stimuli are simple geometric shapes
and thus lack complex semantic or episodic associations (36–38).
Second, contemporary anatomical perspectives on the DMN
have demonstrated that it is situated at the apex of processing
streams originating in the sensorimotor cortex, a location that
highlights its potential role in the governance of integrated forms
of behavior (24, 26). In the context of the current work, our study
shows that greater functional integration between the DMN
and sensorimotor systems can occur when simple visumotor
regularities that govern reaching behavior change and that this
integration has functional significance in terms of how rapidly
behavior can be adapted. In this way, our study extends the
situations in which the DMN contributes to cognition and
behavior beyond the domain of purely “cognitive” tasks to tasks
involving visumotor control.

We envisage two ways in which the DMN may contribute to
sensorimotor learning. First, the DMN may support a memory of
past visumotor errors (84) experienced by the participant, which
is used as a basis for guiding learning. Indeed, prior work has
shown the DMN to be involved in situations where decision-
making cannot be based on immediate sensory input and must
instead be guided by prior information (e.g., from a previous trial)
(35–39, 85). By analogy, in error-based sensorimotor learning,
action selection on the current trial (i.e., what direction to move)
is based on a recent history of errors accrued across previous trials
(84). It is possible that this memory process is supported by the
DMN, which then communicates with the sensorimotor system
to update future motor actions accordingly. A second way in
which the DMN may contribute to sensorimotor learning is the
search for, and implementation of, a reaiming strategy during
learning (18, 86). For example, the DMN may be involved
in exploration of a correct reaiming strategy during initial
learning, whereas during later learning, the DMN is involved in
remembering and implementing that learned strategy (32, 34).
From this perspective, the link between the reconfiguration of
functional relationships between the DMN and sensorimotor
cortices, as well as their relationships to behavioral performance,
may reflect the neural motif through which we explicitly consider
and modify our actions. Understanding how we flexibly control
our actions based on current goals and prior knowledge about the
environment is an important question for future work, as it will
help identify whether the patterns of neural effects observed here
are unique to situations of sensorimotor adaptation or, instead,
reflective of a more general process for controlling real-time
behavior.
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One curious observation was our finding that the visual
cortex exhibited contraction along the cortical manifold during
Early adaptation, whereas during Late adaptation, it exhibited
expansion (Fig. 3E). Our further analyses indicated that this
reversal pattern resulted from the relative increase in covariance,
during Early adaptation, between the visual cortex and areas of
the DMN (e.g., medial prefrontal cortex, AG, superior temporal
gyrus) compared to a relative decrease in this covariance during
Late adaptation. While we can only speculate on the nature of
these changes, one possibility is that they reflect a relative shift in
the neural processing of visual errors experienced by participants
across the different phases of learning. During Early adaptation,
subjects experience large visual errors (∼45◦), which tend to
engage explicit reaiming processes to help minimize those errors
(87). At the neural level, this would require that errors sensed by
the visual system be fed forward to the higher-order association
cortex, which, in turn, would implement a reaiming strategy to
help reduce those visual errors. This would presumably manifest
as increased covariance between the visual and transmodal cortex,
which is consistent with our Early adaptation results. Likewise, by
the end of learning, when visual errors have been reduced to near
baseline levels, the feedforward exchange of information from the
visual to transmodal cortex would be expectantly reduced. This
would presumably manifest as decreased covariance between the
visual and transmodal cortex, which is also consistent with our
Late adaptation results.

Another, albeit not mutually exclusive, possibility is that the
pattern of manifold expansion-then-contraction of the visual
cortex described above relates to learning-dependent changes
in the top–down modulation of visual cortical activity by the
transmodal cortex. For instance, during Early adaptation, when
visual errors are large and numerous (and when learning rates
are maximal), the attentional processing of visual errors is likely
to be heightened and prioritized as compared to during Late
adaptation, when errors tend to be much smaller in magnitude
and when performance has more or less stabilized. Prior work has
shown that the allocation of attentional resources during learning
plays a critical role in successful sensorimotor adaptation (78–
80) and, similarly, that the allocation of spatial attention during
motor planning modulates neural activity in the visual cortex
(88–90). Although the neural circuits by which the visual cortex
is modulated during tasks involving motor learning and control
remain poorly understood, such modulation likely involves top–
down projections from higher-order brain areas in the association
cortex (91, 92). Taken together, our visual cortex findings are
likely to be explained, at least in part, by both bottom–up
and top–down interactions between the transmodal and visual
cortices.

In summary, here we applied recent dimensionality reduc-
tion approaches in order to describe the changing functional
architecture of the cortex during sensorimotor learning. This
approach enabled us to identify adaptation-related shifts in a low-
dimensional connectivity structure that are driven by increasing
integration between regions within sensorimotor and higher-
order association networks, and later in adaptation, functional
segregation of visual areas. These findings offer a unique
perspective in our understanding of the cortical contributions
to sensorimotor adaptation, which not only have important
implications in contemporary theories of motor learning but also
the role of the transmodal cortex in task-based performance.

Materials and Methods

40 right-handed individuals (13 males) between the ages of 18 and 35
(M = 22.5, SD = 4.51) participated in the study. Data from eight
participants were excluded due to head motion in the scanner or missing scans.
Participants’ written, informed consent was obtained before commencement
of the experimental protocol. The Queen’s University Research Ethics Board
approved the study, and it was conducted in accordance with the principles
outlined in the Canadian Tri-Council Policy Statement on Ethical Conduct
for Research Involving Humans and the principles of the Declaration of
Helsinki (1964).

We used a well-established motor learning paradigm, the visuomotor rotation
task (55), to probe sensorimotor adaptation. This task consisted of launching a
cursor from an initial center position to a cued target at one of eight possible
encircling locations, which was performed by applying a directional force onto
an MRI-compatible force sensor. During a continuous fMRI scan, a total of 440
trials were completed, which included 120 trials with no cursor rotation (i.e.,
aligned to the force direction) and 320 subsequent trials with a 45◦ cursor
rotation. For each participant, region time series were extracted by taking the
mean blood oxygenation level-dependent (BOLD) activity of each 998 brain
regions according to the Schaefer 1000 parcellation (56), which were then
spliced into three task epochs: Baseline (120 trials prior to cursor rotation),
Early adaptation (120 trials immediately following cursor rotation), and Late
adaptation (the final 120 trials with cursor rotation). We generated centered
functional connectivity matrices for each epoch, which were then transformed
to cosine similarity affinity matrices after undergoing row-wise proportional
thresholding (i.e., top 10% connections each row; SI Appendix, Materials and
Methods). We applied PCA on each affinity matrix to construct connectivity
manifolds (26, 62, 63) for each participant and task epoch, which were aligned
to a group-average template Baseline manifold using Procrustes alignment.
To assess adaptation-related changes in manifold structure, we computed each
region’s manifold eccentricity (52, 53, 69), and identified region-wise differences
in eccentricity across task epochs using repeated-measures ANOVAs, as well
as post hoc pairwise contrasts using paired t-tests. To examine the changes
in whole-brain connectivity that underlie changes in manifold eccentricity, we
performed seed connectivity contrasts of four exemplar regions that demonstrate
representative effects. Additionally, we related individual differences in manifold
structure during Early adaptation with differences in performance. We correlated
participants’ median angular error with a) the eccentricity of each region and b)
the mean eccentricity of entire functional networks during Early adaptation. For
complete methods, refer to SI Appendix, Materials and Methods.

Data, Materials, and Software Availability. Neuroimaging data have been
depositedinVisuomotorrotationadaptationexperiment(10.18112/openneuro.
ds004021.v1.0.0). Analysis code is available at https://github.com/danjgale/
adaptation-manifolds.
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